research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of methyl 4-[3,6-bis­­(pyridin-2-yl)pyridazin-4-yl]benzoate

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'immouzzer, BP 2202, Fez, Morocco, bLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and eLaboratoire de Chimie Appliquée et Environnement, Equipe de Chimie Bioorganique Appliquée, Faculté des sciences, Université Ibn Zohr, Agadir, Morocco
*Correspondence e-mail: nadouchsebbarkheira@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 30 September 2019; accepted 8 October 2019; online 22 October 2019)

The title com­pound, C22H16N4O2, contains two pyridine rings and one meth­oxy­carbonyl­phenyl group attached to a pyridazine ring which deviates very slightly from planarity. In the crystal, ribbons consisting of inversion-related chains of mol­ecules extending along the a-axis direction are formed by C—HMthy⋯OCarbx (Mthy = methyl and Carbx = carboxyl­ate) hydrogen bonds. The ribbons are connected into layers parallel to the bc plane by C—HBnzπ(ring) (Bnz = benzene) inter­actions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (39.7%), H⋯C/C⋯H (27.5%), H⋯N/N⋯H (15.5%) and O⋯H/H⋯O (11.1%) inter­actions. Hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, C—HMthy⋯OCarbx hydrogen-bond energies are 62.0 and 34.3 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/6-311G(d,p) level are com­pared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.

1. Chemical context

3,6-Bis(pyridin-2-yl)pyridazine derivatives are a versatile class of nitro­gen-containing heterocyclic com­pounds and they constitute useful inter­mediates in organic syntheses. Also, this nucleus is one of the important ligands in the field of coordination chemistry research. 5-[3,6-Bis(pyridin-2-yl)pyri­da­zine-4-yl]-2′-de­oxy­uridine-5′-O-triphosphate can be used as a potential substrate for fluorescence detection and imaging of DNA (Kore et al., 2015[Kore, A. R., Yang, B. & Srinivasan, B. (2015). Tetrahedron Lett. 56, 808-811.]). Systems containing this moiety also showed remarkable corrosion inhibition (Khadiri et al., 2016[Khadiri, A., Saddik, R., Bekkouche, K., Aouniti, A., Hammouti, B., Benchat, N., Bouachrine, M. & Solmaz, R. (2016). J. Taiwan Inst. Chem. Eng. 58, 552-564.]). Heterocyclic mol­ecules such as 3,6-bis­(pyridin-2-yl)-1,2,4,5-tetra­zine have been used in transition-metal chemistry (Kaim & Kohlmann, 1987[Kaim, W. & Kohlmann, S. (1987). Inorg. Chem. 26, 68-77.]); this tetrazine is a bidentate chelating ligand popular in coordination chemistry and com­plexes of a wide range of metals, including iridium and palladium (Tsukada et al., 2001[Tsukada, N., Sato, T., Mori, H., Sugawara, S., Kabuto, C., Miyano, S. & Inoue, Y. (2001). J. Organomet. Chem. 627, 121-126.]). As a continuation of our research in the field of substituted 3,6-bis­(pyridin-2-yl)pyridazine (Filali et al., 2019a[Filali, M., Sebbar, N. K., Hökelek, T., Mague, J. T., Chakroune, S., Ben-Tama, A. & El Hadrami, E. M. (2019a). Acta Cryst. E75, 1321-1326.],b[Filali, M., Elmsellem, H., Hökelek, T., El-Ghayoury, A., Stetsiuk, O., El Hadrami, E. M. & Ben-Tama, A. (2019b). Acta Cryst. E75, 1169-1174.]), we report herein the synthesis, the mol­ecular and crystal structures, along with the Hirshfeld surface analysis, the inter­molecular inter­action energies and the density functional theory (DFT) com­putational calculations carried out at the B3LYP/6-311G(d,p) level for a new 3,6-bis­(pyridin-2-yl)pyridazine, namely, methyl 4-[3,6-bis­(pyridin-2-yl)pyridazin-4-yl]benzoate, (I).

[Scheme 1]

2. Structural commentary

The title com­pund contains two pyridine rings and one meth­oxy­carbonyl­phenyl group attached to a pyridazine ring, where the central pyridazine ring, B (atoms N2/N3/C6–C9), deviates slightly from planarity by ±0.021 (1) Å (r.m.s. deviation = 0.0134 Å) (Fig. 1[link]). The planes of the pyridine rings, A (N1/C1–C5) and C (N4/C10–C14), are inclined to the mean plane of the pyridazine ring, B, by 18.68 (6) and 38.40 (6)°, respectively, while the benzene ring, D (C15–C20), is inclined to it by 62.59 (5)°. The pyridine and benzene rings are oriented at dihedral angles of A/C = 25.16 (4)°, A/D = 48.94 (4)° and C/D = 59.13 (4)°. The plane of the carboxyl group (defined by atoms C18/C21/O1/O2) is twisted out of the plane of the benzene ring, D, by 22.88 (5)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title com­pound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, chains of mol­ecules extending along the a-axis direction are formed by C22—H22C⋯O1v hydrogen bonds (Table 1[link]). Inversion-related chains are connected into ribbons by C22—H22B⋯O1iv hydrogen bonds (Table 1[link]) and the ribbons are joined into stepped layers approximately parallel to (01[\overline{1}]) by inversion-related pairs of C19—H19⋯Cg1i inter­actions, where Cg1 is the centroid of pyridine ring A (Table 1[link] and Fig. 2[link]). The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (39.7%), H⋯C/C⋯H (27.5%), H⋯N/N⋯H (15.5%) and O⋯H/H⋯O (11.1%) inter­actions. Hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of pyridyl ring A (atoms N1/C1–C5).

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯Cg1i 0.967 (15) 2.876 (15) 3.5715 (13) 129.8 (12)
C22—H22B⋯O1iv 0.964 (19) 2.598 (19) 3.5407 (19) 165.8 (14)
C22—H22C⋯O1v 0.959 (19) 2.536 (19) 3.4924 (16) 174.8 (15)
Symmetry codes: (i) -x+1, -y+1, -z+1; (iv) -x+1, -y+2, -z+2; (v) x-1, y, z.
[Figure 2]
Figure 2
A partial packing diagram showing two chains connnected by C—H⋯π(ring) inter­actions (green dashed lines). The C—HMthy⋯OCarbx (Mthy = methyl and Carbx = carboxyl­ate) hydrogen bonds are shown as black dashed lines.

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of the title com­pound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out by using CrystalExplorer (Version 17.5; Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). In the HS plotted over dnorm (Fig. 3[link]), the white surface indicates contacts with distances equal to the sum of the van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625-636.]). The bright-red spots appearing near atoms O1 and H22B and H22C indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/.]), as shown in Fig. 4[link]. The blue regions indicate the positive electrostatic potential (hydrogen-bond donors), while the red regions indicate the negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the ππ stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 5[link] clearly suggests that there are no ππ inter­actions in (I)[link]. The overall two-dimensional fingerprint plot (Fig. 6[link]a) and those delineated into H⋯H, H⋯C/C⋯H, H⋯N/N⋯H, H⋯O/O⋯H, C⋯C and C⋯N/N⋯C contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814.]) are illustrated in Figs. 6[link] (b)–(g), respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H contributing 39.7% to the overall crystal packing, which is reflected in Fig. 6[link](b) as widely scattered points of high density due to the large hydrogen content of the mol­ecule with the tip at de = di = 1.10 Å, due to the short inter­atomic H⋯H contacts (Table 2[link]). Due to the presence of C—H⋯π inter­actions, a 27.5% contribution to the HS arises from the H⋯C/C⋯H contacts (Table 2[link]) which are viewed as pairs of spikes in the fingerprint plot shown in Fig. 6[link](c) with the tips at de + di = 2.75 Å. The pair of scattered points of wings resulting in the fingerprint plots delineated into H⋯N/N⋯H (Fig. 6[link]d) contacts, with a 15.5% contribution to the HS, has a symmetrical distribution of points with the edges at de + di = 2.58 Å (Table 2[link]). The pair of characteristic wings resulting in the fingerprint plot shown in Fig. 6[link](e), with an 11.1% contribution to the HS, arises from the O⋯H/H⋯O contacts (Table 2[link]) and is viewed as pair of spikes with the tips at de + di = 2.42 Å. The C⋯C contacts (Fig. 6[link]f) have an arrow-shaped distribution of points with the tip at de = di = 13.50 Å. Finally, the tiny characteristic wings resulting in the fingerprint plots shown in Fig. 6[link]g, a 2.4% contribution to the HS, arises from the C⋯N/N⋯C contacts (Table 2[link]) and is viewed with the tip at de = di = 3.40 Å.

Table 2
Selected interatomic distances (Å)

O2⋯C3i 3.4089 (16) N4⋯H14viii 2.931 (18)
O1⋯H12ii 2.765 (16) C1⋯C6iii 3.4447 (17)
O1⋯H22A 2.573 (18) C1⋯C7iii 3.5272 (17)
O1⋯H22B 2.660 (18) C2⋯C17ix 3.4292 (18)
O1⋯H22Ciii 2.537 (19) C3⋯C3x 3.5516 (18)
O1⋯H22Biv 2.598 (18) C6⋯C11iii 3.3751 (16)
O1⋯H17 2.611 (14) C10⋯C20 3.3022 (16)
O2⋯H17v 2.773 (13) C11⋯C22vii 3.4630 (18)
O2⋯H19 2.462 (14) C14⋯C17viii 3.4960 (18)
N1⋯C9iii 3.4168 (15) C14⋯C16viii 3.4987 (18)
N2⋯C1v 3.4404 (16) C1⋯H19i 2.926 (16)
N4⋯C20 3.2459 (16) C6⋯H11iii 2.924 (15)
N4⋯C15 2.8825 (15) C7⋯H1v 2.988 (17)
N4⋯C16 3.4362 (16) C11⋯H22Avii 2.964 (18)
N1⋯H20iii 2.750 (15) C16⋯H14viii 2.891 (17)
N1⋯H7 2.553 (14) C17⋯H2ix 2.898 (18)
N2⋯H4vi 2.710 (17) C18⋯H2ix 2.822 (18)
N2⋯H4 2.511 (17) H3⋯H11vi 2.53 (2)
N3⋯H11 2.644 (13) H4⋯H4vi 2.43 (3)
N3⋯H22Avii 2.713 (17) H7⋯H20iii 2.43 (2)
N3⋯H3vi 2.644 (18) H16⋯H19iii 2.57 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) -x+1, -y+2, -z+2; (v) x-1, y, z; (vi) -x+1, -y, -z+1; (vii) x, y-1, z; (viii) -x+1, -y+1, -z+2; (ix) -x+2, -y+1, -z+1; (x) -x+2, -y, -z+1.
[Figure 3]
Figure 3
View of the three-dimensional Hirshfeld surface of the title com­pound plotted over dnorm in the range −0.1417 to 1.3796 a.u.
[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title com­pound plotted over the electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.
[Figure 5]
Figure 5
Hirshfeld surface of the title com­pound plotted over shape-index.
[Figure 6]
Figure 6
The full two-dimensional fingerprint plots for the title com­pound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯N/N⋯H, (e) H⋯O/O⋯H, (f) C⋯C and (g) C⋯N/N⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H, H⋯N/N⋯H and H⋯O/O⋯H inter­actions in Figs. 7[link](a)–(d), respectively.

[Figure 7]
Figure 7
The Hirshfeld surface representations with the function dnorm plotted onto the surface for (a) H⋯H, (b) H⋯C/C⋯H, (c) H⋯N/N⋯H and (d) H⋯O/O⋯H inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H, H⋯N/N⋯H and H⋯O/O⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. Inter­action energy calculations

The inter­molecular inter­action energies were calculated using the CE–B3LYP/6-31G(d,p) energy model available in CrystalExplorer (CE) (Version 17.5; Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]), where a cluster of mol­ecules would need to be generated by applying crystallographic symmetry operations with respect to a selected central mol­ecule within a default radius of 3.8 Å (Turner et al., 2014[Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249-4255.]). The total inter­molecular energy (Etot) is the sum of the electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange–repulsion (Erep) energies (Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.]), with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]). Hydrogen-bonding inter­action energies (in kJ mol−1) were calculated as −23.9 (Eele), −4.3 (Epol), −76.2 (Edis), 53.0 (Erep) and −62.0 (Etot) for the C22—H22C⋯O1 hydrogen-bonding inter­action, and −22.0 (Eele), −8.5 (Epol), −28.5 (Edis), 32.3 (Erep) and −34.3 (Etot) for the C22—H22B⋯O1 hydrogen-bonding inter­action.

6. DFT calculations

The optimized structure of the title com­pound, (I)[link], in the gas phase was generated theoretically via density functional theory (DFT) using the standard B3LYP functional and 6-311G(d,p) basis-set calculations (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) as implemented in GAUSSIAN09 (Frisch et al., 2009[Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]). The theoretical and experimental results are in good agreement (Table 3[link]). The highest-occupied mol­ecular orbital (HOMO), acting as an electron donor, and the lowest-unoccupied mol­ecular orbital (LUMO), acting as an electron acceptor, are very important parameters for quantum chemistry. When the energy gap is small, the mol­ecule is highly polarizable and has high chemical reactivity. The DFT calculations provide some important information on the reactivity and site selectivity of the mol­ecular framework. EHOMO and ELUMO clarify the inevitable charge exchange collaboration inside the studied material, and electronegativity (χ), hardness (η), potential (μ), electrophilicity (ω) and softness (σ) are all recorded in Table 4[link]. The significance of η and σ is to evaluate both the reactivity and stability. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 8[link]. The HOMO and LUMO are localized in the plane extending from the whole methyl 4-[3,6-bis­(pyridin-2-yl)pyridazin-4-yl]benzoate ring. The energy band gap [ΔE = ELUMOEHOMO] of the mol­ecule is about 1.8908 eV, and the frontier mol­ecular orbital (FMO) energies, i.e. EHOMO and ELUMO, are −4.3680 and −2.4772 eV, respectively.

Table 3
Comparison of selected (X-ray and DFT) geometric data (Å, °)

Bonds/angles X-ray B3LYP/6-311G(d,p)
O1—C21 1.2049 (14) 1.23831
O2—C21 1.3342 (15) 1.38677
O2—C22 1.4501 (14) 1.45892
N1—C1 1.3411 (16) 1.38974
N1—C5 1.3461 (15) 1.40690
N2—C6 1.3366 (15) 1.36917
N2—N3 1.3407 (14) 1.31753
N3—C9 1.3375 (14) 1.38785
N4—C14 1.3388 (17) 1.34410
N4—C10 1.3429 (15) 1.35601
C21—O2—C22 115.72 (9) 116.46416
C1—N1—C5 116.73 (10) 117.59335
C6—N2—N3 119.41 (9) 118.73596
C9—N3—N2 120.51 (9) 121.63356
C14—N4—C10 117.22 (11) 118.30113
N1—C5—C4 123.17 (11) 123.94848
N1—C5—C6 115.74 (10) 116.62957
N2—C6—C7 122.43 (10) 122.86465
N2—C6—C5 115.74 (10) 115.11012

Table 4
Calculated energies

Mol­ecular Energy (a.u.) (eV) Compound (I)
Total Energy TE (eV) −33114.5851
EHOMO (eV) −4.3680
ELUMO (eV) −2.4772
Gap ΔE (eV) 1.8908
Dipole moment μ (Debye) 5.0683
Ionization potential I (eV) 4.3680
Electron affinity A 2.4772
Electronegativity χ 3.4226
Hardness η 0.9454
Electrophilicity index ω 6.1953
Softness σ 1.0577
Fraction of electron transferred ΔN 1.8920
[Figure 8]
Figure 8
The energy band gap of the title com­pound.

7. Database survey

A 4-[(prop-2-en-1-yl­oxy)meth­yl]phenyl analogue has been reported (Filali et al., 2019a[Filali, M., Sebbar, N. K., Hökelek, T., Mague, J. T., Chakroune, S., Ben-Tama, A. & El Hadrami, E. M. (2019a). Acta Cryst. E75, 1321-1326.]). Three other metal com­plexes coordinated by 3,6-bis­(pyridin-2-yl)pyridazine have also been reported, namely aqua­bis­[3,6-bis­(pyridin-2-yl)pyridazine-κ2N1,N6]copper(II) bis­(tri­fluoro­methane­sulfonate) (Showrilu et al., 2017[Showrilu, K., Rajarajan, K., Martin Britto Dhas, S. A. & Athimoolam, S. (2017). IUCrData, 2, x171142.]), tetra­kis­[μ-3,6-di(pyridin-2-yl)pyridazine]bis­(μ-hydroxo)bis­(μ-aqua)­tetra­nickel(II) hexa­nitrate tetra­deca­hydrate (Marino et al., 2019[Marino, N., Bruno, R., Bentama, A., Pascual-Álvarez, A., Lloret, F., Julve, M. & De Munno, G. (2019). CrystEngComm, 21, 917-924.]) and catena-[[μ2-3,6-bis(pyridin-2-yl)pyridazine]bis­(μ-2-azido)­dizaidodicopper monohydrate] (Mastropietro et al., 2013[Mastropietro, T. F., Marino, N., Armentano, D., De Munno, G., Yuste, C., Lloret, F. & Julve, M. (2013). Cryst. Growth Des. 13, 270-281.]).

8. Synthesis and crystallization

3,6-Bis(pyridin-2-yl)-1,2,4,5-tetra­zine (4 mmol) was dissolved in toluene (20 ml), and then 1 equiv. of methyl 4-ethynylbenzoate was added and the reaction mixture was stirred and refluxed at temperatures between 413 and 453 K. The solvent was then evaporated. The product obtained was separated by chromatography on a column of silica gel. The isolated solid was recrystallized from hexa­ne–di­chloro­methane (1:1 v/v) to afford colourless crystals (yield 92%; m.p. 449 K).

9. Refinement

The experimental details including the crystal data, data collection and refinement are summarized in Table 5[link]. H atoms were located in a difference Fourier map and refined freely.

Table 5
Experimental details

Crystal data
Chemical formula C22H16N4O2
Mr 368.39
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 6.0464 (1), 11.7175 (3), 13.2931 (3)
α, β, γ (°) 95.735 (1), 95.813 (1), 101.780 (1)
V3) 910.16 (3)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.72
Crystal size (mm) 0.26 × 0.12 × 0.07
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.85, 0.95
No. of measured, independent and observed [I > 2σ(I)] reflections 7056, 3426, 3139
Rint 0.022
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.02
No. of reflections 3426
No. of parameters 318
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.23, −0.17
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Bruker, 2016[Bruker (2016). APEX3, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Bruker, 2016).

Methyl 4-[3,6-bis(pyridin-2-yl)pyridazin-4-yl]benzoate top
Crystal data top
C22H16N4O2Z = 2
Mr = 368.39F(000) = 384
Triclinic, P1Dx = 1.344 Mg m3
a = 6.0464 (1) ÅCu Kα radiation, λ = 1.54178 Å
b = 11.7175 (3) ÅCell parameters from 6104 reflections
c = 13.2931 (3) Åθ = 3.4–74.7°
α = 95.735 (1)°µ = 0.72 mm1
β = 95.813 (1)°T = 150 K
γ = 101.780 (1)°Column, colourless
V = 910.16 (3) Å30.26 × 0.12 × 0.07 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3426 independent reflections
Radiation source: INCOATEC IµS micro-focus source3139 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.022
Detector resolution: 10.4167 pixels mm-1θmax = 74.7°, θmin = 3.4°
ω scansh = 67
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1413
Tmin = 0.85, Tmax = 0.95l = 1416
7056 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036All H-atom parameters refined
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0539P)2 + 0.2048P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3426 reflectionsΔρmax = 0.23 e Å3
318 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dual spaceExtinction coefficient: 0.0087 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.62576 (15)0.94764 (7)0.85874 (8)0.0425 (3)
O20.24890 (14)0.87662 (7)0.83965 (7)0.0313 (2)
N11.02078 (16)0.30995 (9)0.51060 (7)0.0290 (2)
N20.52919 (17)0.16735 (8)0.61309 (8)0.0294 (2)
N30.38764 (17)0.18823 (8)0.68071 (8)0.0292 (2)
N40.32230 (18)0.39009 (9)0.87963 (8)0.0328 (2)
C11.1730 (2)0.28112 (11)0.45151 (9)0.0319 (3)
H11.308 (3)0.3455 (14)0.4491 (12)0.041 (4)*
C21.1492 (2)0.17134 (12)0.39688 (10)0.0352 (3)
H21.270 (3)0.1577 (15)0.3566 (14)0.053 (5)*
C30.9553 (2)0.08688 (11)0.40089 (10)0.0361 (3)
H30.929 (3)0.0079 (15)0.3616 (13)0.047 (4)*
C40.7948 (2)0.11428 (11)0.46092 (9)0.0325 (3)
H40.656 (3)0.0587 (15)0.4647 (12)0.047 (4)*
C50.83537 (19)0.22568 (10)0.51552 (8)0.0263 (2)
C60.67584 (19)0.25744 (10)0.58616 (8)0.0258 (2)
C70.67982 (19)0.37445 (10)0.62177 (9)0.0264 (2)
H70.783 (2)0.4381 (13)0.5971 (11)0.031 (3)*
C80.53152 (19)0.39724 (9)0.68926 (8)0.0253 (2)
C90.38988 (19)0.29823 (10)0.71976 (8)0.0257 (2)
C100.2376 (2)0.30746 (9)0.79999 (9)0.0267 (2)
C110.0258 (2)0.23148 (10)0.79314 (9)0.0297 (3)
H110.027 (3)0.1701 (13)0.7335 (12)0.037 (4)*
C120.1065 (2)0.24211 (11)0.87157 (10)0.0356 (3)
H120.260 (3)0.1895 (14)0.8668 (12)0.042 (4)*
C130.0224 (3)0.32801 (12)0.95334 (11)0.0398 (3)
H130.111 (3)0.3385 (15)1.0109 (14)0.050 (4)*
C140.1922 (2)0.39898 (11)0.95456 (10)0.0386 (3)
H140.258 (3)0.4584 (14)1.0115 (13)0.042 (4)*
C150.51538 (18)0.51941 (9)0.72438 (8)0.0245 (2)
C160.70032 (19)0.59753 (10)0.78141 (9)0.0264 (2)
H160.839 (2)0.5708 (12)0.7993 (11)0.032 (3)*
C170.68255 (19)0.71046 (10)0.81609 (9)0.0273 (3)
H170.807 (2)0.7636 (13)0.8570 (11)0.033 (4)*
C180.47906 (18)0.74593 (9)0.79418 (8)0.0247 (2)
C190.29575 (19)0.66908 (10)0.73420 (9)0.0277 (3)
H190.157 (3)0.6959 (12)0.7180 (11)0.032 (4)*
C200.3147 (2)0.55664 (10)0.69887 (9)0.0290 (3)
H200.188 (3)0.5009 (13)0.6556 (12)0.039 (4)*
C210.46364 (19)0.86730 (10)0.83384 (9)0.0271 (3)
C220.2179 (2)0.99301 (11)0.87423 (12)0.0371 (3)
H22A0.289 (3)1.0486 (15)0.8283 (13)0.046 (4)*
H22B0.287 (3)1.0160 (15)0.9439 (14)0.050 (5)*
H22C0.056 (3)0.9847 (15)0.8673 (13)0.051 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0280 (5)0.0261 (4)0.0677 (7)0.0017 (3)0.0007 (4)0.0079 (4)
O20.0264 (4)0.0246 (4)0.0426 (5)0.0066 (3)0.0043 (3)0.0004 (3)
N10.0270 (5)0.0304 (5)0.0283 (5)0.0045 (4)0.0007 (4)0.0036 (4)
N20.0324 (5)0.0247 (5)0.0304 (5)0.0045 (4)0.0059 (4)0.0012 (4)
N30.0324 (5)0.0245 (5)0.0303 (5)0.0051 (4)0.0064 (4)0.0019 (4)
N40.0401 (6)0.0282 (5)0.0282 (5)0.0031 (4)0.0064 (4)0.0018 (4)
C10.0281 (6)0.0389 (6)0.0290 (6)0.0067 (5)0.0029 (4)0.0080 (5)
C20.0381 (7)0.0427 (7)0.0303 (6)0.0165 (5)0.0098 (5)0.0089 (5)
C30.0479 (8)0.0306 (6)0.0320 (6)0.0125 (5)0.0098 (5)0.0021 (5)
C40.0373 (7)0.0275 (6)0.0319 (6)0.0046 (5)0.0072 (5)0.0017 (5)
C50.0271 (6)0.0260 (5)0.0256 (6)0.0060 (4)0.0008 (4)0.0033 (4)
C60.0254 (6)0.0254 (5)0.0252 (5)0.0047 (4)0.0007 (4)0.0016 (4)
C70.0249 (6)0.0237 (5)0.0287 (6)0.0026 (4)0.0005 (4)0.0028 (4)
C80.0245 (5)0.0238 (5)0.0260 (5)0.0048 (4)0.0018 (4)0.0017 (4)
C90.0261 (6)0.0241 (5)0.0258 (5)0.0046 (4)0.0000 (4)0.0023 (4)
C100.0305 (6)0.0232 (5)0.0273 (6)0.0074 (4)0.0031 (4)0.0049 (4)
C110.0294 (6)0.0261 (5)0.0339 (6)0.0076 (4)0.0024 (5)0.0040 (5)
C120.0304 (7)0.0352 (6)0.0436 (7)0.0084 (5)0.0089 (5)0.0090 (5)
C130.0460 (8)0.0393 (7)0.0382 (7)0.0124 (6)0.0165 (6)0.0066 (5)
C140.0496 (8)0.0340 (6)0.0312 (6)0.0060 (6)0.0102 (5)0.0009 (5)
C150.0256 (6)0.0221 (5)0.0253 (5)0.0032 (4)0.0042 (4)0.0035 (4)
C160.0222 (6)0.0258 (5)0.0307 (6)0.0050 (4)0.0019 (4)0.0038 (4)
C170.0232 (6)0.0245 (5)0.0313 (6)0.0014 (4)0.0001 (4)0.0014 (4)
C180.0249 (6)0.0218 (5)0.0268 (5)0.0033 (4)0.0039 (4)0.0031 (4)
C190.0226 (6)0.0263 (5)0.0333 (6)0.0051 (4)0.0007 (4)0.0029 (4)
C200.0248 (6)0.0251 (5)0.0336 (6)0.0021 (4)0.0021 (4)0.0004 (4)
C210.0252 (6)0.0253 (5)0.0299 (6)0.0045 (4)0.0015 (4)0.0026 (4)
C220.0339 (7)0.0291 (6)0.0484 (8)0.0116 (5)0.0040 (6)0.0034 (6)
Geometric parameters (Å, º) top
O1—C211.2049 (14)C9—C101.4876 (16)
O2—C211.3342 (15)C10—C111.3914 (17)
O2—C221.4501 (14)C11—C121.3877 (18)
N1—C11.3411 (16)C11—H110.994 (15)
N1—C51.3461 (15)C12—C131.3833 (19)
N2—C61.3366 (15)C12—H120.996 (16)
N2—N31.3407 (14)C13—C141.389 (2)
N3—C91.3375 (14)C13—H130.989 (18)
N4—C141.3388 (17)C14—H140.968 (16)
N4—C101.3429 (15)C15—C161.3909 (15)
C1—C21.3854 (18)C15—C201.3926 (16)
C1—H10.998 (16)C16—C171.3861 (15)
C2—C31.3804 (19)C16—H160.967 (15)
C2—H20.979 (18)C17—C181.3899 (16)
C3—C41.3837 (18)C17—H170.954 (15)
C3—H30.990 (16)C18—C191.3946 (15)
C4—C51.3909 (16)C18—C211.4911 (15)
C4—H40.962 (17)C19—C201.3851 (16)
C5—C61.4869 (16)C19—H190.967 (15)
C6—C71.3997 (15)C20—H200.987 (16)
C7—C81.3759 (16)C22—H22A1.000 (18)
C7—H70.975 (15)C22—H22B0.964 (19)
C8—C91.4151 (16)C22—H22C0.959 (19)
C8—C151.4864 (14)
O2···C3i3.4089 (16)N4···H14viii2.931 (18)
O1···H12ii2.765 (16)C1···C6iii3.4447 (17)
O1···H22A2.573 (18)C1···C7iii3.5272 (17)
O1···H22B2.660 (18)C2···C17ix3.4292 (18)
O1···H22Ciii2.537 (19)C3···C3x3.5516 (18)
O1···H22Biv2.598 (18)C6···C11iii3.3751 (16)
O1···H172.611 (14)C10···C203.3022 (16)
O2···H17v2.773 (13)C11···C22vii3.4630 (18)
O2···H192.462 (14)C14···C17viii3.4960 (18)
N1···C9iii3.4168 (15)C14···C16viii3.4987 (18)
N2···C1v3.4404 (16)C1···H19i2.926 (16)
N4···C203.2459 (16)C6···H11iii2.924 (15)
N4···C152.8825 (15)C7···H1v2.988 (17)
N4···C163.4362 (16)C11···H22Avii2.964 (18)
N1···H20iii2.750 (15)C16···H14viii2.891 (17)
N1···H72.553 (14)C17···H2ix2.898 (18)
N2···H4vi2.710 (17)C18···H2ix2.822 (18)
N2···H42.511 (17)H3···H11vi2.53 (2)
N3···H112.644 (13)H4···H4vi2.43 (3)
N3···H22Avii2.713 (17)H7···H20iii2.43 (2)
N3···H3vi2.644 (18)H16···H19iii2.57 (2)
C21—O2—C22115.72 (9)C10—C11—H11120.0 (9)
C1—N1—C5116.73 (10)C13—C12—C11118.62 (12)
C6—N2—N3119.41 (9)C13—C12—H12121.9 (9)
C9—N3—N2120.51 (9)C11—C12—H12119.5 (9)
C14—N4—C10117.22 (11)C12—C13—C14118.80 (12)
N1—C1—C2123.85 (11)C12—C13—H13121.2 (10)
N1—C1—H1114.9 (9)C14—C13—H13120.0 (10)
C2—C1—H1121.3 (9)N4—C14—C13123.44 (12)
C3—C2—C1118.61 (11)N4—C14—H14115.5 (10)
C3—C2—H2123.1 (10)C13—C14—H14121.0 (9)
C1—C2—H2118.3 (10)C16—C15—C20119.63 (10)
C2—C3—C4118.80 (12)C16—C15—C8120.52 (10)
C2—C3—H3121.6 (10)C20—C15—C8119.84 (10)
C4—C3—H3119.6 (10)C17—C16—C15120.28 (10)
C3—C4—C5118.79 (12)C17—C16—H16120.5 (8)
C3—C4—H4121.6 (10)C15—C16—H16119.1 (8)
C5—C4—H4119.6 (10)C16—C17—C18119.99 (10)
N1—C5—C4123.17 (11)C16—C17—H17120.6 (9)
N1—C5—C6115.74 (10)C18—C17—H17119.4 (9)
C4—C5—C6121.07 (10)C17—C18—C19119.84 (10)
N2—C6—C7122.43 (10)C17—C18—C21118.84 (10)
N2—C6—C5115.74 (10)C19—C18—C21121.31 (10)
C7—C6—C5121.82 (10)C20—C19—C18120.00 (10)
C8—C7—C6118.68 (10)C20—C19—H19121.2 (8)
C8—C7—H7121.2 (8)C18—C19—H19118.8 (8)
C6—C7—H7120.1 (8)C19—C20—C15120.17 (10)
C7—C8—C9116.35 (10)C19—C20—H20121.7 (9)
C7—C8—C15121.43 (10)C15—C20—H20118.2 (9)
C9—C8—C15122.17 (10)O1—C21—O2123.69 (10)
N3—C9—C8122.45 (10)O1—C21—C18124.18 (10)
N3—C9—C10114.54 (10)O2—C21—C18112.13 (9)
C8—C9—C10122.98 (10)O2—C22—H22A108.3 (9)
N4—C10—C11123.19 (11)O2—C22—H22B109.6 (10)
N4—C10—C9115.56 (10)H22A—C22—H22B111.1 (14)
C11—C10—C9121.21 (10)O2—C22—H22C104.1 (10)
C12—C11—C10118.71 (11)H22A—C22—H22C111.1 (14)
C12—C11—H11121.3 (9)H22B—C22—H22C112.3 (15)
C6—N2—N3—C91.13 (16)N3—C9—C10—C1137.56 (15)
C5—N1—C1—C20.15 (17)C8—C9—C10—C11144.40 (12)
N1—C1—C2—C31.69 (19)N4—C10—C11—C120.83 (18)
C1—C2—C3—C41.34 (19)C9—C10—C11—C12178.28 (10)
C2—C3—C4—C50.40 (19)C10—C11—C12—C130.11 (18)
C1—N1—C5—C41.75 (17)C11—C12—C13—C141.0 (2)
C1—N1—C5—C6176.55 (10)C10—N4—C14—C130.2 (2)
C3—C4—C5—N12.05 (19)C12—C13—C14—N41.1 (2)
C3—C4—C5—C6176.17 (11)C7—C8—C15—C1664.14 (15)
N3—N2—C6—C73.53 (17)C9—C8—C15—C16118.48 (12)
N3—N2—C6—C5176.55 (9)C7—C8—C15—C20114.96 (12)
N1—C5—C6—N2162.08 (10)C9—C8—C15—C2062.42 (15)
C4—C5—C6—N216.27 (16)C20—C15—C16—C172.49 (17)
N1—C5—C6—C718.00 (16)C8—C15—C16—C17178.41 (10)
C4—C5—C6—C7163.65 (11)C15—C16—C17—C180.21 (17)
N2—C6—C7—C81.90 (17)C16—C17—C18—C192.31 (17)
C5—C6—C7—C8178.18 (10)C16—C17—C18—C21179.05 (10)
C6—C7—C8—C91.90 (16)C17—C18—C19—C201.71 (17)
C6—C7—C8—C15175.63 (10)C21—C18—C19—C20179.68 (11)
N2—N3—C9—C82.85 (17)C18—C19—C20—C150.99 (18)
N2—N3—C9—C10175.20 (10)C16—C15—C20—C193.08 (17)
C7—C8—C9—N34.30 (16)C8—C15—C20—C19177.81 (10)
C15—C8—C9—N3173.21 (10)C22—O2—C21—O12.69 (18)
C7—C8—C9—C10173.58 (10)C22—O2—C21—C18177.94 (10)
C15—C8—C9—C108.91 (17)C17—C18—C21—O121.65 (18)
C14—N4—C10—C110.80 (18)C19—C18—C21—O1156.97 (13)
C14—N4—C10—C9178.38 (11)C17—C18—C21—O2157.72 (10)
N3—C9—C10—N4140.07 (11)C19—C18—C21—O223.66 (15)
C8—C9—C10—N437.96 (15)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x+1, y+2, z+2; (v) x1, y, z; (vi) x+1, y, z+1; (vii) x, y1, z; (viii) x+1, y+1, z+2; (ix) x+2, y+1, z+1; (x) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the pyridyl ring, A (N1/C1–C5).
D—H···AD—HH···AD···AD—H···A
C19—H19···Cg1i0.967 (15)2.876 (15)3.5715 (13)129.8 (12)
C22—H22B···O1iv0.964 (19)2.598 (19)3.5407 (19)165.8 (14)
C22—H22C···O1v0.959 (19)2.536 (19)3.4924 (16)174.8 (15)
Symmetry codes: (i) x+1, y+1, z+1; (iv) x+1, y+2, z+2; (v) x1, y, z.
Table 4. Comparison of the selected (X-ray and DFT) geometric data (Å, °). top
Bonds/anglesX-rayB3LYP/6-311G(d,p)
O1—C211.2049 (14)1.23831
O2—C211.3342 (15)1.38677
O2—C221.4501 (14)1.45892
N1—C11.3411 (16)1.38974
N1—C51.3461 (15)1.40690
N2—C61.3366 (15)1.36917
N2—N31.3407 (14)1.31753
N3—C91.3375 (14)1.38785
N4—C141.3388 (17)1.34410
N4—C101.3429 (15)1.35601
C21—O2—C22115.72 (9)116.46416
C1—N1—C5116.73 (10)117.59335
C6—N2—N3119.41 (9)118.73596
C9—N3—N2120.51 (9)121.63356
C14—N4—C10117.22 (11)118.30113
N1—C5—C4123.17 (11)123.94848
N1—C5—C6115.74 (10)116.62957
N2—C6—C7122.43 (10)122.86465
N2—C6—C5115.74 (10)115.11012
Table 5. Calculated energies. top
Molecular Energy (a.u.) (eV)Compound (I)
Total Energy TE (eV)-33114.5851
EHOMO (eV)-4.3680
ELUMO (eV)-2.4772
Gap ΔE (eV)1.8908
Dipole moment µ (Debye)5.0683
Ionisation potential I (eV)4.3680
Electron affinity A2.4772
Electro negativity χ3.4226
Hardness η0.9454
Electrophilicity index ω6.1953
Softness σ1.0577
Fraction of electron transferred ΔN1.8920
 

Acknowledgements

The support of NSF-MRI for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

Funding information

Funding for this research was provided by: Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004 to TH); NSF-MRI (grant No. 1228232).

References

First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFilali, M., Elmsellem, H., Hökelek, T., El-Ghayoury, A., Stetsiuk, O., El Hadrami, E. M. & Ben-Tama, A. (2019b). Acta Cryst. E75, 1169–1174.  CSD CrossRef IUCr Journals Google Scholar
First citationFilali, M., Sebbar, N. K., Hökelek, T., Mague, J. T., Chakroune, S., Ben-Tama, A. & El Hadrami, E. M. (2019a). Acta Cryst. E75, 1321–1326.  CSD CrossRef IUCr Journals Google Scholar
First citationFrisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/Google Scholar
First citationKaim, W. & Kohlmann, S. (1987). Inorg. Chem. 26, 68–77.  CrossRef CAS Web of Science Google Scholar
First citationKhadiri, A., Saddik, R., Bekkouche, K., Aouniti, A., Hammouti, B., Benchat, N., Bouachrine, M. & Solmaz, R. (2016). J. Taiwan Inst. Chem. Eng. 58, 552–564.  Web of Science CrossRef CAS Google Scholar
First citationKore, A. R., Yang, B. & Srinivasan, B. (2015). Tetrahedron Lett. 56, 808–811.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMarino, N., Bruno, R., Bentama, A., Pascual-Álvarez, A., Lloret, F., Julve, M. & De Munno, G. (2019). CrystEngComm, 21, 917–924.  Web of Science CSD CrossRef CAS Google Scholar
First citationMastropietro, T. F., Marino, N., Armentano, D., De Munno, G., Yuste, C., Lloret, F. & Julve, M. (2013). Cryst. Growth Des. 13, 270–281.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShowrilu, K., Rajarajan, K., Martin Britto Dhas, S. A. & Athimoolam, S. (2017). IUCrData, 2, x171142.  Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationTsukada, N., Sato, T., Mori, H., Sugawara, S., Kabuto, C., Miyano, S. & Inoue, Y. (2001). J. Organomet. Chem. 627, 121–126.  Web of Science CSD CrossRef CAS Google Scholar
First citationTurner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationTurner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738.  Web of Science CrossRef CAS Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds