research communications
Hirshfeld surface analysis and interaction energy and DFT studies of methyl 4-[3,6-bis(pyridin-2-yl)pyridazin-4-yl]benzoate
aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'immouzzer, BP 2202, Fez, Morocco, bLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and eLaboratoire de Chimie Appliquée et Environnement, Equipe de Chimie Bioorganique Appliquée, Faculté des sciences, Université Ibn Zohr, Agadir, Morocco
*Correspondence e-mail: nadouchsebbarkheira@gmail.com
The title compound, C22H16N4O2, contains two pyridine rings and one methoxycarbonylphenyl group attached to a pyridazine ring which deviates very slightly from planarity. In the crystal, ribbons consisting of inversion-related chains of molecules extending along the a-axis direction are formed by C—HMthy⋯OCarbx (Mthy = methyl and Carbx = carboxylate) hydrogen bonds. The ribbons are connected into layers parallel to the bc plane by C—HBnz⋯π(ring) (Bnz = benzene) interactions. The Hirshfeld surface analysis of the indicates that the most important contributions for the crystal packing are from H⋯H (39.7%), H⋯C/C⋯H (27.5%), H⋯N/N⋯H (15.5%) and O⋯H/H⋯O (11.1%) interactions. Hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, C—HMthy⋯OCarbx hydrogen-bond energies are 62.0 and 34.3 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/6-311G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.
1. Chemical context
3,6-Bis(pyridin-2-yl)pyridazine derivatives are a versatile class of nitrogen-containing heterocyclic compounds and they constitute useful intermediates in organic syntheses. Also, this nucleus is one of the important ligands in the field of coordination chemistry research. 5-[3,6-Bis(pyridin-2-yl)pyridazine-4-yl]-2′-deoxyuridine-5′-O-triphosphate can be used as a potential substrate for fluorescence detection and imaging of DNA (Kore et al., 2015). Systems containing this moiety also showed remarkable corrosion inhibition (Khadiri et al., 2016). Heterocyclic molecules such as 3,6-bis(pyridin-2-yl)-1,2,4,5-tetrazine have been used in transition-metal chemistry (Kaim & Kohlmann, 1987); this tetrazine is a bidentate chelating ligand popular in coordination chemistry and complexes of a wide range of metals, including iridium and palladium (Tsukada et al., 2001). As a continuation of our research in the field of substituted 3,6-bis(pyridin-2-yl)pyridazine (Filali et al., 2019a,b), we report herein the synthesis, the molecular and crystal structures, along with the Hirshfeld surface analysis, the intermolecular interaction energies and the density functional theory (DFT) computational calculations carried out at the B3LYP/6-311G(d,p) level for a new 3,6-bis(pyridin-2-yl)pyridazine, namely, methyl 4-[3,6-bis(pyridin-2-yl)pyridazin-4-yl]benzoate, (I).
2. Structural commentary
The title compund contains two pyridine rings and one methoxycarbonylphenyl group attached to a pyridazine ring, where the central pyridazine ring, B (atoms N2/N3/C6–C9), deviates slightly from planarity by ±0.021 (1) Å (r.m.s. deviation = 0.0134 Å) (Fig. 1). The planes of the pyridine rings, A (N1/C1–C5) and C (N4/C10–C14), are inclined to the mean plane of the pyridazine ring, B, by 18.68 (6) and 38.40 (6)°, respectively, while the benzene ring, D (C15–C20), is inclined to it by 62.59 (5)°. The pyridine and benzene rings are oriented at dihedral angles of A/C = 25.16 (4)°, A/D = 48.94 (4)° and C/D = 59.13 (4)°. The plane of the carboxyl group (defined by atoms C18/C21/O1/O2) is twisted out of the plane of the benzene ring, D, by 22.88 (5)°.
3. Supramolecular features
In the crystal, chains of molecules extending along the a-axis direction are formed by C22—H22C⋯O1v hydrogen bonds (Table 1). Inversion-related chains are connected into ribbons by C22—H22B⋯O1iv hydrogen bonds (Table 1) and the ribbons are joined into stepped layers approximately parallel to (01) by inversion-related pairs of C19—H19⋯Cg1i interactions, where Cg1 is the centroid of pyridine ring A (Table 1 and Fig. 2). The Hirshfeld surface analysis of the indicates that the most important contributions for the crystal packing are from H⋯H (39.7%), H⋯C/C⋯H (27.5%), H⋯N/N⋯H (15.5%) and O⋯H/H⋯O (11.1%) interactions. Hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing.
4. Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out by using CrystalExplorer (Version 17.5; Turner et al., 2017). In the HS plotted over dnorm (Fig. 3), the white surface indicates contacts with distances equal to the sum of the van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots appearing near atoms O1 and H22B and H22C indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005), as shown in Fig. 4. The blue regions indicate the positive electrostatic potential (hydrogen-bond donors), while the red regions indicate the negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π interactions. Fig. 5 clearly suggests that there are no π—π interactions in (I). The overall two-dimensional fingerprint plot (Fig. 6a) and those delineated into H⋯H, H⋯C/C⋯H, H⋯N/N⋯H, H⋯O/O⋯H, C⋯C and C⋯N/N⋯C contacts (McKinnon et al., 2007) are illustrated in Figs. 6 (b)–(g), respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H⋯H contributing 39.7% to the overall crystal packing, which is reflected in Fig. 6(b) as widely scattered points of high density due to the large hydrogen content of the molecule with the tip at de = di = 1.10 Å, due to the short interatomic H⋯H contacts (Table 2). Due to the presence of C—H⋯π interactions, a 27.5% contribution to the HS arises from the H⋯C/C⋯H contacts (Table 2) which are viewed as pairs of spikes in the fingerprint plot shown in Fig. 6(c) with the tips at de + di = 2.75 Å. The pair of scattered points of wings resulting in the fingerprint plots delineated into H⋯N/N⋯H (Fig. 6d) contacts, with a 15.5% contribution to the HS, has a symmetrical distribution of points with the edges at de + di = 2.58 Å (Table 2). The pair of characteristic wings resulting in the fingerprint plot shown in Fig. 6(e), with an 11.1% contribution to the HS, arises from the O⋯H/H⋯O contacts (Table 2) and is viewed as pair of spikes with the tips at de + di = 2.42 Å. The C⋯C contacts (Fig. 6f) have an arrow-shaped distribution of points with the tip at de = di = 13.50 Å. Finally, the tiny characteristic wings resulting in the fingerprint plots shown in Fig. 6g, a 2.4% contribution to the HS, arises from the C⋯N/N⋯C contacts (Table 2) and is viewed with the tip at de = di = 3.40 Å.
|
The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H, H⋯N/N⋯H and H⋯O/O⋯H interactions in Figs. 7(a)–(d), respectively.
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H, H⋯N/N⋯H and H⋯O/O⋯H interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
5. Interaction energy calculations
The intermolecular interaction energies were calculated using the CE–B3LYP/6-31G(d,p) energy model available in CrystalExplorer (CE) (Version 17.5; Turner et al., 2017), where a cluster of molecules would need to be generated by applying operations with respect to a selected central molecule within a default radius of 3.8 Å (Turner et al., 2014). The total intermolecular energy (Etot) is the sum of the electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange–repulsion (Erep) energies (Turner et al., 2015), with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017). Hydrogen-bonding interaction energies (in kJ mol−1) were calculated as −23.9 (Eele), −4.3 (Epol), −76.2 (Edis), 53.0 (Erep) and −62.0 (Etot) for the C22—H22C⋯O1 hydrogen-bonding interaction, and −22.0 (Eele), −8.5 (Epol), −28.5 (Edis), 32.3 (Erep) and −34.3 (Etot) for the C22—H22B⋯O1 hydrogen-bonding interaction.
6. DFT calculations
The optimized structure of the title compound, (I), in the gas phase was generated theoretically via density functional theory (DFT) using the standard B3LYP functional and 6-311G(d,p) basis-set calculations (Becke, 1993) as implemented in GAUSSIAN09 (Frisch et al., 2009). The theoretical and experimental results are in good agreement (Table 3). The highest-occupied molecular orbital (HOMO), acting as an and the lowest-unoccupied molecular orbital (LUMO), acting as an are very important parameters for quantum chemistry. When the energy gap is small, the molecule is highly polarizable and has high chemical reactivity. The DFT calculations provide some important information on the reactivity and site selectivity of the molecular framework. EHOMO and ELUMO clarify the inevitable charge exchange collaboration inside the studied material, and (χ), hardness (η), potential (μ), (ω) and softness (σ) are all recorded in Table 4. The significance of η and σ is to evaluate both the reactivity and stability. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 8. The HOMO and LUMO are localized in the plane extending from the whole methyl 4-[3,6-bis(pyridin-2-yl)pyridazin-4-yl]benzoate ring. The energy band gap [ΔE = ELUMO − EHOMO] of the molecule is about 1.8908 eV, and the frontier molecular orbital (FMO) energies, i.e. EHOMO and ELUMO, are −4.3680 and −2.4772 eV, respectively.
|
|
7. Database survey
A 4-[(prop-2-en-1-yloxy)methyl]phenyl analogue has been reported (Filali et al., 2019a). Three other metal complexes coordinated by 3,6-bis(pyridin-2-yl)pyridazine have also been reported, namely aquabis[3,6-bis(pyridin-2-yl)pyridazine-κ2N1,N6]copper(II) bis(trifluoromethanesulfonate) (Showrilu et al., 2017), tetrakis[μ-3,6-di(pyridin-2-yl)pyridazine]bis(μ-hydroxo)bis(μ-aqua)tetranickel(II) hexanitrate tetradecahydrate (Marino et al., 2019) and catena-[[μ2-3,6-bis(pyridin-2-yl)pyridazine]bis(μ-2-azido)dizaidodicopper monohydrate] (Mastropietro et al., 2013).
8. Synthesis and crystallization
3,6-Bis(pyridin-2-yl)-1,2,4,5-tetrazine (4 mmol) was dissolved in toluene (20 ml), and then 1 equiv. of methyl 4-ethynylbenzoate was added and the reaction mixture was stirred and refluxed at temperatures between 413 and 453 K. The solvent was then evaporated. The product obtained was separated by v/v) to afford colourless crystals (yield 92%; m.p. 449 K).
on a column of silica gel. The isolated solid was recrystallized from hexane–dichloromethane (1:19. Refinement
The experimental details including the crystal data, data collection and . H atoms were located in a difference Fourier map and refined freely.
are summarized in Table 5
|
Supporting information
https://doi.org/10.1107/S2056989019013732/lh5927sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019013732/lh5927Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019013732/lh5927Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989019013732/lh5927Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Bruker, 2016).C22H16N4O2 | Z = 2 |
Mr = 368.39 | F(000) = 384 |
Triclinic, P1 | Dx = 1.344 Mg m−3 |
a = 6.0464 (1) Å | Cu Kα radiation, λ = 1.54178 Å |
b = 11.7175 (3) Å | Cell parameters from 6104 reflections |
c = 13.2931 (3) Å | θ = 3.4–74.7° |
α = 95.735 (1)° | µ = 0.72 mm−1 |
β = 95.813 (1)° | T = 150 K |
γ = 101.780 (1)° | Column, colourless |
V = 910.16 (3) Å3 | 0.26 × 0.12 × 0.07 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 3426 independent reflections |
Radiation source: INCOATEC IµS micro-focus source | 3139 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.022 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 74.7°, θmin = 3.4° |
ω scans | h = −6→7 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −14→13 |
Tmin = 0.85, Tmax = 0.95 | l = −14→16 |
7056 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | All H-atom parameters refined |
wR(F2) = 0.098 | w = 1/[σ2(Fo2) + (0.0539P)2 + 0.2048P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
3426 reflections | Δρmax = 0.23 e Å−3 |
318 parameters | Δρmin = −0.16 e Å−3 |
0 restraints | Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: dual space | Extinction coefficient: 0.0087 (8) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.62576 (15) | 0.94764 (7) | 0.85874 (8) | 0.0425 (3) | |
O2 | 0.24890 (14) | 0.87662 (7) | 0.83965 (7) | 0.0313 (2) | |
N1 | 1.02078 (16) | 0.30995 (9) | 0.51060 (7) | 0.0290 (2) | |
N2 | 0.52919 (17) | 0.16735 (8) | 0.61309 (8) | 0.0294 (2) | |
N3 | 0.38764 (17) | 0.18823 (8) | 0.68071 (8) | 0.0292 (2) | |
N4 | 0.32230 (18) | 0.39009 (9) | 0.87963 (8) | 0.0328 (2) | |
C1 | 1.1730 (2) | 0.28112 (11) | 0.45151 (9) | 0.0319 (3) | |
H1 | 1.308 (3) | 0.3455 (14) | 0.4491 (12) | 0.041 (4)* | |
C2 | 1.1492 (2) | 0.17134 (12) | 0.39688 (10) | 0.0352 (3) | |
H2 | 1.270 (3) | 0.1577 (15) | 0.3566 (14) | 0.053 (5)* | |
C3 | 0.9553 (2) | 0.08688 (11) | 0.40089 (10) | 0.0361 (3) | |
H3 | 0.929 (3) | 0.0079 (15) | 0.3616 (13) | 0.047 (4)* | |
C4 | 0.7948 (2) | 0.11428 (11) | 0.46092 (9) | 0.0325 (3) | |
H4 | 0.656 (3) | 0.0587 (15) | 0.4647 (12) | 0.047 (4)* | |
C5 | 0.83537 (19) | 0.22568 (10) | 0.51552 (8) | 0.0263 (2) | |
C6 | 0.67584 (19) | 0.25744 (10) | 0.58616 (8) | 0.0258 (2) | |
C7 | 0.67982 (19) | 0.37445 (10) | 0.62177 (9) | 0.0264 (2) | |
H7 | 0.783 (2) | 0.4381 (13) | 0.5971 (11) | 0.031 (3)* | |
C8 | 0.53152 (19) | 0.39724 (9) | 0.68926 (8) | 0.0253 (2) | |
C9 | 0.38988 (19) | 0.29823 (10) | 0.71976 (8) | 0.0257 (2) | |
C10 | 0.2376 (2) | 0.30746 (9) | 0.79999 (9) | 0.0267 (2) | |
C11 | 0.0258 (2) | 0.23148 (10) | 0.79314 (9) | 0.0297 (3) | |
H11 | −0.027 (3) | 0.1701 (13) | 0.7335 (12) | 0.037 (4)* | |
C12 | −0.1065 (2) | 0.24211 (11) | 0.87157 (10) | 0.0356 (3) | |
H12 | −0.260 (3) | 0.1895 (14) | 0.8668 (12) | 0.042 (4)* | |
C13 | −0.0224 (3) | 0.32801 (12) | 0.95334 (11) | 0.0398 (3) | |
H13 | −0.111 (3) | 0.3385 (15) | 1.0109 (14) | 0.050 (4)* | |
C14 | 0.1922 (2) | 0.39898 (11) | 0.95456 (10) | 0.0386 (3) | |
H14 | 0.258 (3) | 0.4584 (14) | 1.0115 (13) | 0.042 (4)* | |
C15 | 0.51538 (18) | 0.51941 (9) | 0.72438 (8) | 0.0245 (2) | |
C16 | 0.70032 (19) | 0.59753 (10) | 0.78141 (9) | 0.0264 (2) | |
H16 | 0.839 (2) | 0.5708 (12) | 0.7993 (11) | 0.032 (3)* | |
C17 | 0.68255 (19) | 0.71046 (10) | 0.81609 (9) | 0.0273 (3) | |
H17 | 0.807 (2) | 0.7636 (13) | 0.8570 (11) | 0.033 (4)* | |
C18 | 0.47906 (18) | 0.74593 (9) | 0.79418 (8) | 0.0247 (2) | |
C19 | 0.29575 (19) | 0.66908 (10) | 0.73420 (9) | 0.0277 (3) | |
H19 | 0.157 (3) | 0.6959 (12) | 0.7180 (11) | 0.032 (4)* | |
C20 | 0.3147 (2) | 0.55664 (10) | 0.69887 (9) | 0.0290 (3) | |
H20 | 0.188 (3) | 0.5009 (13) | 0.6556 (12) | 0.039 (4)* | |
C21 | 0.46364 (19) | 0.86730 (10) | 0.83384 (9) | 0.0271 (3) | |
C22 | 0.2179 (2) | 0.99301 (11) | 0.87423 (12) | 0.0371 (3) | |
H22A | 0.289 (3) | 1.0486 (15) | 0.8283 (13) | 0.046 (4)* | |
H22B | 0.287 (3) | 1.0160 (15) | 0.9439 (14) | 0.050 (5)* | |
H22C | 0.056 (3) | 0.9847 (15) | 0.8673 (13) | 0.051 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0280 (5) | 0.0261 (4) | 0.0677 (7) | 0.0017 (3) | 0.0007 (4) | −0.0079 (4) |
O2 | 0.0264 (4) | 0.0246 (4) | 0.0426 (5) | 0.0066 (3) | 0.0043 (3) | −0.0004 (3) |
N1 | 0.0270 (5) | 0.0304 (5) | 0.0283 (5) | 0.0045 (4) | 0.0007 (4) | 0.0036 (4) |
N2 | 0.0324 (5) | 0.0247 (5) | 0.0304 (5) | 0.0045 (4) | 0.0059 (4) | 0.0012 (4) |
N3 | 0.0324 (5) | 0.0245 (5) | 0.0303 (5) | 0.0051 (4) | 0.0064 (4) | 0.0019 (4) |
N4 | 0.0401 (6) | 0.0282 (5) | 0.0282 (5) | 0.0031 (4) | 0.0064 (4) | 0.0018 (4) |
C1 | 0.0281 (6) | 0.0389 (6) | 0.0290 (6) | 0.0067 (5) | 0.0029 (4) | 0.0080 (5) |
C2 | 0.0381 (7) | 0.0427 (7) | 0.0303 (6) | 0.0165 (5) | 0.0098 (5) | 0.0089 (5) |
C3 | 0.0479 (8) | 0.0306 (6) | 0.0320 (6) | 0.0125 (5) | 0.0098 (5) | 0.0021 (5) |
C4 | 0.0373 (7) | 0.0275 (6) | 0.0319 (6) | 0.0046 (5) | 0.0072 (5) | 0.0017 (5) |
C5 | 0.0271 (6) | 0.0260 (5) | 0.0256 (6) | 0.0060 (4) | 0.0008 (4) | 0.0033 (4) |
C6 | 0.0254 (6) | 0.0254 (5) | 0.0252 (5) | 0.0047 (4) | −0.0007 (4) | 0.0016 (4) |
C7 | 0.0249 (6) | 0.0237 (5) | 0.0287 (6) | 0.0026 (4) | 0.0005 (4) | 0.0028 (4) |
C8 | 0.0245 (5) | 0.0238 (5) | 0.0260 (5) | 0.0048 (4) | −0.0018 (4) | 0.0017 (4) |
C9 | 0.0261 (6) | 0.0241 (5) | 0.0258 (5) | 0.0046 (4) | 0.0000 (4) | 0.0023 (4) |
C10 | 0.0305 (6) | 0.0232 (5) | 0.0273 (6) | 0.0074 (4) | 0.0031 (4) | 0.0049 (4) |
C11 | 0.0294 (6) | 0.0261 (5) | 0.0339 (6) | 0.0076 (4) | 0.0024 (5) | 0.0040 (5) |
C12 | 0.0304 (7) | 0.0352 (6) | 0.0436 (7) | 0.0084 (5) | 0.0089 (5) | 0.0090 (5) |
C13 | 0.0460 (8) | 0.0393 (7) | 0.0382 (7) | 0.0124 (6) | 0.0165 (6) | 0.0066 (5) |
C14 | 0.0496 (8) | 0.0340 (6) | 0.0312 (6) | 0.0060 (6) | 0.0102 (5) | 0.0009 (5) |
C15 | 0.0256 (6) | 0.0221 (5) | 0.0253 (5) | 0.0032 (4) | 0.0042 (4) | 0.0035 (4) |
C16 | 0.0222 (6) | 0.0258 (5) | 0.0307 (6) | 0.0050 (4) | 0.0019 (4) | 0.0038 (4) |
C17 | 0.0232 (6) | 0.0245 (5) | 0.0313 (6) | 0.0014 (4) | 0.0001 (4) | 0.0014 (4) |
C18 | 0.0249 (6) | 0.0218 (5) | 0.0268 (5) | 0.0033 (4) | 0.0039 (4) | 0.0031 (4) |
C19 | 0.0226 (6) | 0.0263 (5) | 0.0333 (6) | 0.0051 (4) | 0.0007 (4) | 0.0029 (4) |
C20 | 0.0248 (6) | 0.0251 (5) | 0.0336 (6) | 0.0021 (4) | −0.0021 (4) | −0.0004 (4) |
C21 | 0.0252 (6) | 0.0253 (5) | 0.0299 (6) | 0.0045 (4) | 0.0015 (4) | 0.0026 (4) |
C22 | 0.0339 (7) | 0.0291 (6) | 0.0484 (8) | 0.0116 (5) | 0.0040 (6) | −0.0034 (6) |
O1—C21 | 1.2049 (14) | C9—C10 | 1.4876 (16) |
O2—C21 | 1.3342 (15) | C10—C11 | 1.3914 (17) |
O2—C22 | 1.4501 (14) | C11—C12 | 1.3877 (18) |
N1—C1 | 1.3411 (16) | C11—H11 | 0.994 (15) |
N1—C5 | 1.3461 (15) | C12—C13 | 1.3833 (19) |
N2—C6 | 1.3366 (15) | C12—H12 | 0.996 (16) |
N2—N3 | 1.3407 (14) | C13—C14 | 1.389 (2) |
N3—C9 | 1.3375 (14) | C13—H13 | 0.989 (18) |
N4—C14 | 1.3388 (17) | C14—H14 | 0.968 (16) |
N4—C10 | 1.3429 (15) | C15—C16 | 1.3909 (15) |
C1—C2 | 1.3854 (18) | C15—C20 | 1.3926 (16) |
C1—H1 | 0.998 (16) | C16—C17 | 1.3861 (15) |
C2—C3 | 1.3804 (19) | C16—H16 | 0.967 (15) |
C2—H2 | 0.979 (18) | C17—C18 | 1.3899 (16) |
C3—C4 | 1.3837 (18) | C17—H17 | 0.954 (15) |
C3—H3 | 0.990 (16) | C18—C19 | 1.3946 (15) |
C4—C5 | 1.3909 (16) | C18—C21 | 1.4911 (15) |
C4—H4 | 0.962 (17) | C19—C20 | 1.3851 (16) |
C5—C6 | 1.4869 (16) | C19—H19 | 0.967 (15) |
C6—C7 | 1.3997 (15) | C20—H20 | 0.987 (16) |
C7—C8 | 1.3759 (16) | C22—H22A | 1.000 (18) |
C7—H7 | 0.975 (15) | C22—H22B | 0.964 (19) |
C8—C9 | 1.4151 (16) | C22—H22C | 0.959 (19) |
C8—C15 | 1.4864 (14) | ||
O2···C3i | 3.4089 (16) | N4···H14viii | 2.931 (18) |
O1···H12ii | 2.765 (16) | C1···C6iii | 3.4447 (17) |
O1···H22A | 2.573 (18) | C1···C7iii | 3.5272 (17) |
O1···H22B | 2.660 (18) | C2···C17ix | 3.4292 (18) |
O1···H22Ciii | 2.537 (19) | C3···C3x | 3.5516 (18) |
O1···H22Biv | 2.598 (18) | C6···C11iii | 3.3751 (16) |
O1···H17 | 2.611 (14) | C10···C20 | 3.3022 (16) |
O2···H17v | 2.773 (13) | C11···C22vii | 3.4630 (18) |
O2···H19 | 2.462 (14) | C14···C17viii | 3.4960 (18) |
N1···C9iii | 3.4168 (15) | C14···C16viii | 3.4987 (18) |
N2···C1v | 3.4404 (16) | C1···H19i | 2.926 (16) |
N4···C20 | 3.2459 (16) | C6···H11iii | 2.924 (15) |
N4···C15 | 2.8825 (15) | C7···H1v | 2.988 (17) |
N4···C16 | 3.4362 (16) | C11···H22Avii | 2.964 (18) |
N1···H20iii | 2.750 (15) | C16···H14viii | 2.891 (17) |
N1···H7 | 2.553 (14) | C17···H2ix | 2.898 (18) |
N2···H4vi | 2.710 (17) | C18···H2ix | 2.822 (18) |
N2···H4 | 2.511 (17) | H3···H11vi | 2.53 (2) |
N3···H11 | 2.644 (13) | H4···H4vi | 2.43 (3) |
N3···H22Avii | 2.713 (17) | H7···H20iii | 2.43 (2) |
N3···H3vi | 2.644 (18) | H16···H19iii | 2.57 (2) |
C21—O2—C22 | 115.72 (9) | C10—C11—H11 | 120.0 (9) |
C1—N1—C5 | 116.73 (10) | C13—C12—C11 | 118.62 (12) |
C6—N2—N3 | 119.41 (9) | C13—C12—H12 | 121.9 (9) |
C9—N3—N2 | 120.51 (9) | C11—C12—H12 | 119.5 (9) |
C14—N4—C10 | 117.22 (11) | C12—C13—C14 | 118.80 (12) |
N1—C1—C2 | 123.85 (11) | C12—C13—H13 | 121.2 (10) |
N1—C1—H1 | 114.9 (9) | C14—C13—H13 | 120.0 (10) |
C2—C1—H1 | 121.3 (9) | N4—C14—C13 | 123.44 (12) |
C3—C2—C1 | 118.61 (11) | N4—C14—H14 | 115.5 (10) |
C3—C2—H2 | 123.1 (10) | C13—C14—H14 | 121.0 (9) |
C1—C2—H2 | 118.3 (10) | C16—C15—C20 | 119.63 (10) |
C2—C3—C4 | 118.80 (12) | C16—C15—C8 | 120.52 (10) |
C2—C3—H3 | 121.6 (10) | C20—C15—C8 | 119.84 (10) |
C4—C3—H3 | 119.6 (10) | C17—C16—C15 | 120.28 (10) |
C3—C4—C5 | 118.79 (12) | C17—C16—H16 | 120.5 (8) |
C3—C4—H4 | 121.6 (10) | C15—C16—H16 | 119.1 (8) |
C5—C4—H4 | 119.6 (10) | C16—C17—C18 | 119.99 (10) |
N1—C5—C4 | 123.17 (11) | C16—C17—H17 | 120.6 (9) |
N1—C5—C6 | 115.74 (10) | C18—C17—H17 | 119.4 (9) |
C4—C5—C6 | 121.07 (10) | C17—C18—C19 | 119.84 (10) |
N2—C6—C7 | 122.43 (10) | C17—C18—C21 | 118.84 (10) |
N2—C6—C5 | 115.74 (10) | C19—C18—C21 | 121.31 (10) |
C7—C6—C5 | 121.82 (10) | C20—C19—C18 | 120.00 (10) |
C8—C7—C6 | 118.68 (10) | C20—C19—H19 | 121.2 (8) |
C8—C7—H7 | 121.2 (8) | C18—C19—H19 | 118.8 (8) |
C6—C7—H7 | 120.1 (8) | C19—C20—C15 | 120.17 (10) |
C7—C8—C9 | 116.35 (10) | C19—C20—H20 | 121.7 (9) |
C7—C8—C15 | 121.43 (10) | C15—C20—H20 | 118.2 (9) |
C9—C8—C15 | 122.17 (10) | O1—C21—O2 | 123.69 (10) |
N3—C9—C8 | 122.45 (10) | O1—C21—C18 | 124.18 (10) |
N3—C9—C10 | 114.54 (10) | O2—C21—C18 | 112.13 (9) |
C8—C9—C10 | 122.98 (10) | O2—C22—H22A | 108.3 (9) |
N4—C10—C11 | 123.19 (11) | O2—C22—H22B | 109.6 (10) |
N4—C10—C9 | 115.56 (10) | H22A—C22—H22B | 111.1 (14) |
C11—C10—C9 | 121.21 (10) | O2—C22—H22C | 104.1 (10) |
C12—C11—C10 | 118.71 (11) | H22A—C22—H22C | 111.1 (14) |
C12—C11—H11 | 121.3 (9) | H22B—C22—H22C | 112.3 (15) |
C6—N2—N3—C9 | 1.13 (16) | N3—C9—C10—C11 | −37.56 (15) |
C5—N1—C1—C2 | −0.15 (17) | C8—C9—C10—C11 | 144.40 (12) |
N1—C1—C2—C3 | 1.69 (19) | N4—C10—C11—C12 | 0.83 (18) |
C1—C2—C3—C4 | −1.34 (19) | C9—C10—C11—C12 | 178.28 (10) |
C2—C3—C4—C5 | −0.40 (19) | C10—C11—C12—C13 | 0.11 (18) |
C1—N1—C5—C4 | −1.75 (17) | C11—C12—C13—C14 | −1.0 (2) |
C1—N1—C5—C6 | 176.55 (10) | C10—N4—C14—C13 | −0.2 (2) |
C3—C4—C5—N1 | 2.05 (19) | C12—C13—C14—N4 | 1.1 (2) |
C3—C4—C5—C6 | −176.17 (11) | C7—C8—C15—C16 | −64.14 (15) |
N3—N2—C6—C7 | −3.53 (17) | C9—C8—C15—C16 | 118.48 (12) |
N3—N2—C6—C5 | 176.55 (9) | C7—C8—C15—C20 | 114.96 (12) |
N1—C5—C6—N2 | −162.08 (10) | C9—C8—C15—C20 | −62.42 (15) |
C4—C5—C6—N2 | 16.27 (16) | C20—C15—C16—C17 | 2.49 (17) |
N1—C5—C6—C7 | 18.00 (16) | C8—C15—C16—C17 | −178.41 (10) |
C4—C5—C6—C7 | −163.65 (11) | C15—C16—C17—C18 | 0.21 (17) |
N2—C6—C7—C8 | 1.90 (17) | C16—C17—C18—C19 | −2.31 (17) |
C5—C6—C7—C8 | −178.18 (10) | C16—C17—C18—C21 | 179.05 (10) |
C6—C7—C8—C9 | 1.90 (16) | C17—C18—C19—C20 | 1.71 (17) |
C6—C7—C8—C15 | −175.63 (10) | C21—C18—C19—C20 | −179.68 (11) |
N2—N3—C9—C8 | 2.85 (17) | C18—C19—C20—C15 | 0.99 (18) |
N2—N3—C9—C10 | −175.20 (10) | C16—C15—C20—C19 | −3.08 (17) |
C7—C8—C9—N3 | −4.30 (16) | C8—C15—C20—C19 | 177.81 (10) |
C15—C8—C9—N3 | 173.21 (10) | C22—O2—C21—O1 | 2.69 (18) |
C7—C8—C9—C10 | 173.58 (10) | C22—O2—C21—C18 | −177.94 (10) |
C15—C8—C9—C10 | −8.91 (17) | C17—C18—C21—O1 | 21.65 (18) |
C14—N4—C10—C11 | −0.80 (18) | C19—C18—C21—O1 | −156.97 (13) |
C14—N4—C10—C9 | −178.38 (11) | C17—C18—C21—O2 | −157.72 (10) |
N3—C9—C10—N4 | 140.07 (11) | C19—C18—C21—O2 | 23.66 (15) |
C8—C9—C10—N4 | −37.96 (15) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) −x+1, −y+2, −z+2; (v) x−1, y, z; (vi) −x+1, −y, −z+1; (vii) x, y−1, z; (viii) −x+1, −y+1, −z+2; (ix) −x+2, −y+1, −z+1; (x) −x+2, −y, −z+1. |
Cg1 is the centroid of the pyridyl ring, A (N1/C1–C5). |
D—H···A | D—H | H···A | D···A | D—H···A |
C19—H19···Cg1i | 0.967 (15) | 2.876 (15) | 3.5715 (13) | 129.8 (12) |
C22—H22B···O1iv | 0.964 (19) | 2.598 (19) | 3.5407 (19) | 165.8 (14) |
C22—H22C···O1v | 0.959 (19) | 2.536 (19) | 3.4924 (16) | 174.8 (15) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (iv) −x+1, −y+2, −z+2; (v) x−1, y, z. |
Bonds/angles | X-ray | B3LYP/6-311G(d,p) |
O1—C21 | 1.2049 (14) | 1.23831 |
O2—C21 | 1.3342 (15) | 1.38677 |
O2—C22 | 1.4501 (14) | 1.45892 |
N1—C1 | 1.3411 (16) | 1.38974 |
N1—C5 | 1.3461 (15) | 1.40690 |
N2—C6 | 1.3366 (15) | 1.36917 |
N2—N3 | 1.3407 (14) | 1.31753 |
N3—C9 | 1.3375 (14) | 1.38785 |
N4—C14 | 1.3388 (17) | 1.34410 |
N4—C10 | 1.3429 (15) | 1.35601 |
C21—O2—C22 | 115.72 (9) | 116.46416 |
C1—N1—C5 | 116.73 (10) | 117.59335 |
C6—N2—N3 | 119.41 (9) | 118.73596 |
C9—N3—N2 | 120.51 (9) | 121.63356 |
C14—N4—C10 | 117.22 (11) | 118.30113 |
N1—C5—C4 | 123.17 (11) | 123.94848 |
N1—C5—C6 | 115.74 (10) | 116.62957 |
N2—C6—C7 | 122.43 (10) | 122.86465 |
N2—C6—C5 | 115.74 (10) | 115.11012 |
Molecular Energy (a.u.) (eV) | Compound (I) |
Total Energy TE (eV) | -33114.5851 |
EHOMO (eV) | -4.3680 |
ELUMO (eV) | -2.4772 |
Gap ΔE (eV) | 1.8908 |
Dipole moment µ (Debye) | 5.0683 |
Ionisation potential I (eV) | 4.3680 |
Electron affinity A | 2.4772 |
Electro negativity χ | 3.4226 |
Hardness η | 0.9454 |
Electrophilicity index ω | 6.1953 |
Softness σ | 1.0577 |
Fraction of electron transferred ΔN | 1.8920 |
Acknowledgements
The support of NSF-MRI for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.
Funding information
Funding for this research was provided by: Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004 to TH); NSF-MRI (grant No. 1228232).
References
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Filali, M., Elmsellem, H., Hökelek, T., El-Ghayoury, A., Stetsiuk, O., El Hadrami, E. M. & Ben-Tama, A. (2019b). Acta Cryst. E75, 1169–1174. CSD CrossRef IUCr Journals Google Scholar
Filali, M., Sebbar, N. K., Hökelek, T., Mague, J. T., Chakroune, S., Ben-Tama, A. & El Hadrami, E. M. (2019a). Acta Cryst. E75, 1321–1326. CSD CrossRef IUCr Journals Google Scholar
Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/. Google Scholar
Kaim, W. & Kohlmann, S. (1987). Inorg. Chem. 26, 68–77. CrossRef CAS Web of Science Google Scholar
Khadiri, A., Saddik, R., Bekkouche, K., Aouniti, A., Hammouti, B., Benchat, N., Bouachrine, M. & Solmaz, R. (2016). J. Taiwan Inst. Chem. Eng. 58, 552–564. Web of Science CrossRef CAS Google Scholar
Kore, A. R., Yang, B. & Srinivasan, B. (2015). Tetrahedron Lett. 56, 808–811. Web of Science CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Marino, N., Bruno, R., Bentama, A., Pascual-Álvarez, A., Lloret, F., Julve, M. & De Munno, G. (2019). CrystEngComm, 21, 917–924. Web of Science CSD CrossRef CAS Google Scholar
Mastropietro, T. F., Marino, N., Armentano, D., De Munno, G., Yuste, C., Lloret, F. & Julve, M. (2013). Cryst. Growth Des. 13, 270–281. Web of Science CSD CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Showrilu, K., Rajarajan, K., Martin Britto Dhas, S. A. & Athimoolam, S. (2017). IUCrData, 2, x171142. Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Tsukada, N., Sato, T., Mori, H., Sugawara, S., Kabuto, C., Miyano, S. & Inoue, Y. (2001). J. Organomet. Chem. 627, 121–126. Web of Science CSD CrossRef CAS Google Scholar
Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255. Web of Science CrossRef CAS PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. Web of Science CrossRef CAS Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.