research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, synthesis and thermal properties of bis­­(aceto­nitrile-κN)bis­­(4-benzoyl­pyridine-κN)bis­­(iso­thio­cyanato-κN)nickel(II)

aInstitut für Anorganische Chemie, Universität Kiel, Max-Eyth. Strasse 2, 241128 Kiel, Germany
*Correspondence e-mail: cwellm@ac.uni-kiel.de

Edited by A. J. Lough, University of Toronto, Canada (Received 30 September 2019; accepted 9 October 2019; online 22 October 2019)

In the crystal structure of the title com­pound, [Ni(NCS)2(CH3CN)2(C12H9NO)2] or Ni(NCS)2(4-benzoyl­pyridine)2(aceto­nitrile)2, the NiII ions are octa­hedrally coordinated by the N atoms of two thio­cyanate anions, two 4-benzoyl­pyridine ligands and two aceto­nitrile mol­ecules into discrete com­plexes that are located on centres of inversion. In the crystal, the discrete com­plexes are linked by centrosymmetric pairs of weak C—H⋯S hydrogen bonds into chains. Thermogravimetric measurements prove that, upon heating, the title com­plex loses the two aceto­nitrile ligands and transforms into a new crystalline modification of the chain com­pound [Ni(NCS)2(4-benzoyl­pyridine)2], which is different from that of the corresponding CoII, NiII and CdII coordination polymers reported in the literature. IR spectroscopic investigations indicate the presence of bridging thio­cyanate anions but the powder pattern cannot be indexed and, therefore, this structure is unknown.

1. Chemical context

In most cases, the synthesis of new coordination com­pounds is performed in solution, which in some cases leads to inhomogenous samples or some, e.g. metastable com­pounds, formed by kinetic control which can easily be overlooked. There are, however, some alternative routes, like synthesis via mol­ecular milling, molten flux synthesis, solid-gas reactions or thermal decom­position of suitable precursor com­pounds (Braga et al., 2005[Braga, D., Curzi, M., Grepioni, F. & Polito, M. (2005). Chem. Commun. pp. 2915-2917.], 2006[Braga, D., Giaffreda, S. L., Grepioni, F., Pettersen, A., Maini, L., Curzi, M. & Polito, M. (2006). Dalton Trans. pp. 1249-1263.]; Näther et al., 2013[Näther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696-2714.]; Zurawski et al., 2012[Zurawski, A., Rybak, J. C., Meyer, L. V., Matthes, P. R., Stepanenko, V., Dannenbauer, N., Würthner, F. & Müller-Buschbaum, K. (2012). Dalton Trans. 41, 4067-4078.]; Höller et al., 2008[Höller, C. J. & Müller-Buschbaum, K. (2008). Inorg. Chem. 47, 10141-10149.]; Den et al., 2019[Den, T., Usov, P. M., Kim, J., Hashizume, D., Ohtsu, H. & Kawano, M. (2019). Chem. Eur. J. 25, 11512-11520.]). These methods can have several advantages because, in most cases, they are irreversible, the products are obtained in qu­anti­tative yield, no solvent is needed and sometimes metastable isomeric or polymorphic modifications can be obtained. This is especially the case for thio­cyanate coordination polymers prepared by thermal decom­position of suitable precursor com­pounds that consist of com­plexes in which the anionic ligands are only terminally bonded and additionally coordinated by neutral N-donor co-ligands (Wöhlert et al., 2014[Wöhlert, S., Runčevski, T., Dinnebier, T., Ebbinghaus, S. G. & Näther, C. (2014). Cryst. Growth Des. 14, 1902-1913.]; Werner et al., 2015[Werner, J., Runčevski, T., Dinnebier, R., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015). Eur. J. Inorg. Chem. 2015, 3236-3245.]). Upon heating, the co-ligands are stepwise removed, leading to new com­pounds in which the metal cations are linked by thio­cyanate anions into chains or layers (Neumann et al., 2019[Neumann, T., Rams, M., Tomkowicz, Z., Jess, I. & Näther, C. (2019). Chem. Commun. 55, 2652-2655.]). In this context, we have reported on coordination polymers based on 4-benzoyl­pyridine. In [M(NCS)2(4-benzoyl­pyri­dine)2] (M = Co and Ni) prepared in solution, a rare ciscistrans coordination is observed, in which the thio­cyanate N and S atoms are each in cis positions, whereas the co-ligand is trans (Rams et al., 2017[Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 3232-3243.]; Jochim et al., 2018[Jochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. 2018, 4779-4789.]). This is in contrast to all other linear chain com­pounds, in which the coordinating atoms always show an all-trans coordination. Surprisingly, this coordination is found in [Cd(NCS)2(4-benzoyl­pyridine)2] (Neumann et al., 2018[Neumann, T., Jess, I., dos Santos Cunha, C., Terraschke, H. & Näther, C. (2018). Inorg. Chim. Acta, 478, 15-24.]). Therefore, the question arose if this form can be prepared with Ni by thermal decom­position using a suitable NiII precursor com­pound. One discrete com­plex with methanol has already been reported in the literature, but this com­pound cannot be prepared pure (Wellm & Näther, 2019a[Wellm, C. & Näther, C. (2019a). Acta Cryst. E75, 299-303.]). In the course of this project, we were able to prepare crystals from aceto­nitrile, which were characterized by single-crystal structure analysis, which proves that the title com­pound consists of discrete com­plexes with the com­position Ni(NCS)2(4-benzoyl­pyridine)2(aceto­nitrile)2. This com­pound can be prepared pure and is a promising precursor to prepare an NiII com­pound with bridging thio­cyanate anions (Fig. S1 in the supporting information). Measurements using differential thermoanalysis and thermogravimetry (DTA–TG) prove that on heating two mass steps are observed that are accom­panied by endothermic events in the DTA curve (Fig. 1[link]). The experimental mass loss of 12.8% in the first step is in reasonable agreement with that calculated for the removal of two aceto­nitrile mol­ecules of 13.1%, indicating the formation of a com­pound with the desired com­position (Fig. 1[link]). If the X-ray powder diffraction pattern of the residue formed after the first mass loss is com­pared with that calculated for [Ni(NCS)2(4-benzoyl­pyridine)2] reported in the literature, it is obvious that a crystalline phase has been formed (Fig. S1 in the supporting information). This new form is also different from [Cd(NCS)2(4-benzoyl­pyridine)2], indicating that a new isomeric or polymorphic form is obtained. The value of the CN stretching vibration of this form (2113 cm−1) is very different from that of the title com­pound (2080 cm−1) but com­parable to that observed in the known modification of [Ni(NCS)2(4-benzoyl­pyridine)2] (2121 cm−1) reported in the literature (Jochim et al., 2018[Jochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. 2018, 4779-4789.]), which indicates a similar thio­cyanate coordination (Figs. S2, S3 and S4 in the supporting information). However, this powder pattern cannot be indexed and thus the structure of this new form is unknown.

[Scheme 1]
[Figure 1]
Figure 1
DTG, TG and DTA curve of the title com­pound with the experimental mass loss in % and the peak temperatures in °C. The calculated mass loss of two MeCN mol­ecules amounts to 13.2% and the loss of two 4-benzoyl­pyridine ligands corresponds to 58.8%.

2. Structural commentary

The asymmetric unit of the title com­pound consists of one NiII ion that is located on a centre of inversion, as well as one thio­cyanate anion, one 4-benzoyl­pyridine co-ligand and one aceto­nitrile ligand that occupy general positions (Fig. 2[link]). The NiII ions are sixfold coordinated by the N atoms of two terminal thio­cyanate anions, two 4-benzoyl­pyridine and two aceto­nitrile ligands (Fig. 2[link]). The Ni—NCS bond length to the negatively charged anionic ligands of 2.038 (3) Å is shorter than the Ni—N(pyridine) and Ni—NCMe bond lengths of 2.108 (2) and 2.108 (2) Å, respectively (Table 1[link]). The bond angles deviate only slightly from ideal values, which shows that the octa­hedra are only slightly distorted (Table 1[link]). This is also obvious from the octa­hedral angle variance of 0.71 and the quadratic elongation of 1.0006 calculated according to a procedure published by Robinson et al. (1971[Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567-570.]). The dihedral angle between the carbonyl plane (C13/C16/C17/O11) and that of the phenyl (C17–C22) ring is 22.2 (2)°, and that between the planes of the pyridine ring (N11/C11–15) and the carbonyl group (C13/C16/C17/O11) is 33.7 (2)°, which shows that the 4-benzoyl­pyridine ligand is not coplanar.

Table 1
Selected geometric parameters (Å, °)

Ni1—N1i 2.038 (3) Ni1—N2i 2.093 (2)
Ni1—N1 2.038 (3) Ni1—N11i 2.108 (2)
Ni1—N2 2.093 (2) Ni1—N11 2.108 (2)
       
N1i—Ni1—N1 180.0 N1i—Ni1—N11 89.97 (9)
N1i—Ni1—N2 91.36 (9) N1—Ni1—N11 90.03 (9)
N1—Ni1—N2 88.64 (9) N2—Ni1—N11 89.69 (8)
N1i—Ni1—N2i 88.64 (9) N2i—Ni1—N11 90.31 (8)
N1—Ni1—N2i 91.36 (9) N11i—Ni1—N11 180.0
N2—Ni1—N2i 180.0 C1—N1—Ni1 163.8 (2)
N1i—Ni1—N11i 90.03 (9) C15—N11—Ni1 121.05 (18)
N1—Ni1—N11i 89.97 (9) C11—N11—Ni1 121.64 (17)
N2—Ni1—N11i 90.31 (8) C2—N2—Ni1 171.5 (2)
N2i—Ni1—N11i 89.69 (8)    
Symmetry code: (i) -x+2, -y+1, -z+2.
[Figure 2]
Figure 2
The mol­ecular structure of the title com­pound with labelling and displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) −x + 2, −y + 1, −z + 2.]

3. Supra­molecular features

The discrete com­plexes are arranged into columns that proceed along the crystallographic a axis (Fig. 3[link]). Along the b axis they are linked into chains by centrosymmetric pairs of weak C—H⋯S hydrogen bonds between the aceto­nitrile H atoms and the thio­cyanate S atoms (Fig. 3[link] and Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3B⋯S1ii 0.98 2.98 3.662 (3) 127
Symmetry code: (ii) -x+2, -y+2, -z+2.
[Figure 3]
Figure 3
Part of the crystal structure of the title com­pound, viewed along the crystallographic a axis, and with inter­molecular C—H⋯S hydrogen bonding shown as dashed lines.

4. Database survey

There are already some com­pounds reported in the Cam­bridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) that consist of transition-metal thio­cyanates and 4-benzoyl­pyridine ligands. These are Zn(NCS)2(4-benzoyl­pyridine)2 with tetra­hedrally coordinated ZnII cations (Neumann et al., 2018[Neumann, T., Jess, I., dos Santos Cunha, C., Terraschke, H. & Näther, C. (2018). Inorg. Chim. Acta, 478, 15-24.]) and Cu(NCS)2(4-benzoyl­pyridine)2 in which the CuII cations are square-planar coordinated (Bai et al., 2011[Bai, Y., Zheng, G.-S., Dang, D.-B., Zheng, Y.-N. & Ma, P.-T. (2011). Spectrochim. Acta A Mol. Biomol. Spectrosc. 79, 1338-1344.]). There are also a number of discrete com­plexes with an octa­hedral metal coordination and terminal thio­cyanate anions (Drew et al., 1985[Drew, M. G. B., Gray, N. I., Cabral, M. F. & Cabral, J. deO. (1985). Acta Cryst. C41, 1434-1437.]; Soliman et al., 2014[Soliman, S. M., Elzawy, Z. B., Abu-Youssef, M. A. M., Albering, J., Gatterer, K., Öhrström, L. & Kettle, S. F. A. (2014). Acta Cryst. B70, 115-125.]; Wellm & Näther, 2018[Wellm, C. & Näther, C. (2018). Acta Cryst. E74, 1899-1902.], 2019a[Wellm, C. & Näther, C. (2019a). Acta Cryst. E75, 299-303.],b[Wellm, C. & Näther, C. (2019b). Acta Cryst. E75, 917-920.]; Neumann et al., 2018[Neumann, T., Jess, I., dos Santos Cunha, C., Terraschke, H. & Näther, C. (2018). Inorg. Chim. Acta, 478, 15-24.]; Suckert et al., 2017[Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Acta Cryst. E73, 365-368.]). Finally, there are several coordination polymers with the com­position [M(NCS)2(4-benzoyl­pyridine)2]n (M = CdII, NiII and CoII), in which the cations are linked by pairs of μ-1,3-coordinating thio­cyanate anions into chains (Neumann et al., 2018[Neumann, T., Jess, I., dos Santos Cunha, C., Terraschke, H. & Näther, C. (2018). Inorg. Chim. Acta, 478, 15-24.]; Rams et al., 2017[Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 3232-3243.]; Jochim et al., 2018[Jochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. 2018, 4779-4789.]).

