research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of (2Z)-4-benzyl-2-(2,4-di­chloro­benzyl­­idene)-2H-1,4-benzo­thia­zin-3(4H)-one

aLaboratoire de Chimie Appliquée et Environnement, Equipe de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco, bLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: elghayatilhoussaine2018@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 24 September 2019; accepted 4 October 2019; online 22 October 2019)

The title compound, C22H15Cl2NOS, contains 1,4-benzo­thia­zine and 2,4-di­­chloro­benzyl­idene units, where the di­hydro­thia­zine ring adopts a screw-boat conformation. In the crystal, inter­molecular C—HBnz⋯OThz (Bnz = benzene and Thz = thia­zine) hydrogen bonds form corrugated chains extending along the b-axis direction which are connected into layers parallel to the bc plane by inter­molecular C—HMethy⋯SThz (Methy = methyl­ene) hydrogen bonds, en­closing R44(22) ring motifs. Offset π-stacking inter­actions between 2,4-di­­chloro­phenyl rings [centroid–centroid = 3.7701 (8) Å] and π-inter­actions which are associated by C—HBnzπ(ring) and C—HDchlphyπ(ring) (Dchlphy = 2,4-di­chloro­phen­yl) inter­actions may be effective in the stabilization of the crystal structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (29.1%), H⋯C/C⋯H (27.5%), H⋯Cl/Cl⋯H (20.6%) and O⋯H/H⋯O (7.0%) inter­actions. Hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, the C—HBnz⋯OThz and C—HMethy⋯SThz hydrogen-bond energies are 55.0 and 27.1 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/6-311G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.

1. Chemical context

1,4-Benzo­thia­zine derivatives constitute an important class of heterocyclic systems. These mol­ecules exhibit a wide range of biological applications, indicating the fact that the 1,4-benzo­thia­zine moiety is a template potentially useful in medicinal chemistry research and therapeutic applications, such as the anti-inflammatory (Trapani et al., 1985[Trapani, G., Reho, A., Morlacchi, F., Latrofa, A., Marchini, P., Venturi, F. & Cantalamessa, F. (1985). Farmaco Ed. Sci. 40, 369-376.]; Gowda et al., 2011[Gowda, J., Khader, A. M. A., Kalluraya, B., Shree, P. & Shabaraya, A. R. (2011). Eur. J. Med. Chem. 46, 4100-4106.]), anti­pyretic (Warren & Knaus, 1987[Warren, B. K. & Knaus, E. E. (1987). Eur. J. Med. Chem. 22, 411-415.]), anti­microbial (Armenise et al., 2012[Armenise, D., Muraglia, M., Florio, M. A., Laurentis, N. D., Rosato, A., Carrieri, A., Corbo, F. & Franchini, C. (2012). Mol. Pharmacol. 50, 1178-1188.]; Rathore & Kumar, 2006[Rathore, B. S. & Kumar, M. (2006). Bioorg. Med. Chem. 14, 5678-5682.]), anti­viral (Malagu et al., 1998[Malagu, K., Boustie, J., David, M., Sauleau, J., Amoros, M., Girre, R. L. & Sauleau, A. (1998). Pharm. Pharmacol. Commun. 4, 57-60.]), anti­cancer (Gupta et al., 1985[Gupta, R. R., Kumar, R. & Gautam, R. K. (1985). J. Fluor. Chem. 28, 381-385.]; Gupta & Gupta, 1991[Gupta, V. & Gupta, R. R. (1991). J. Prakt. Chem. 333, 153-156.]) and anti-oxidant (Zia-ur-Rehman et al., 2009[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311-1316.]) areas. They have also been reported as precursors for the syntheses of new compounds (Sebbar et al., 2015a[Sebbar, N. K., Ellouz, M., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015a). Acta Cryst. E71, o999.]; Vidal et al., 2006[Vidal, A., Madelmont, J. C. & Mounetou, E. A. (2006). Synthesis, 2006, 591-593.]) possessing anti­diabetic (Tawada et al., 1990[Tawada, H., Sugiyama, Y., Ikeda, H., Yamamoto, Y. & Meguro, K. (1990). Chem. Pharm. Bull. 38, 1238-1245.]) and anti­corrosion activities (Ellouz et al., 2016a[Ellouz, M., Sebbar, N. K., Elmsellem, H., Steli, H., Fichtali, I., Mohamed, A. M. M., Mamari, K. A., Essassi, E. M. & Abdel-Rahaman, I. (2016a). J. Mater. Environ. Sci. 7, 2806-2819.],b[Ellouz, M., Elmsellem, H., Sebbar, N. K., Steli, H., Al Mamari, K., Nadeem, A., Ouzidan, Y., Essassi, E. M., Abdel-Rahaman, I. & Hristov, P. (2016b). J. Mater. Environ. Sci. 7, 2482-2497.]; Sebbar et al., 2016a[Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2016a). IUCrData, 1, x161012.]). They also possess biological properties (Hni et al., 2019a[Hni, B., Sebbar, N. K., Hökelek, T., Ouzidan, Y., Moussaif, A., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 372-377.],b[Hni, B., Sebbar, N. K., Hökelek, T., El Ghayati, L., Bouzian, Y., Mague, J. T. & Essassi, E. M. (2019b). Acta Cryst. E75, 593-599.]; Sebbar et al., 2017[Sebbar, N. K., Ellouz, M., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017). IUCrData, 2, x170889.]; Ellouz et al., 2017a[Ellouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x170646.],b[Ellouz, M., Sebbar, N. K., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x170097.], 2018[Ellouz, M., Sebbar, N. K., Fichtali, I., Ouzidan, Y., Mennane, Z., Charof, R., Mague, J. T., Urrutigoïty, M. & Essassi, E. M. (2018). Chem. Cent. J. 12, 123.]). As a continuation of our research on the development of N-substituted 1,4-benzo­thia­zine derivatives and the evaluation of their potential pharmacological activities, we report here the synthesis of (2Z)-4-benzyl-2-(2,4-di­chloro­benzyl­idene)-2H-1,4-benzo­thia­zin-3(4H)-one, (I)[link], by the reaction of benzyl chloride with (Z)-2-(2,4-di­chloro­benzyl­idene)-2H-1,4-benzo­thia­zin-3(4H)-one and po­tassium carbonate in the presence of tetra-n-butyl­ammonium bromide (as catalyst). The mol­ecular and crystal structures, together with the Hirshfeld surface analysis, the inter­molecular inter­action energies and density functional theory (DFT) computational calculations were carried out at the B3LYP/6-311G(d,p) and B3LYP/6-311G(d,p) levels, respectively, for (I)[link] (see Scheme 1[link]).

[Scheme 1]

2. Structural commentary

The title compound, (I), contains 1,4-benzo­thia­zine and 2,4-di­chloro­benzyl­idene units (Fig. 1[link]), where the di­hydro­thia­zine ring, B (atoms S1/N1/C1/C6–C8), adopts a screw-boat conformation with puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) of QT = 0.4331 (10) Å, θ = 68.34 (16)° and φ = 333.95 (17)°. The planar rings A (C1–C6), C (C10–C15) and D (C17–C22) are oriented at dihedral angles of A/C = 60.49 (4)°, A/D = 79.69 (4)° and C/D = 41.29 (4)°. Atoms Cl1 and Cl2 are −0.0156 (3) and 0.0499 (4) Å from ring C and so are almost coplanar.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, inter­molecular C—HBnz⋯OThz (Bnz = benzene and Thz = thia­zine) hydrogen bonds form corrugated chains extending along the b-axis direction which are connected into layers parallel to the bc plane by inter­molecular C—HMethy⋯SThz (Methy = methyl­ene) hydrogen bonds, enclosing [R_{4}^{4}](22) ring motifs (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) (Table 1[link] and Fig. 2[link]). Offset π-stacking inter­actions between 2,4-di­chloro­phenyl rings C [atoms C10–C15; Cg3⋯Cg3i, where Cg3 is the centroid of ring C; symmetry code: (i) −x, −y + 1, −z + 1], may further stabilize the structure, with a centroid–centroid distance of 3.7701 (8) Å, together with π-inter­actions, i.e. C—HBnzπ(ring) and C—HDchlphyπ(ring) (Dchlphy = 2,4-di­chloro­phen­yl). The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (29.1%), H⋯C/C⋯H (27.5%), H⋯Cl/Cl⋯H (20.6%) and O⋯H/H⋯O (7.0%) inter­actions. Hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg4 are the centroids of rings A (C1–C6) and D (C17–C22), respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1ix 0.936 (19) 2.51 (2) 3.3346 (17) 147.7 (15)
C16—H16B⋯S1v 0.945 (16) 2.852 (16) 3.7011 (13) 149.9 (12)
C3—H3⋯Cg4ix 0.938 (17) 2.901 (17) 3.6428 (15) 136.8 (13)
C14—H14⋯Cg4x 0.971 (19) 2.710 (18) 3.5593 (15) 146.8 (14)
C18—H18⋯Cg1xi 0.979 (18) 2.969 (18) 3.6759 (16) 130.0 (13)
Symmetry codes: (v) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ix) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (x) [x-1, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (xi) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].
[Figure 2]
Figure 2
A partial packing diagram, viewed along the a-axis direction, with C—HBnz⋯OThz and C—HMethy⋯SThz (Bnz = benzene, Thz = thia­zine and Methy = methyl­ene) hydrogen bonds shown, respectively, as black and light-purple dashed lines.

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of (I)[link], a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out using CrystalExplorer (Version 17.5; Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.]). In the HS plotted over dnorm (Fig. 3[link]), the white surface indicates contacts with distances equal to the sum of the van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625-636.]). The bright-red spots appearing near atoms O1, S1 and H4 indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/.]), as shown in Fig. 4[link]. The blue regions indicate the positive electrostatic potential (hydrogen-bond donors), while the red regions indicate the negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the ππ stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 5[link] clearly suggest that there are ππ inter­actions in (I)[link]. The overall two-dimensional (2D) fingerprint plot (Fig. 6[link]a) and those delineated into H⋯H, H⋯C/C⋯H, H⋯Cl/Cl⋯H, O⋯H/H⋯O, C⋯C, S⋯H/H⋯S and Cl⋯C/C⋯Cl contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Figs. 6[link](b)–(h), respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H, contributing 29.1% to the overall crystal packing, which is reflected in Fig. 6[link](b) as widely scattered points of high density due to the large hydrogen content of the mol­ecule with the tip at de = di = 1.17 Å, due to the short inter­atomic H⋯H contacts (Table 2[link]). In the presence of C—H⋯π inter­actions, the pairs of characteristic wings resulting in the fingerprint plot delineated into H⋯C/C⋯H contacts (Fig. 6[link]c), with a 27.5% contribution to the HS, arises from the H⋯C/C⋯H contacts (Table 2[link]) and are viewed as pairs of spikes with the tips at de + di = 2.82 and 2.78 Å for thin and thick spikes, respectively. The pair of scattered points of the wings resulting in the fingerprint plots delineated into H⋯Cl/Cl⋯H (Fig. 6[link]d), with a 20.6% contribution to the HS, has a symmetrical distribution of points with the edges at de + di = 2.78 Å arising from the H⋯Cl/Cl⋯H contacts (Table 2[link]). The pair of characteristic wings resulting in the fingerprint plot delineated into O⋯H/H⋯O contacts (Fig. 6[link]e), with a 7.0% contribution to the HS, arises from the O⋯H/H⋯O contacts (Table 2[link]) and is viewed as a pair of spikes with the tips at de + di = 2.35 Å. The C⋯C contacts (Fig. 6[link]f) have an arrow-shaped distribution of points with the tip at de = di = 1.7 Å. Finally, the characteristic wings resulting in the fingerprint plots delineated into S⋯H/H⋯S and Cl⋯C/C⋯Cl contacts (Figs. 6[link]g and 6h), with 4.0 and 2.2% contributions to the HS, arise from the S⋯H/H⋯S and Cl⋯C/C⋯Cl contacts (Table 2[link]) and are viewed with the tips at de = di = 2.70 Å and de + di = 3.46 Å, respectively.

Table 2
Selected interatomic distances (Å)

Cl1⋯Cl1i 3.2439 (5) C6⋯C22 3.4830 (18)
Cl1⋯C14ii 3.4981 (14) C6⋯C12v 3.5828 (18)
Cl1⋯H9 2.647 (16) C7⋯C22 3.4391 (18)
Cl2⋯H19iii 2.96 (2) C10⋯C12ii 3.4871 (18)
Cl2⋯H9ii 3.044 (16) C14⋯C20iv 3.572 (2)
Cl2⋯H4iv 3.138 (18) C5⋯H16A 2.563 (16)
S1⋯Cl2v 3.5832 (5) C6⋯H22 2.904 (15)
S1⋯Cl2v 3.5832 (5) C8⋯H15 2.929 (18)
S1⋯N1 3.0801 (11) C16⋯H5 2.556 (18)
S1⋯C15 3.1625 (14) C17⋯H5 2.829 (18)
S1⋯C13v 3.6033 (13) C18⋯H3vi 2.998 (17)
S1⋯H15 2.578 (18) C21⋯H12i 2.845 (18)
O1⋯C17 3.2096 (16) H14⋯C20iv 2.964 (18)
O1⋯C4vi 3.3346 (17) H14⋯C21iv 2.899 (18)
O1⋯H9 2.406 (16) H14⋯C22iv 2.990 (18)
O1⋯H16B 2.345 (16) H15⋯C19iv 2.951 (18)
O1⋯H4vi 2.51 (2) H16B⋯S1v 2.852 (16)
N1⋯S1 3.0801 (11) H16B⋯C1v 2.973 (16)
N1⋯H22 2.552 (15) H18⋯C6v 2.934 (19)
C1⋯C12v 3.4639 (18) H5⋯H16A 2.16 (2)
C1⋯C13v 3.4372 (18) H12⋯H21i 2.46 (3)
C2⋯C12v 3.541 (2) H15⋯H21viii 2.51 (3)
C3⋯C3vii 3.485 (2) H16B⋯H18 2.51 (2)
C5⋯C22 3.4988 (19) H18⋯H22v 2.53 (2)
C5⋯C17 3.4201 (18)    
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1; (iii) x-1, y, z+1; (iv) [x-1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) -x+1, -y, -z+1; (viii) x-1, y, z.
[Figure 3]
Figure 3
View of the 3D Hirshfeld surface of the title compound, plotted over dnorm in the range −0.1634 to 1.5051 a.u.
[Figure 4]
Figure 4
View of the 3D Hirshfeld surface of the title compound, plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u., using the STO-3G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.
[Figure 5]
Figure 5
Hirshfeld surface of the title compound plotted over shape-index.
[Figure 6]
Figure 6
The full 2D fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯Cl/Cl⋯H, (e) O⋯H/H⋯O, (f) C⋯C, (g) S⋯H/H⋯S and (h) Cl⋯C/C⋯Cl inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H, H⋯Cl/Cl⋯H, O⋯H/H⋯O, C⋯C and S⋯H/H⋯S inter­actions in Figs. 7[link](a)–(f), respectively.

[Figure 7]
Figure 7
The Hirshfeld surface representations with the function dnorm plotted onto the surface for (a) H⋯H, (b) H⋯C/C⋯H, (c) H⋯Cl/Cl⋯H, (d) O⋯H/H⋯O, (e) C⋯C and (f) S⋯H/H⋯S inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H, H⋯Cl/Cl⋯H and O⋯H/H⋯O inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the biggest roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. Inter­action energy calculations

The inter­molecular inter­action energies are calculated using CE–B3LYP/6-31G(d,p) energy model available in CrystalExplorer (CE) (Version 17.5; Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.]), where a cluster of mol­ecules would need to be generated by applying crystallographic symmetry operations with respect to a selected central mol­ecule within a default radius of 3.8 Å (Turner et al., 2014[Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249-4255.]). The total inter­molecular energy (Etot) is the sum of the electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies (Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.]), with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]). Hydrogen-bonding inter­action energies (in kJ mol−1) were calculated as −20.3 (Eele), −2.6 (Epol), −79.4 (Edis), 60.7 (Erep) and −55.0 (Etot) for C—HBnz⋯OThz hydrogen-bonding inter­actions, and −5.8 (Eele), −1.0 (Epol), −51.0 (Edis), 39.3 (Erep) and −27.1 (Etot) for C—HMethy⋯SThz hydrogen-bonding inter­actions.

6. DFT calculations

The optimized structure of (I)[link] in the gas phase was generated theoretically via density functional theory (DFT) using standard B3LYP functional and 6-311G(d,p) basis-set calculations (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]), as implemented in GAUSSIAN09 (Frisch et al., 2009[Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]). The theoretical and experimental results were in good agreement (Table 3[link]). The highest-occupied mol­ecular orbital (HOMO), acting as an electron donor, and the lowest-unoccupied mol­ecular orbital (LUMO), acting as an electron acceptor, are very important parameters for quantum chemistry. When the energy gap is small, the mol­ecule is highly polarizable and has high chemical reactivity. The DFT calculations provide some important information on the reactivity and site selectivity of the mol­ecular framework. EHOMO and ELUMO clarifying the inevitable charge exchange collaboration inside the studied material, electronegativity (χ), hardness (η), potential (μ), electrophilicity (ω) and softness (σ) are recorded in Table 4[link]. The significance of η and σ is to evaluate both the reactivity and stability. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 8[link]. The HOMO and LUMO are localized in the plane extending from the whole mol­ecule. The energy band gap (ΔE = ELUMOEHOMO) of the mol­ecule was about 5.3364 eV, and the frontier mol­ecular orbital (FMO) energies, EHOMO and ELUMO, were −8.2479 and −2.9115 eV, respectively.

Table 3
Comparison of the selected (X-ray and DFT) geometric data (Å, °)

Bonds/angles X-ray B3LYP/6–311G(d,p)
Cl1—C11 1.7357 (13) 1.80981
Cl2—C13 1.7382 (13) 1.80489
S1—C8 1.7525 (12) 1.80120
S1—C1 1.7561 (13) 1.82629
O1—C7 1.2228 (16) 1.23968
N1—C7 1.3759 (16) 1.38157
N1—C6 1.4192 (16) 1.41776
N1—C16 1.4661 (16) 1.47048
C8—S1—C1 100.14 (6) 98.69028
C7—N1—C6 125.51 (10) 124.58623
C7—N1—C16 115.14 (10) 116.12685
C6—N1—C16 119.20 (10) 119.26679
C2—C1—C6 120.71 (12) 121.24260
C2—C1—S1 117.26 (10) 117.48822
C6—C1—S1 122.02 (10) 121.26667

Table 4
Calculated energies.

Mol­ecular Energy (a.u.) (eV) Compound (I)
Total Energy TE (eV) −62249, 6662
EHOMO (eV) −8.2479
ELUMO (eV) −2.9115
Gap ΔE (eV) 5.3364
Dipole moment, μ (Debye) 3.4723
Ionization potential, I (eV) 8.2479
Electron affinity, A 2.9115
Electro negativity, χ 5.3364
Hardness, η 2.6682
Electrophilicity index, ω 5.8340
Softness, σ 0.3748
Fraction of electron transferred, ΔN 0.2662
[Figure 8]
Figure 8
The energy band gap of the title compound.

7. Database survey

A search in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; updated to June 2019) for compounds containing the fragment II (with R1 = Ph and R2 = C; see Scheme 2[link]) gave 14 hits. With R1 = Ph and R2 = CH2C≡CH (IIa) (Sebbar et al., 2014a[Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014a). Acta Cryst. E70, o614.]), CH2COOH (IIb) (Sebbar et al., 2016c[Sebbar, N. K., Ellouz, M., Mague, J. T., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016c). IUCrData, 1, x160863.]), 2-(2-oxo-1,3-oxazolidin-3-yl)ethyl (IIc) (Sebbar et al., 2016b[Sebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016b). Res. Chem. Intermed. 42, 6845-6862.]) and (3-phenyl-4,5-dihydro-1,2-oxazol-5-yl)methyl (IIf) (Sebbar et al., 2015b[Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015b). Acta Cryst. E71, o423-o424.])] (Scheme 2), there are other examples with R1 = 4-FC6H4 and R2 = CH2C≡CH (IIa) (Hni et al., 2019a[Hni, B., Sebbar, N. K., Hökelek, T., Ouzidan, Y., Moussaif, A., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 372-377.]), R1 = 4-ClC6H4 and R2 = CH2Ph2 (IId) (Ellouz et al., 2016c[Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y., Mague, J. T. & Zouihri, H. (2016c). IUCrData, 1, x160764.]), and R1 = 2-ClC6H4 and R2 = CH2C≡CH (IIa) (Sebbar et al., 2017[Sebbar, N. K., Ellouz, M., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017). IUCrData, 2, x170889.]) (Scheme 2). In all compounds, the configuration about the benzyl­idene-group C=CHC6H5 bond is Z, and in the majority of these, the heterocyclic ring is quite nonplanar, with the dihedral angle between the plane defined by the benzene ring plus the N and S atoms, and that defined by the N and S atoms and the other two C atoms separating them ranging from ca 29 (for IIa) to 36° (for IIf). The other two (IIa and IIc) have the benzo­thia­zine unit nearly planar, with corresponding dihedral angles of ca 3–4°.

[Scheme 2]

8. Synthesis and crystallization

To a solution of (Z)-2-(2,4-di­chloro­benzyl­idene)-2H-1,4-benzo­thia­zin-3(4H)-one (3.21 mmol), benzyl chloride (6.52 mmol) and potassium carbonate (6.51 mmol) in di­methyl­formamide (DMF; 17 ml) was added a catalytic amount of tetra-n-butyl­ammonium bromide (0.33 mmol). The mixture was stirred for 24 h. The solid material was removed by filtration and the solvent evaporated under vacuum. The solid product was purified by recrystallization from ethanol to afford colourless crystals in 82% yield.

9. Refinement

The experimental details, including the crystal data, data collection and refinement, are summarized in Table 5[link]. H atoms were located in a difference Fourier map and refined freely.

Table 5
Experimental details

Crystal data
Chemical formula C22H15Cl2NOS
Mr 412.31
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 9.0373 (7), 16.6798 (13), 12.511 (1)
β (°) 95.982 (2)
V3) 1875.6 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 4.25
Crystal size (mm) 0.15 × 0.13 × 0.09
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.59, 0.70
No. of measured, independent and observed [I > 2σ(I)] reflections 48886, 3847, 3650
Rint 0.038
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.070, 1.05
No. of reflections 3847
No. of parameters 304
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.22, −0.26
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Bruker, 2016[Bruker (2016). APEX3, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Bruker, 2016).

(2Z)-4-Benzyl-2-(2,4-dichlorobenzylidene)-2H-1,4-benzothiazin-3(4H)-one top
Crystal data top
C22H15Cl2NOSF(000) = 848
Mr = 412.31Dx = 1.460 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 9.0373 (7) ÅCell parameters from 9943 reflections
b = 16.6798 (13) Åθ = 4.4–43.5°
c = 12.511 (1) ŵ = 4.25 mm1
β = 95.982 (2)°T = 150 K
V = 1875.6 (3) Å3Block, colourless
Z = 40.14 × 0.13 × 0.09 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3847 independent reflections
Radiation source: INCOATEC IµS micro-focus source3650 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.038
Detector resolution: 10.4167 pixels mm-1θmax = 74.6°, θmin = 4.4°
ω scansh = 1111
Absorption correction: numerical
(SADABS; Krause et al., 2015)
k = 2020
Tmin = 0.59, Tmax = 0.70l = 1515
48886 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026All H-atom parameters refined
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0379P)2 + 0.6937P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3847 reflectionsΔρmax = 0.22 e Å3
304 parametersΔρmin = 0.26 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.32725 (3)0.51603 (2)0.51778 (3)0.03318 (9)
Cl20.08376 (4)0.45362 (2)0.78449 (3)0.03443 (10)
S10.15102 (3)0.21109 (2)0.37534 (2)0.02451 (9)
O10.29675 (11)0.36735 (6)0.18264 (8)0.0318 (2)
N10.36671 (11)0.23777 (6)0.20360 (8)0.0231 (2)
C10.29233 (13)0.14621 (7)0.34225 (10)0.0235 (2)
C20.30706 (15)0.07308 (8)0.39669 (11)0.0287 (3)
H20.2413 (19)0.0621 (10)0.4526 (14)0.033 (4)*
C30.41257 (16)0.01777 (8)0.37140 (12)0.0327 (3)
H30.4187 (18)0.0323 (10)0.4058 (13)0.030 (4)*
C40.50780 (16)0.03719 (8)0.29531 (13)0.0330 (3)
H40.579 (2)0.0001 (12)0.2780 (15)0.042 (5)*
C50.49570 (15)0.11045 (8)0.24245 (11)0.0285 (3)
H50.5655 (19)0.1230 (11)0.1921 (13)0.035 (4)*
C60.38507 (13)0.16533 (7)0.26301 (10)0.0233 (2)
C70.29726 (13)0.30575 (7)0.23567 (10)0.0237 (2)
C80.22305 (13)0.30312 (7)0.33731 (10)0.0223 (2)
C90.20587 (14)0.37330 (7)0.38765 (10)0.0241 (2)
H90.2472 (18)0.4183 (10)0.3553 (13)0.031 (4)*
C100.13615 (13)0.38965 (7)0.48567 (10)0.0232 (2)
C110.18203 (13)0.45583 (7)0.55067 (10)0.0239 (2)
C120.11763 (15)0.47512 (8)0.64272 (11)0.0266 (3)
H120.152 (2)0.5194 (11)0.6845 (14)0.040 (5)*
C130.00202 (14)0.42783 (8)0.67128 (10)0.0261 (3)
C140.04785 (15)0.36229 (8)0.61082 (11)0.0283 (3)
H140.130 (2)0.3302 (11)0.6306 (14)0.038 (4)*
C150.01925 (15)0.34384 (8)0.51908 (11)0.0271 (3)
H150.019 (2)0.3021 (11)0.4758 (15)0.042 (5)*
C160.43514 (15)0.24544 (8)0.10287 (10)0.0261 (3)
H16A0.4342 (18)0.1915 (10)0.0694 (13)0.029 (4)*
H16B0.3717 (18)0.2771 (10)0.0550 (13)0.027 (4)*
C170.59004 (14)0.28115 (7)0.11411 (10)0.0235 (2)
C180.65243 (16)0.30239 (9)0.02058 (11)0.0311 (3)
H180.593 (2)0.2943 (11)0.0487 (15)0.039 (5)*
C190.79411 (17)0.33523 (9)0.02566 (13)0.0384 (3)
H190.835 (2)0.3503 (12)0.0383 (16)0.050 (5)*
C200.87604 (17)0.34739 (9)0.12401 (14)0.0382 (3)
H200.973 (2)0.3695 (12)0.1271 (15)0.046 (5)*
C210.81497 (16)0.32701 (8)0.21707 (13)0.0334 (3)
H210.874 (2)0.3354 (11)0.2875 (14)0.040 (5)*
C220.67257 (15)0.29448 (8)0.21258 (11)0.0273 (3)
H220.6283 (17)0.2799 (9)0.2793 (12)0.024 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02604 (16)0.03290 (17)0.04160 (19)0.00735 (12)0.00829 (13)0.00211 (13)
Cl20.03839 (18)0.03495 (18)0.03231 (17)0.00967 (13)0.01489 (13)0.00164 (12)
S10.02266 (15)0.02109 (15)0.03075 (17)0.00207 (11)0.00738 (12)0.00098 (11)
O10.0405 (5)0.0264 (5)0.0303 (5)0.0018 (4)0.0116 (4)0.0066 (4)
N10.0226 (5)0.0248 (5)0.0224 (5)0.0006 (4)0.0050 (4)0.0000 (4)
C10.0225 (6)0.0217 (6)0.0261 (6)0.0018 (5)0.0009 (5)0.0017 (5)
C20.0297 (7)0.0241 (6)0.0321 (7)0.0029 (5)0.0017 (5)0.0022 (5)
C30.0349 (7)0.0215 (6)0.0406 (8)0.0005 (5)0.0015 (6)0.0025 (5)
C40.0295 (7)0.0245 (6)0.0446 (8)0.0037 (5)0.0022 (6)0.0047 (6)
C50.0253 (6)0.0267 (6)0.0337 (7)0.0007 (5)0.0044 (5)0.0047 (5)
C60.0225 (6)0.0214 (6)0.0255 (6)0.0026 (5)0.0004 (5)0.0020 (5)
C70.0223 (6)0.0241 (6)0.0247 (6)0.0015 (5)0.0025 (5)0.0010 (5)
C80.0194 (5)0.0231 (6)0.0246 (6)0.0002 (4)0.0034 (4)0.0033 (4)
C90.0229 (6)0.0224 (6)0.0276 (6)0.0000 (5)0.0051 (5)0.0036 (5)
C100.0228 (6)0.0207 (6)0.0265 (6)0.0038 (5)0.0041 (5)0.0034 (4)
C110.0201 (6)0.0224 (6)0.0293 (6)0.0025 (4)0.0034 (5)0.0033 (5)
C120.0259 (6)0.0242 (6)0.0293 (6)0.0039 (5)0.0015 (5)0.0006 (5)
C130.0265 (6)0.0260 (6)0.0267 (6)0.0083 (5)0.0069 (5)0.0042 (5)
C140.0279 (6)0.0238 (6)0.0350 (7)0.0014 (5)0.0111 (5)0.0048 (5)
C150.0281 (6)0.0222 (6)0.0318 (7)0.0001 (5)0.0075 (5)0.0002 (5)
C160.0273 (6)0.0315 (7)0.0196 (6)0.0010 (5)0.0033 (5)0.0020 (5)
C170.0256 (6)0.0215 (6)0.0240 (6)0.0032 (5)0.0062 (5)0.0002 (4)
C180.0344 (7)0.0333 (7)0.0271 (7)0.0065 (6)0.0104 (5)0.0039 (5)
C190.0385 (8)0.0330 (7)0.0476 (9)0.0061 (6)0.0232 (7)0.0101 (6)
C200.0270 (7)0.0262 (7)0.0630 (10)0.0002 (5)0.0123 (6)0.0026 (6)
C210.0290 (7)0.0262 (7)0.0442 (8)0.0002 (5)0.0002 (6)0.0042 (6)
C220.0294 (6)0.0261 (6)0.0265 (6)0.0009 (5)0.0042 (5)0.0013 (5)
Geometric parameters (Å, º) top
Cl1—C111.7357 (13)C10—C111.4076 (18)
Cl2—C131.7382 (13)C11—C121.3814 (18)
S1—C81.7525 (12)C12—C131.3854 (19)
S1—C11.7561 (13)C12—H120.940 (19)
O1—C71.2228 (16)C13—C141.3781 (19)
N1—C71.3759 (16)C14—C151.3874 (19)
N1—C61.4192 (16)C14—H140.971 (19)
N1—C161.4661 (16)C15—H150.928 (19)
C1—C21.3967 (18)C16—C171.5143 (18)
C1—C61.4000 (18)C16—H16A0.993 (17)
C2—C31.387 (2)C16—H16B0.945 (16)
C2—H20.981 (18)C17—C221.3899 (18)
C3—C41.387 (2)C17—C181.3965 (18)
C3—H30.938 (17)C18—C191.388 (2)
C4—C51.388 (2)C18—H180.979 (18)
C4—H40.94 (2)C19—C201.383 (2)
C5—C61.3990 (18)C19—H190.95 (2)
C5—H50.960 (18)C20—C211.382 (2)
C7—C81.4988 (17)C20—H200.95 (2)
C8—C91.3458 (18)C21—C221.392 (2)
C9—C101.4616 (17)C21—H210.993 (18)
C9—H90.948 (17)C22—H220.992 (16)
C10—C151.4024 (18)
Cl1···Cl1i3.2439 (5)C6···C223.4830 (18)
Cl1···C14ii3.4981 (14)C6···C12v3.5828 (18)
Cl1···H92.647 (16)C7···C223.4391 (18)
Cl2···H19iii2.96 (2)C10···C12ii3.4871 (18)
Cl2···H9ii3.044 (16)C14···C20iv3.572 (2)
Cl2···H4iv3.138 (18)C5···H16A2.563 (16)
S1···Cl2v3.5832 (5)C6···H222.904 (15)
S1···Cl2v3.5832 (5)C8···H152.929 (18)
S1···N13.0801 (11)C16···H52.556 (18)
S1···C153.1625 (14)C17···H52.829 (18)
S1···C13v3.6033 (13)C18···H3vi2.998 (17)
S1···H152.578 (18)C21···H12i2.845 (18)
O1···C173.2096 (16)H14···C20iv2.964 (18)
O1···C4vi3.3346 (17)H14···C21iv2.899 (18)
O1···H92.406 (16)H14···C22iv2.990 (18)
O1···H16B2.345 (16)H15···C19iv2.951 (18)
O1···H4vi2.51 (2)H16B···S1v2.852 (16)
N1···S13.0801 (11)H16B···C1v2.973 (16)
N1···H222.552 (15)H18···C6v2.934 (19)
C1···C12v3.4639 (18)H5···H16A2.16 (2)
C1···C13v3.4372 (18)H12···H21i2.46 (3)
C2···C12v3.541 (2)H15···H21viii2.51 (3)
C3···C3vii3.485 (2)H16B···H182.51 (2)
C5···C223.4988 (19)H18···H22v2.53 (2)
C5···C173.4201 (18)
C8—S1—C1100.14 (6)C11—C12—C13118.49 (12)
C7—N1—C6125.51 (10)C11—C12—H12120.1 (11)
C7—N1—C16115.14 (10)C13—C12—H12121.4 (11)
C6—N1—C16119.20 (10)C14—C13—C12121.49 (12)
C2—C1—C6120.71 (12)C14—C13—Cl2119.70 (10)
C2—C1—S1117.26 (10)C12—C13—Cl2118.79 (10)
C6—C1—S1122.02 (10)C13—C14—C15118.94 (12)
C3—C2—C1120.17 (13)C13—C14—H14120.9 (10)
C3—C2—H2121.4 (10)C15—C14—H14120.1 (10)
C1—C2—H2118.5 (10)C14—C15—C10122.24 (12)
C4—C3—C2119.47 (13)C14—C15—H15118.7 (12)
C4—C3—H3120.7 (10)C10—C15—H15118.9 (12)
C2—C3—H3119.8 (10)N1—C16—C17115.04 (10)
C3—C4—C5120.59 (13)N1—C16—H16A107.3 (9)
C3—C4—H4119.6 (12)C17—C16—H16A111.3 (9)
C5—C4—H4119.7 (12)N1—C16—H16B108.1 (10)
C4—C5—C6120.71 (13)C17—C16—H16B109.4 (10)
C4—C5—H5118.7 (10)H16A—C16—H16B105.2 (13)
C6—C5—H5120.6 (11)C22—C17—C18118.42 (12)
C5—C6—C1118.24 (12)C22—C17—C16123.41 (11)
C5—C6—N1120.50 (11)C18—C17—C16118.16 (12)
C1—C6—N1121.26 (11)C19—C18—C17120.85 (14)
O1—C7—N1120.68 (11)C19—C18—H18120.7 (11)
O1—C7—C8120.54 (11)C17—C18—H18118.5 (11)
N1—C7—C8118.78 (10)C20—C19—C18120.29 (14)
C9—C8—C7117.09 (11)C20—C19—H19119.3 (12)
C9—C8—S1124.79 (10)C18—C19—H19120.4 (12)
C7—C8—S1117.88 (9)C21—C20—C19119.32 (14)
C8—C9—C10129.48 (12)C21—C20—H20120.6 (11)
C8—C9—H9114.8 (10)C19—C20—H20120.1 (11)
C10—C9—H9115.7 (10)C20—C21—C22120.69 (14)
C15—C10—C11116.15 (11)C20—C21—H21119.2 (11)
C15—C10—C9123.53 (12)C22—C21—H21120.1 (11)
C11—C10—C9120.29 (11)C17—C22—C21120.43 (13)
C12—C11—C10122.68 (12)C17—C22—H22118.7 (9)
C12—C11—Cl1117.23 (10)C21—C22—H22120.9 (9)
C10—C11—Cl1120.08 (10)
C8—S1—C1—C2155.71 (10)S1—C8—C9—C104.6 (2)
C8—S1—C1—C625.73 (11)C8—C9—C10—C1529.8 (2)
C6—C1—C2—C31.12 (19)C8—C9—C10—C11152.34 (13)
S1—C1—C2—C3177.47 (10)C15—C10—C11—C120.42 (18)
C1—C2—C3—C43.0 (2)C9—C10—C11—C12178.46 (11)
C2—C3—C4—C51.7 (2)C15—C10—C11—Cl1179.25 (9)
C3—C4—C5—C61.5 (2)C9—C10—C11—Cl12.71 (16)
C4—C5—C6—C13.35 (19)C10—C11—C12—C130.78 (19)
C4—C5—C6—N1175.72 (12)Cl1—C11—C12—C13179.64 (9)
C2—C1—C6—C52.05 (18)C11—C12—C13—C140.72 (19)
S1—C1—C6—C5179.43 (9)C11—C12—C13—Cl2177.88 (9)
C2—C1—C6—N1177.02 (11)C12—C13—C14—C150.33 (19)
S1—C1—C6—N11.50 (17)Cl2—C13—C14—C15178.27 (10)
C7—N1—C6—C5158.93 (12)C13—C14—C15—C100.0 (2)
C16—N1—C6—C516.29 (17)C11—C10—C15—C140.00 (19)
C7—N1—C6—C122.03 (18)C9—C10—C15—C14177.97 (12)
C16—N1—C6—C1162.76 (11)C7—N1—C16—C1784.01 (14)
C6—N1—C7—O1174.42 (12)C6—N1—C16—C1791.69 (14)
C16—N1—C7—O10.96 (17)N1—C16—C17—C229.68 (18)
C6—N1—C7—C85.15 (18)N1—C16—C17—C18169.73 (11)
C16—N1—C7—C8179.46 (10)C22—C17—C18—C190.7 (2)
O1—C7—C8—C923.67 (18)C16—C17—C18—C19179.87 (13)
N1—C7—C8—C9155.91 (11)C17—C18—C19—C200.1 (2)
O1—C7—C8—S1150.91 (10)C18—C19—C20—C210.4 (2)
N1—C7—C8—S129.52 (15)C19—C20—C21—C220.1 (2)
C1—S1—C8—C9145.73 (11)C18—C17—C22—C211.06 (19)
C1—S1—C8—C740.15 (10)C16—C17—C22—C21179.53 (12)
C7—C8—C9—C10178.71 (12)C20—C21—C22—C170.7 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x1, y, z+1; (iv) x1, y+1/2, z+1/2; (v) x, y+1/2, z1/2; (vi) x+1, y+1/2, z+1/2; (vii) x+1, y, z+1; (viii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1ix0.936 (19)2.51 (2)3.3346 (17)147.7 (15)
C16—H16B···S1v0.945 (16)2.852 (16)3.7011 (13)149.9 (12)
C3—H3···Cg4ix0.938 (17)2.901 (17)3.6428 (15)136.8 (13)
C14—H14···Cg4x0.971 (19)2.710 (18)3.5593 (15)146.8 (14)
C18—H18···Cg1xi0.979 (18)2.969 (18)3.6759 (16)130.0 (13)
Symmetry codes: (v) x, y+1/2, z1/2; (ix) x+1, y1/2, z+1/2; (x) x1, y1/2, z1/2; (xi) x, y1/2, z3/2.
Table 4. Comparison of the selected (X-ray and DFT) geometric data (Å, °) top
Bonds/anglesX-rayB3LYP/6-311G(d,p)
Cl1—C111.7357 (13)1.80981
Cl2—C131.7382 (13)1.80489
S1—C81.7525 (12)1.80120
S1—C11.7561 (13)1.82629
O1—C71.2228 (16)1.23968
N1—C71.3759 (16)1.38157
N1—C61.4192 (16)1.41776
N1—C161.4661 (16)1.47048
C8—S1—C1100.14 (6)98.69028
C7—N1—C6125.51 (10)124.58623
C7—N1—C16115.14 (10)116.12685
C6—N1—C16119.20 (10)119.26679
C2—C1—C6120.71 (12)121.24260
C2—C1—S1117.26 (10)117.48822
C6—C1—S1122.02 (10)121.26667
Table 5. Calculated energies. top
Molecular Energy (a.u.) (eV)Compound (I)
Total Energy TE (eV)-62249, 6662
EHOMO (eV)-8.2479
ELUMO (eV)-2.9115
Gap ΔE (eV)5.3364
Dipole moment, µ (Debye)3.4723
Ionisation potential, I (eV)8.2479
Electron affinity, A2.9115
Electro negativity, χ5.3364
Hardness, η2.6682
Electrophilicity index, ω5.8340
Softness, σ0.3748
Fraction of electron transferred, ΔN0.2662
 

Acknowledgements

The support of NSF-MRI for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

Funding information

Funding for this research was provided by: NSF-MRI (grant No. 1228232); Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004 to TH).

References

First citationArmenise, D., Muraglia, M., Florio, M. A., Laurentis, N. D., Rosato, A., Carrieri, A., Corbo, F. & Franchini, C. (2012). Mol. Pharmacol. 50, 1178–1188.  Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEllouz, M., Elmsellem, H., Sebbar, N. K., Steli, H., Al Mamari, K., Nadeem, A., Ouzidan, Y., Essassi, E. M., Abdel-Rahaman, I. & Hristov, P. (2016b). J. Mater. Environ. Sci. 7, 2482–2497.  CAS Google Scholar
First citationEllouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x170646.  Google Scholar
First citationEllouz, M., Sebbar, N. K., Elmsellem, H., Steli, H., Fichtali, I., Mohamed, A. M. M., Mamari, K. A., Essassi, E. M. & Abdel-Rahaman, I. (2016a). J. Mater. Environ. Sci. 7, 2806–2819.  CAS Google Scholar
First citationEllouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y., Mague, J. T. & Zouihri, H. (2016c). IUCrData, 1, x160764.  Google Scholar
First citationEllouz, M., Sebbar, N. K., Fichtali, I., Ouzidan, Y., Mennane, Z., Charof, R., Mague, J. T., Urrutigoïty, M. & Essassi, E. M. (2018). Chem. Cent. J. 12, 123.  Web of Science CrossRef PubMed Google Scholar
First citationEllouz, M., Sebbar, N. K., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x170097.  Google Scholar
First citationFrisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGowda, J., Khader, A. M. A., Kalluraya, B., Shree, P. & Shabaraya, A. R. (2011). Eur. J. Med. Chem. 46, 4100–4106.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGupta, R. R., Kumar, R. & Gautam, R. K. (1985). J. Fluor. Chem. 28, 381–385.  CrossRef CAS Web of Science Google Scholar
First citationGupta, V. & Gupta, R. R. (1991). J. Prakt. Chem. 333, 153–156.  CrossRef CAS Web of Science Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationHni, B., Sebbar, N. K., Hökelek, T., El Ghayati, L., Bouzian, Y., Mague, J. T. & Essassi, E. M. (2019b). Acta Cryst. E75, 593–599.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHni, B., Sebbar, N. K., Hökelek, T., Ouzidan, Y., Moussaif, A., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 372–377.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMalagu, K., Boustie, J., David, M., Sauleau, J., Amoros, M., Girre, R. L. & Sauleau, A. (1998). Pharm. Pharmacol. Commun. 4, 57–60.  CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationRathore, B. S. & Kumar, M. (2006). Bioorg. Med. Chem. 14, 5678–5682.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSebbar, N. K., Ellouz, M., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015a). Acta Cryst. E71, o999.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015b). Acta Cryst. E71, o423–o424.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2016a). IUCrData, 1, x161012.  Google Scholar
First citationSebbar, N. K., Ellouz, M., Mague, J. T., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016c). IUCrData, 1, x160863.  Google Scholar
First citationSebbar, N. K., Ellouz, M., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017). IUCrData, 2, x170889.  Google Scholar
First citationSebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016b). Res. Chem. Intermed. 42, 6845–6862.  Web of Science CSD CrossRef CAS Google Scholar
First citationSebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014a). Acta Cryst. E70, o614.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationTawada, H., Sugiyama, Y., Ikeda, H., Yamamoto, Y. & Meguro, K. (1990). Chem. Pharm. Bull. 38, 1238–1245.  CrossRef CAS PubMed Google Scholar
First citationTrapani, G., Reho, A., Morlacchi, F., Latrofa, A., Marchini, P., Venturi, F. & Cantalamessa, F. (1985). Farmaco Ed. Sci. 40, 369–376.  CAS Google Scholar
First citationTurner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.  Google Scholar
First citationTurner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738.  Web of Science CrossRef CAS Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationVidal, A., Madelmont, J. C. & Mounetou, E. A. (2006). Synthesis, 2006, 591–593.  CrossRef Google Scholar
First citationWarren, B. K. & Knaus, E. E. (1987). Eur. J. Med. Chem. 22, 411–415.  CrossRef CAS Web of Science Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds