research communications
Synthesis and E)-2-({2-[azaniumylidene(methylsulfanyl)methyl]hydrazinylidene}methyl)benzene-1,4-diol hydrogen sulfate
of (aLaboratoire de Chimie Inorganique et Environnement, Université de Tlemcen, BP 119, 13000 Tlemcen, Algeria, and bCentre de Diffractometrie X, UMR 6226 CNRS, Unit Sciences Chimiques de Rennes, Universite de Rennes I, 263 Avenue du General Leclerc, 35042 Rennes, France
*Correspondence e-mail: oussamanehar@gmail.com
The title molecular salt, C9H12N3O2S+·HSO4−, was obtained through the protonation of the azomethine N atom in a sulfuric acid medium. The crystal comprises two entities, a thiosemicarbazide cation and a hydrogen sulfate anion. The cation is essentially planar and is further stabilized by a strong intramolecular O—H⋯N hydrogen bond. In the crystal, a three-dimensional network is established through O—H⋯O and N—H⋯O hydrogen bonds. A weak intermolecular C—H⋯O hydrogen bond is also observed. The hydrogen sulfate anion exhibits disorder over two sets of sites and was modelled with refined occupancies of 0.501 (6) and 0.499 (6).
Keywords: crystal structure; thiosemicarbazone; hydrogen bonding; organic salt.
1. Chemical context
Thiosemicarbazones and their complexes are well known for their pharmacological properties, as antimicrobial (Plech et al., 2011; Pandeya et al., 1999; Küçükgüzel et al., 2006), anti-inflammatory (Palaska et al., 2002) and antiumoural (de Oliveira et al., 2015) agents. Complexes of thiosemicarbazones are studied in the literature as drug candidates, biomarkers and biocatalysts (Hayne et al., 2014; Lim et al., 2010). It is believed that the biological activity of these compounds has a strong relationship with the nature of the and from which those thiosemicarbazones were obtained (Teoh et al., 1999), and also on the substituents attached at the +NH2 N atom (Beraldo & Gambino, 2004). An interesting attribute of thiosemicarbazones is their ability to exhibit thione–thiol and they can also exist as E and Z isomers. Thiosemicarbazones have an excellent capacity to complex transition metals, acting as chelating agents; this process usually takes place via dissociation of the acidic proton (Pal et al., 2002). The of the title molecular salt was determined in order to investigate its biological and catalytic activities.
2. Structural commentary
The molecular structure of the title molecular salt is illustrated in Fig. 1. It comprises two entities, i.e. a thiosemicarbazone cation and a hydrogen sulfate anion. The cation is essentially planar and shows an E conformation with regard to the C6—N5 bond, the maximum deviation from the mean plane through the 15 non-H atoms being 0.1 (2) Å for atom C6. This planarity is due to electron delocalization along the cation backbone, which is further stabilized by an intramolecular O13—H13⋯N5 hydrogen bond (Zhu et al., 2004). The bond lengths and angles resemble those observed for similar thiosemicarbazone derivatives (Gangadharan et al., 2015; Joseph et al., 2004; Nehar et al., 2016; Houari et al., 2013). The anion (hydrogen sulfate) is disordered, split over two sets of siteswith relative occupancies of 0.501 (6) and 0.499 (6), and labelled with A and B suffixes.
3. Supramolecular features
In the crystal, the three-dimensional structure is established through an extensive network of O—H⋯O and N—H⋯O hydrogen bonds. Also within this network exists a weak C—H⋯O intermolecular hydrogen bond (Table 1 and Fig. 2). The crystal packing is shown in Fig. 2.
4. Database survey
A search in the Cambridge Structural Database (CSD, Version 5.4, May 2019 update; Groom et al., 2016) for the S-methyl(methylidene)thiosemicarbazidium cation yielded three results, viz. S-methyl-N-(pyrrolyl-2-methylene)isothiosemicarbazidium iodide monohydrate (CSD refcode JIHZUV; Bourosh et al., 1990), 8-quinolinealdehyde S-methylthiosemicarbazone hydrochloride dihydrate (RUJXOK; Botoshansky et al., 2009) and ((E)-{2-[(E)-(4-hydroxynaphthalen-1-yl)methylidene]hydrazin-1-yl}(methylsulfanyl)methylidene)azanium hydrogen sulfate monohydrate. The three-dimensional coordinates for the first structure are unavailable. A comparison of the structures reveals that the cation in the RUJXOK structure is less planar than the cation in ESOTIR, the latter being more similar to the cation of the title compound. However, for structures RUJXOK and ESOTIR, the bond lengths and angles are similar to those of the title molecular salt.
5. Synthesis and crystallization
An equimolar amount of thiosemicarbazide (10 mmol, 0.91 g) and 2,5-dihydroxybenzaldehyde (10 mmol, 1.38 g) were dissolved in a methanol–water solution in the presence of sulfuric acid. The mixture was then refluxed for 3 h. The solution was filtered and left to evaporate at room temperature. After slow evaporation, brown crystals suitable for X-ray
were obtained.6. Refinement
Crystal data, data collection and structure . The hydrogen sulfate anion is disordered and had to be modelled as two conformations A and B, with relative occupancies of 0.501 (6) and 0.499 (6), respectively. H atoms were located in difference Fourier maps, but were subsequently included in calculated positions and treated as riding on their parent atoms with constrained thermal parameters: Uiso(H) = 1.5Ueq(C) and C—H = 0.98 Å for methyl H atoms, and Uiso(H) = 1.2Ueq(C,N) and C—H = 0.95 Å or N—H = 0.88 Å otherwise.
details are summarized in Table 2
|
Supporting information
Data collection: APEX2 (Bruker, 2014); cell
APEX2 (Bruker, 2014); data reduction: APEX2 (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: SXGRAPH (Farrugia, 1999) and Mercury (Macrae et al., 2008); software used to prepare material for publication: CRYSCALC (T. Roisnel, local program, 2019).C9H12N3O2S+·HSO4− | F(000) = 672 |
Mr = 323.34 | Dx = 1.667 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 4.9411 (8) Å | Cell parameters from 2859 reflections |
b = 16.139 (2) Å | θ = 2.5–27.0° |
c = 16.426 (3) Å | µ = 0.44 mm−1 |
β = 100.440 (7)° | T = 150 K |
V = 1288.2 (3) Å3 | Prism, colourless |
Z = 4 | 0.38 × 0.15 × 0.12 mm |
Bruker APEXII diffractometer | 2846 independent reflections |
Radiation source: fine-focus sealed tube | 2014 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
CCD rotation images, thin slices scans | θmax = 27.3°, θmin = 3.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2014) | h = −6→4 |
Tmin = 0.838, Tmax = 0.948 | k = −19→20 |
7962 measured reflections | l = −21→19 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: mixed |
wR(F2) = 0.147 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.086P)2] where P = (Fo2 + 2Fc2)/3 |
2846 reflections | (Δ/σ)max < 0.001 |
243 parameters | Δρmax = 0.36 e Å−3 |
8 restraints | Δρmin = −0.46 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 0.99180 (14) | 0.09724 (4) | 0.39012 (4) | 0.0247 (2) | |
C1 | 1.1843 (6) | 0.05832 (18) | 0.31564 (19) | 0.0283 (7) | |
H1A | 1.103765 | 0.079127 | 0.260512 | 0.042* | |
H1B | 1.178644 | −0.002377 | 0.315474 | 0.042* | |
H1C | 1.375761 | 0.076956 | 0.330229 | 0.042* | |
C2 | 1.0137 (5) | 0.20289 (18) | 0.37549 (16) | 0.0196 (6) | |
N3 | 1.1584 (4) | 0.23722 (15) | 0.32555 (15) | 0.0212 (5) | |
H3A | 1.163 (6) | 0.2922 (11) | 0.3217 (18) | 0.025* | |
H3B | 1.253 (5) | 0.2090 (17) | 0.2961 (16) | 0.025* | |
N4 | 0.8734 (5) | 0.25101 (15) | 0.41903 (15) | 0.0221 (5) | |
H4 | 0.897 (6) | 0.304 (2) | 0.4220 (19) | 0.027* | |
N5 | 0.7288 (4) | 0.21422 (15) | 0.47329 (14) | 0.0209 (5) | |
C6 | 0.6012 (5) | 0.26348 (17) | 0.51479 (17) | 0.0207 (6) | |
H6 | 0.611234 | 0.321565 | 0.506437 | 0.025* | |
C7 | 0.4421 (5) | 0.23214 (17) | 0.57410 (16) | 0.0179 (6) | |
C8 | 0.4293 (5) | 0.14784 (17) | 0.59347 (17) | 0.0204 (6) | |
C9 | 0.2738 (5) | 0.12280 (18) | 0.65151 (18) | 0.0239 (6) | |
H9 | 0.265269 | 0.065663 | 0.664710 | 0.029* | |
C10 | 0.1324 (5) | 0.17925 (17) | 0.69007 (17) | 0.0225 (6) | |
H10 | 0.025988 | 0.161037 | 0.729373 | 0.027* | |
C11 | 0.1446 (5) | 0.26363 (17) | 0.67161 (17) | 0.0199 (6) | |
C12 | 0.2983 (5) | 0.28879 (17) | 0.61429 (16) | 0.0209 (6) | |
H12 | 0.306923 | 0.346085 | 0.601728 | 0.025* | |
O13 | 0.5640 (4) | 0.08764 (12) | 0.55849 (13) | 0.0270 (5) | |
H13 | 0.648 (7) | 0.106 (2) | 0.527 (2) | 0.032* | |
O14 | 0.0054 (4) | 0.31741 (13) | 0.71335 (13) | 0.0279 (5) | |
H14 | 0.001 (6) | 0.366 (2) | 0.697 (2) | 0.034* | |
S2A | 0.8844 (12) | 0.5353 (4) | 0.6254 (4) | 0.0254 (10) | 0.501 (6) |
O11A | 1.081 (3) | 0.4743 (10) | 0.6620 (9) | 0.031 (3) | 0.501 (6) |
O12A | 0.810 (2) | 0.5938 (7) | 0.6848 (5) | 0.030 (2) | 0.501 (6) |
O13A | 0.9688 (11) | 0.5797 (2) | 0.5572 (3) | 0.0297 (14) | 0.501 (6) |
O14A | 0.6216 (9) | 0.4839 (3) | 0.5891 (3) | 0.0302 (13) | 0.501 (6) |
H14A | 0.476218 | 0.481337 | 0.608697 | 0.045* | 0.501 (6) |
S2B | 0.9553 (12) | 0.5327 (5) | 0.6250 (5) | 0.0292 (12) | 0.499 (6) |
O11B | 1.084 (4) | 0.4751 (12) | 0.6870 (8) | 0.038 (3) | 0.499 (6) |
O12B | 0.767 (2) | 0.5891 (7) | 0.6534 (6) | 0.038 (2) | 0.499 (6) |
O13B | 1.1639 (10) | 0.5733 (3) | 0.5857 (3) | 0.0294 (13) | 0.499 (6) |
O14B | 0.7723 (10) | 0.4819 (4) | 0.5562 (3) | 0.0506 (17) | 0.499 (6) |
H14B | 0.793868 | 0.463761 | 0.509852 | 0.076* | 0.499 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0307 (4) | 0.0178 (4) | 0.0285 (4) | −0.0005 (3) | 0.0136 (3) | 0.0018 (3) |
C1 | 0.0313 (14) | 0.0220 (15) | 0.0354 (18) | 0.0012 (12) | 0.0162 (13) | 0.0003 (13) |
C2 | 0.0205 (11) | 0.0207 (14) | 0.0172 (14) | −0.0001 (11) | 0.0027 (11) | −0.0014 (11) |
N3 | 0.0252 (11) | 0.0175 (12) | 0.0236 (13) | 0.0011 (10) | 0.0114 (10) | 0.0049 (10) |
N4 | 0.0285 (11) | 0.0178 (12) | 0.0228 (13) | −0.0013 (10) | 0.0121 (10) | 0.0013 (10) |
N5 | 0.0226 (10) | 0.0229 (12) | 0.0188 (12) | −0.0018 (9) | 0.0079 (9) | 0.0010 (10) |
C6 | 0.0230 (11) | 0.0178 (14) | 0.0220 (15) | −0.0004 (11) | 0.0057 (11) | 0.0001 (11) |
C7 | 0.0197 (11) | 0.0182 (13) | 0.0162 (14) | −0.0007 (10) | 0.0040 (10) | −0.0011 (11) |
C8 | 0.0214 (11) | 0.0185 (14) | 0.0211 (15) | −0.0003 (10) | 0.0035 (11) | −0.0024 (11) |
C9 | 0.0285 (13) | 0.0185 (14) | 0.0252 (15) | −0.0032 (12) | 0.0063 (12) | 0.0006 (12) |
C10 | 0.0249 (12) | 0.0238 (15) | 0.0201 (15) | −0.0030 (11) | 0.0075 (11) | 0.0009 (12) |
C11 | 0.0214 (11) | 0.0191 (14) | 0.0202 (14) | 0.0002 (11) | 0.0064 (11) | −0.0040 (11) |
C12 | 0.0244 (12) | 0.0172 (14) | 0.0213 (15) | −0.0008 (11) | 0.0043 (11) | 0.0002 (11) |
O13 | 0.0342 (11) | 0.0182 (10) | 0.0329 (13) | 0.0024 (9) | 0.0175 (9) | −0.0009 (9) |
O14 | 0.0363 (10) | 0.0186 (10) | 0.0336 (12) | 0.0014 (9) | 0.0186 (9) | −0.0015 (9) |
S2A | 0.038 (3) | 0.0164 (14) | 0.0231 (13) | −0.0028 (16) | 0.0076 (16) | 0.0061 (9) |
O11A | 0.028 (3) | 0.020 (3) | 0.043 (8) | 0.003 (3) | 0.007 (5) | 0.010 (5) |
O12A | 0.040 (4) | 0.026 (3) | 0.026 (4) | −0.010 (3) | 0.009 (3) | −0.005 (3) |
O13A | 0.050 (3) | 0.018 (2) | 0.026 (3) | −0.004 (2) | 0.021 (2) | 0.0035 (18) |
O14A | 0.031 (2) | 0.025 (2) | 0.038 (3) | −0.0049 (18) | 0.016 (2) | −0.0021 (19) |
S2B | 0.037 (3) | 0.0182 (14) | 0.0338 (15) | −0.0054 (16) | 0.0117 (17) | −0.0075 (10) |
O11B | 0.051 (4) | 0.030 (4) | 0.035 (7) | −0.001 (3) | 0.014 (5) | 0.007 (5) |
O12B | 0.038 (4) | 0.017 (3) | 0.062 (7) | 0.005 (3) | 0.021 (5) | −0.011 (5) |
O13B | 0.030 (3) | 0.025 (2) | 0.036 (3) | 0.0028 (19) | 0.014 (2) | 0.008 (2) |
O14B | 0.042 (3) | 0.068 (4) | 0.044 (3) | −0.018 (3) | 0.012 (3) | −0.029 (3) |
S1—C2 | 1.728 (3) | C9—H9 | 0.9500 |
S1—C1 | 1.794 (3) | C10—C11 | 1.399 (4) |
C1—H1A | 0.9800 | C10—H10 | 0.9500 |
C1—H1B | 0.9800 | C11—O14 | 1.367 (3) |
C1—H1C | 0.9800 | C11—C12 | 1.374 (3) |
C2—N3 | 1.305 (3) | C12—H12 | 0.9500 |
C2—N4 | 1.332 (3) | O13—H13 | 0.78 (3) |
N3—H3A | 0.890 (18) | O14—H14 | 0.83 (4) |
N3—H3B | 0.861 (17) | S2A—O11A | 1.435 (8) |
N4—N5 | 1.374 (3) | S2A—O12A | 1.452 (7) |
N4—H4 | 0.86 (3) | S2A—O13A | 1.453 (6) |
N5—C6 | 1.285 (3) | S2A—O14A | 1.564 (8) |
C6—C7 | 1.449 (3) | O14A—H14A | 0.8399 |
C6—H6 | 0.9500 | S2B—O12B | 1.437 (7) |
C7—C12 | 1.395 (4) | S2B—O11B | 1.439 (8) |
C7—C8 | 1.401 (4) | S2B—O13B | 1.467 (6) |
C8—O13 | 1.362 (3) | S2B—O14B | 1.549 (9) |
C8—C9 | 1.388 (4) | O14B—H14B | 0.8401 |
C9—C10 | 1.371 (4) | ||
C2—S1—C1 | 101.32 (13) | C10—C9—H9 | 119.5 |
S1—C1—H1A | 109.5 | C8—C9—H9 | 119.5 |
S1—C1—H1B | 109.5 | C9—C10—C11 | 120.1 (2) |
H1A—C1—H1B | 109.5 | C9—C10—H10 | 120.0 |
S1—C1—H1C | 109.5 | C11—C10—H10 | 120.0 |
H1A—C1—H1C | 109.5 | O14—C11—C12 | 123.2 (3) |
H1B—C1—H1C | 109.5 | O14—C11—C10 | 117.6 (2) |
N3—C2—N4 | 119.2 (3) | C12—C11—C10 | 119.2 (2) |
N3—C2—S1 | 124.2 (2) | C11—C12—C7 | 121.5 (3) |
N4—C2—S1 | 116.7 (2) | C11—C12—H12 | 119.2 |
C2—N3—H3A | 119.5 (19) | C7—C12—H12 | 119.2 |
C2—N3—H3B | 123 (2) | C8—O13—H13 | 112 (2) |
H3A—N3—H3B | 118 (3) | C11—O14—H14 | 115 (2) |
C2—N4—N5 | 118.6 (2) | O11A—S2A—O12A | 113.5 (9) |
C2—N4—H4 | 122 (2) | O11A—S2A—O13A | 113.2 (7) |
N5—N4—H4 | 118 (2) | O12A—S2A—O13A | 109.8 (7) |
C6—N5—N4 | 116.1 (2) | O11A—S2A—O14A | 104.4 (10) |
N5—C6—C7 | 121.3 (3) | O12A—S2A—O14A | 107.9 (5) |
N5—C6—H6 | 119.4 | O13A—S2A—O14A | 107.6 (5) |
C7—C6—H6 | 119.4 | S2A—O14A—H14A | 126.1 |
C12—C7—C8 | 118.7 (2) | O12B—S2B—O11B | 114.1 (9) |
C12—C7—C6 | 118.3 (2) | O12B—S2B—O13B | 114.0 (7) |
C8—C7—C6 | 123.0 (2) | O11B—S2B—O13B | 110.1 (9) |
O13—C8—C9 | 117.1 (2) | O12B—S2B—O14B | 104.2 (6) |
O13—C8—C7 | 123.4 (2) | O11B—S2B—O14B | 107.4 (11) |
C9—C8—C7 | 119.5 (2) | O13B—S2B—O14B | 106.2 (5) |
C10—C9—C8 | 121.0 (3) | S2B—O14B—H14B | 133.8 |
C1—S1—C2—N3 | −4.6 (3) | C6—C7—C8—C9 | 179.5 (2) |
C1—S1—C2—N4 | 175.8 (2) | O13—C8—C9—C10 | 179.7 (2) |
N3—C2—N4—N5 | −178.0 (2) | C7—C8—C9—C10 | 0.1 (4) |
S1—C2—N4—N5 | 1.6 (3) | C8—C9—C10—C11 | −0.4 (4) |
C2—N4—N5—C6 | 178.8 (2) | C9—C10—C11—O14 | −178.4 (2) |
N4—N5—C6—C7 | −179.8 (2) | C9—C10—C11—C12 | 0.3 (4) |
N5—C6—C7—C12 | −177.1 (2) | O14—C11—C12—C7 | 178.7 (2) |
N5—C6—C7—C8 | 3.7 (4) | C10—C11—C12—C7 | 0.1 (4) |
C12—C7—C8—O13 | −179.3 (2) | C8—C7—C12—C11 | −0.4 (4) |
C6—C7—C8—O13 | −0.1 (4) | C6—C7—C12—C11 | −179.6 (2) |
C12—C7—C8—C9 | 0.3 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···O12Ai | 0.95 | 2.60 | 3.541 (10) | 170 |
N3—H3A···O12Aii | 0.89 (2) | 1.85 (2) | 2.738 (12) | 178 (3) |
N3—H3A···O12Bii | 0.89 (2) | 1.98 (2) | 2.841 (11) | 163 (3) |
N3—H3B···O14iii | 0.86 (2) | 2.05 (2) | 2.874 (3) | 160 (3) |
N4—H4···O13Aii | 0.86 (3) | 2.00 (3) | 2.849 (5) | 167 (3) |
N4—H4···O13Bii | 0.86 (3) | 2.00 (3) | 2.841 (5) | 164 (3) |
O13—H13···N5 | 0.78 (3) | 2.03 (3) | 2.685 (3) | 142 (3) |
O14—H14···O11Aiv | 0.83 (4) | 1.90 (4) | 2.716 (16) | 167 (3) |
O14—H14···O11Biv | 0.83 (4) | 1.82 (4) | 2.62 (2) | 162 (3) |
O14A—H14A···O11Aiv | 0.84 | 2.28 | 3.123 (17) | 180 |
O14B—H14B···S2Bii | 0.84 | 2.73 | 3.490 (9) | 152 |
O14B—H14B···O13Bii | 0.84 | 1.73 | 2.567 (7) | 180 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) −x+2, −y+1, −z+1; (iii) x+3/2, −y+1/2, z−1/2; (iv) x−1, y, z. |
Acknowledgements
The authors are grateful for the support provided by the Algerian Ministry for Education and Research.
References
Beraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 159–165. Web of Science CrossRef Google Scholar
Botoshansky, M., Bourosh, P. N., Revenco, M. D., Korja, I. D., Simonov, Yu. A. & Panfilie, T. (2009). Zh. Strukt. Khim. 50, 188–191. Google Scholar
Bourosh, P. N., Jampolskaia, M. A., Dvorkin, A. A., Gerbeleu, N. V., Simonov, Yu. A. & Malinovskii, T. I. (1990). Dokl. Akad. Nauk SSSR, 311, 1119–1122. Google Scholar
Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gangadharan, R., Haribabu, J., Karvembu, R. & Sethusankar, K. (2015). Acta Cryst. E71, 305–308. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hayne, D. J., Lim, S. & Donnelly, P. S. (2014). Chem. Soc. Rev. 43, 6701–6715. CrossRef CAS PubMed Google Scholar
Houari, B., Louhibi, S., Boukli-Hacene, L., Roisnel, T. & Taleb, M. (2013). Acta Cryst. E69, o1469. CSD CrossRef IUCr Journals Google Scholar
Joseph, M., Suni, V., Nayar, C. R., Kurup, M. R. P. & Fun, H.-K. (2004). J. Mol. Struct. 705, 63–70. Web of Science CSD CrossRef CAS Google Scholar
Küçükgüzel, G., Kocatepe, A., De Clercq, E., Şahin, F. & Güllüce, M. (2006). Eur. J. Med. Chem. 41, 353–359. Web of Science PubMed Google Scholar
Lim, S., Paterson, B. M., Fodero-Tavoletti, M. T., O'Keefe, G. J., Cappai, R., Barnham, K. J., Villemagne, V. L. & Donnelly, P. S. (2010). Chem. Commun. 46, 5437–5439. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nehar, O., Louhibi, S., Boukli-Hacene, L. & Roisnel, T. (2016). Acta Cryst. E72, 1326–1329. CrossRef IUCr Journals Google Scholar
Oliveira, J. F. de, da Silva, A. L., Vendramini-Costa, D. B., da Cruz Amorim, C. A., Campos, J. F., Ribeiro, A. G., Olímpio de Moura, R., Neves, J. L., Ruiz, A. L., Ernesto de Carvalho, J. & Alves de Lima, M. C. (2015). Eur. J. Med. Chem. 104, 148–156. PubMed Google Scholar
Pal, I., Basuli, F. & Bhattacharya, S. (2002). J. Chem. Sci. 114, 255–268. CrossRef CAS Google Scholar
Palaska, E., Şahin, G., Kelicen, P., Durlu, N. T. & Altinok, G. (2002). Farmaco, 57, 101–107. Web of Science CrossRef PubMed CAS Google Scholar
Pandeya, S. N., Sriram, D., Nath, G. & DeClercq, E. (1999). Eur. J. Pharm. Sci. 9, 25–31. Web of Science CrossRef PubMed CAS Google Scholar
Plech, T., Wujec, M., Siwek, A., Kosikowska, U. & Malm, A. (2011). Eur. J. Med. Chem. 46, 241–248. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Teoh, S.-G., Ang, S.-H., Fun, H.-K. & Ong, C.-W. (1999). J. Organomet. Chem. 580, 17–21. Web of Science CSD CrossRef CAS Google Scholar
Zhu, J., Wang, X.-Z., Chen, Y.-Q., Jiang, X.-K., Chen, X.-Z. & Li, Z.-T. (2004). J. Org. Chem. 69, 6221–6227. CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.