5. Synthesis and crystallization

Ba(SCN)2·3H2O and 4-benzoylpyridine were purchased from Alfa Aesar. Ni(SO4)·6H2O was purchased from Merck. All solvents and reactants were used without further purification.

Ni(NCS)2 was prepared by the reaction of equimolar amounts of Ni(SO4)·6H2O and Ba(SCN)2·3H2O in water. The resulting white precipitate of BaSO4 was filtered off, and the solvent was evaporated from the filtrate. The green solid was dried at room temperature.

5.1. Synthesis

Crystals of the title com­pound suitable for single-crystal X-ray diffraction were obtained by the reaction of Ni(NCS)2 (26.2 mg, 0.15 mmol) with 4-benzoyl­pyridine (27.5 mg, 0.15 mmol) in aceto­nitrile (1.5 ml) for 2 d at 354 K in a closed test tube. A polycrystalline powder was obtained by stirring a solution of Ni(NCS)2 (87.4 mg, 0.5 mmol) and 4-benzoyl­pyridine (183.2 mg, 1.0 mmol) in MeCN (3 ml) for 4 d.

5.2. Experimental details

Differential thermoanalysis and thermogravimetry (DTA–TG) were performed under a dynamic nitro­gen atmosphere in Al2O3 crucibles using an STA PT1600 thermobalance from Linseis. The XRPD measurements were performed using a Stoe Transmission Powder Diffraction System (STADI P) with Cu Kα radiation that was equipped with a linear position-sensitive MYTHEN detector from Stoe & Cie. The IR data were measured using a Bruker Alpha-P ATR–IR spectrometer.

6. Refinement

The C—H hydrogens were positioned with idealized geometry (methyl H atoms allowed to rotate but not to tip) and refined with Uiso(H) = 1.2Ueq(C) (1.5 for methyl H atoms) using a riding model. Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Ni(NCS)2(C2H2N21)2(C12H9NO)2]
Mr 623.38
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 200
a, b, c (Å) 7.2716 (5), 10.4868 (6), 10.8677 (6)
α, β, γ (°) 65.540 (4), 88.893 (5), 88.378 (5)
V3) 754.02 (8)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.82
Crystal size (mm) 0.14 × 0.05 × 0.04
 
Data collection
Diffractometer Stoe IPDS2
Absorption correction Numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.837, 0.966
No. of measured, independent and observed [I > 2σ(I)] reflections 9692, 3283, 2634
Rint 0.041
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.100, 1.06
No. of reflections 3283
No. of parameters 188
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.40
Computer programs: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(acetonitrile-κN)bis(4-benzoylpyridine-κN)bis(isothiocyanato-κN)nickel(II) top
Crystal data top
[Ni(NCS)2(C2H2N21)2(C12H9NO)2]Z = 1
Mr = 623.38F(000) = 322
Triclinic, P1Dx = 1.373 Mg m3
a = 7.2716 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.4868 (6) ÅCell parameters from 9692 reflections
c = 10.8677 (6) Åθ = 2.1–25.2°
α = 65.540 (4)°µ = 0.82 mm1
β = 88.893 (5)°T = 200 K
γ = 88.378 (5)°Needle, blue
V = 754.02 (8) Å30.14 × 0.05 × 0.04 mm
Data collection top
Stoe IPDS-2
diffractometer
2634 reflections with I > 2σ(I)
ω scansRint = 0.041
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
θmax = 27.0°, θmin = 2.1°
Tmin = 0.837, Tmax = 0.966h = 99
9692 measured reflectionsk = 1313
3283 independent reflectionsl = 1313
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0383P)2 + 0.2958P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3283 reflectionsΔρmax = 0.28 e Å3
188 parametersΔρmin = 0.40 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.00000.50001.00000.04329 (15)
N11.1925 (3)0.6472 (3)0.9052 (2)0.0544 (5)
C11.2695 (4)0.7524 (3)0.8535 (3)0.0476 (6)
S11.38122 (12)0.89701 (8)0.77890 (9)0.0675 (2)
N110.8623 (3)0.5571 (2)0.8151 (2)0.0470 (5)
C110.9542 (4)0.5796 (3)0.6999 (3)0.0511 (6)
H111.08440.56860.70290.061*
C120.8685 (4)0.6177 (3)0.5778 (3)0.0516 (6)
H120.93870.63220.49870.062*
C130.6780 (4)0.6350 (3)0.5711 (3)0.0476 (6)
C140.5829 (4)0.6119 (3)0.6894 (3)0.0501 (6)
H140.45270.62300.68890.060*
C150.6789 (3)0.5726 (3)0.8082 (3)0.0476 (6)
H150.61160.55580.88910.057*
C160.5863 (4)0.6676 (3)0.4381 (3)0.0538 (6)
C170.4134 (4)0.7550 (3)0.4013 (3)0.0553 (7)
C180.3648 (4)0.8489 (3)0.4564 (3)0.0615 (7)
H180.43880.85540.52460.074*
C190.2080 (5)0.9336 (4)0.4122 (4)0.0777 (10)
H190.17550.99890.44920.093*
C200.0997 (5)0.9225 (4)0.3144 (4)0.0886 (12)
H200.00740.98060.28400.106*
C210.1459 (5)0.8281 (4)0.2610 (4)0.0868 (12)
H210.06940.81990.19490.104*
C220.3025 (5)0.7452 (3)0.3024 (3)0.0700 (8)
H220.33500.68140.26370.084*
O110.6554 (3)0.6210 (2)0.3620 (2)0.0687 (6)
N20.8453 (3)0.6523 (2)1.0367 (2)0.0540 (6)
C20.7727 (4)0.7466 (3)1.0432 (3)0.0518 (6)
C30.6820 (5)0.8675 (3)1.0510 (3)0.0715 (9)
H3A0.71910.95240.97330.107*
H3B0.71710.87401.13480.107*
H3C0.54840.85811.05010.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0442 (3)0.0443 (3)0.0446 (3)0.00743 (19)0.00183 (19)0.0221 (2)
N10.0536 (13)0.0556 (13)0.0542 (14)0.0029 (11)0.0014 (11)0.0230 (11)
C10.0488 (14)0.0509 (15)0.0481 (15)0.0079 (12)0.0038 (12)0.0259 (12)
S10.0725 (5)0.0514 (4)0.0826 (6)0.0061 (4)0.0032 (4)0.0317 (4)
N110.0465 (11)0.0490 (12)0.0479 (12)0.0070 (9)0.0016 (9)0.0230 (10)
C110.0458 (13)0.0620 (16)0.0476 (15)0.0031 (12)0.0021 (11)0.0249 (13)
C120.0515 (14)0.0575 (15)0.0472 (15)0.0018 (12)0.0033 (12)0.0233 (12)
C130.0523 (14)0.0456 (13)0.0457 (14)0.0028 (11)0.0034 (11)0.0199 (11)
C140.0475 (13)0.0547 (15)0.0508 (15)0.0052 (11)0.0033 (12)0.0249 (12)
C150.0453 (13)0.0539 (14)0.0457 (14)0.0072 (11)0.0006 (11)0.0234 (12)
C160.0590 (16)0.0534 (15)0.0479 (15)0.0010 (12)0.0051 (13)0.0197 (12)
C170.0565 (15)0.0528 (15)0.0472 (15)0.0032 (12)0.0049 (12)0.0110 (12)
C180.0587 (17)0.0571 (16)0.0586 (18)0.0031 (13)0.0003 (14)0.0141 (14)
C190.069 (2)0.066 (2)0.080 (2)0.0120 (16)0.0040 (18)0.0139 (17)
C200.061 (2)0.082 (2)0.089 (3)0.0105 (18)0.0111 (19)0.001 (2)
C210.068 (2)0.089 (3)0.076 (2)0.0072 (19)0.0239 (19)0.006 (2)
C220.074 (2)0.0656 (19)0.0601 (19)0.0066 (16)0.0159 (16)0.0149 (15)
O110.0799 (14)0.0802 (14)0.0541 (12)0.0092 (11)0.0061 (11)0.0363 (11)
N20.0574 (13)0.0568 (13)0.0527 (13)0.0123 (11)0.0055 (11)0.0282 (11)
C20.0606 (16)0.0522 (15)0.0468 (15)0.0120 (13)0.0042 (12)0.0252 (12)
C30.093 (2)0.0588 (17)0.067 (2)0.0288 (17)0.0073 (17)0.0328 (15)
Geometric parameters (Å, º) top
Ni1—N1i2.038 (3)C16—O111.217 (3)
Ni1—N12.038 (3)C16—C171.494 (4)
Ni1—N22.093 (2)C17—C181.383 (4)
Ni1—N2i2.093 (2)C17—C221.395 (4)
Ni1—N11i2.108 (2)C18—C191.390 (4)
Ni1—N112.108 (2)C18—H180.9500
N1—C11.164 (3)C19—C201.379 (5)
C1—S11.626 (3)C19—H190.9500
N11—C151.339 (3)C20—C211.371 (6)
N11—C111.343 (3)C20—H200.9500
C11—C121.373 (4)C21—C221.376 (5)
C11—H110.9500C21—H210.9500
C12—C131.391 (4)C22—H220.9500
C12—H120.9500N2—C21.135 (3)
C13—C141.381 (4)C2—C31.445 (4)
C13—C161.505 (4)C3—H3A0.9800
C14—C151.380 (4)C3—H3B0.9800
C14—H140.9500C3—H3C0.9800
C15—H150.9500
N1i—Ni1—N1180.0N11—C15—C14123.2 (2)
N1i—Ni1—N291.36 (9)N11—C15—H15118.4
N1—Ni1—N288.64 (9)C14—C15—H15118.4
N1i—Ni1—N2i88.64 (9)O11—C16—C17121.0 (3)
N1—Ni1—N2i91.36 (9)O11—C16—C13118.7 (2)
N2—Ni1—N2i180.0C17—C16—C13120.3 (2)
N1i—Ni1—N11i90.03 (9)C18—C17—C22119.4 (3)
N1—Ni1—N11i89.97 (9)C18—C17—C16122.7 (3)
N2—Ni1—N11i90.31 (8)C22—C17—C16117.9 (3)
N2i—Ni1—N11i89.69 (8)C17—C18—C19120.1 (3)
N1i—Ni1—N1189.97 (9)C17—C18—H18120.0
N1—Ni1—N1190.03 (9)C19—C18—H18120.0
N2—Ni1—N1189.69 (8)C20—C19—C18119.8 (4)
N2i—Ni1—N1190.31 (8)C20—C19—H19120.1
N11i—Ni1—N11180.0C18—C19—H19120.1
C1—N1—Ni1163.8 (2)C21—C20—C19120.3 (3)
N1—C1—S1178.2 (2)C21—C20—H20119.9
C15—N11—C11117.3 (2)C19—C20—H20119.9
C15—N11—Ni1121.05 (18)C20—C21—C22120.5 (4)
C11—N11—Ni1121.64 (17)C20—C21—H21119.8
N11—C11—C12123.0 (2)C22—C21—H21119.8
N11—C11—H11118.5C21—C22—C17120.0 (4)
C12—C11—H11118.5C21—C22—H22120.0
C11—C12—C13119.4 (3)C17—C22—H22120.0
C11—C12—H12120.3C2—N2—Ni1171.5 (2)
C13—C12—H12120.3N2—C2—C3179.4 (4)
C14—C13—C12117.8 (2)C2—C3—H3A109.5
C14—C13—C16123.6 (2)C2—C3—H3B109.5
C12—C13—C16118.4 (2)H3A—C3—H3B109.5
C15—C14—C13119.3 (2)C2—C3—H3C109.5
C15—C14—H14120.4H3A—C3—H3C109.5
C13—C14—H14120.4H3B—C3—H3C109.5
Symmetry code: (i) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···S1ii0.982.983.662 (3)127
Symmetry code: (ii) x+2, y+2, z+2.
 

Acknowledgements

This project was supported by the Deutsche Forschungsgemeinschaft and the State of Schleswig-Holstein. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

Funding information

Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. NA 720/5-2).

References

First citationBai, Y., Zheng, G.-S., Dang, D.-B., Zheng, Y.-N. & Ma, P.-T. (2011). Spectrochim. Acta A Mol. Biomol. Spectrosc. 79, 1338–1344.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBraga, D., Curzi, M., Grepioni, F. & Polito, M. (2005). Chem. Commun. pp. 2915–2917.  CSD CrossRef Google Scholar
First citationBraga, D., Giaffreda, S. L., Grepioni, F., Pettersen, A., Maini, L., Curzi, M. & Polito, M. (2006). Dalton Trans. pp. 1249–1263.  CrossRef Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDen, T., Usov, P. M., Kim, J., Hashizume, D., Ohtsu, H. & Kawano, M. (2019). Chem. Eur. J. 25, 11512–11520.  CrossRef CAS PubMed Google Scholar
First citationDrew, M. G. B., Gray, N. I., Cabral, M. F. & Cabral, J. deO. (1985). Acta Cryst. C41, 1434–1437.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHöller, C. J. & Müller-Buschbaum, K. (2008). Inorg. Chem. 47, 10141–10149.  PubMed Google Scholar
First citationJochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. 2018, 4779–4789.  CSD CrossRef CAS Google Scholar
First citationNäther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696–2714.  Google Scholar
First citationNeumann, T., Jess, I., dos Santos Cunha, C., Terraschke, H. & Näther, C. (2018). Inorg. Chim. Acta, 478, 15–24.  CSD CrossRef CAS Google Scholar
First citationNeumann, T., Rams, M., Tomkowicz, Z., Jess, I. & Näther, C. (2019). Chem. Commun. 55, 2652–2655.  Web of Science CSD CrossRef CAS Google Scholar
First citationRams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 3232–3243.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRobinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoliman, S. M., Elzawy, Z. B., Abu-Youssef, M. A. M., Albering, J., Gatterer, K., Öhrström, L. & Kettle, S. F. A. (2014). Acta Cryst. B70, 115–125.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSuckert, S., Werner, J., Jess, I. & Näther, C. (2017). Acta Cryst. E73, 365–368.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWellm, C. & Näther, C. (2018). Acta Cryst. E74, 1899–1902.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWellm, C. & Näther, C. (2019a). Acta Cryst. E75, 299–303.  CSD CrossRef IUCr Journals Google Scholar
First citationWellm, C. & Näther, C. (2019b). Acta Cryst. E75, 917–920.  CSD CrossRef IUCr Journals Google Scholar
First citationWerner, J., Runčevski, T., Dinnebier, R., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015). Eur. J. Inorg. Chem. 2015, 3236–3245.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWöhlert, S., Runčevski, T., Dinnebier, T., Ebbinghaus, S. G. & Näther, C. (2014). Cryst. Growth Des. 14, 1902–1913.  Google Scholar
First citationZurawski, A., Rybak, J. C., Meyer, L. V., Matthes, P. R., Stepanenko, V., Dannenbauer, N., Würthner, F. & Müller-Buschbaum, K. (2012). Dalton Trans. 41, 4067–4078.  CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds