research communications
R,S)-(4-nitrophenyl)-5(S)-(propan-2-yl)imidazolidin-4-one
Hirshfeld surface analysis and PIXEL calculations of a 1:1 epimeric mixture of 3-[(4-nitrobenzylidene)amino]-2(aREQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto, Portugal, bFP-ENAS-Faculdade de Ciências de Saúde, Escola Superior de Saúde da UFP, Universidade Fernando Pessoa, Rua Carlos da Maia, 296, P-4200-150 Porto, Portugal, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dInstituto de Tecnologia em Fármacos–Farmanguinhos, Fundaçâo Oswaldo Cruz, 21041-250 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: jnlow111@gmail.com
A 1:1 epimeric mixture of 3-[(4-nitrobenzylidene)amino]-2(R,S)-(4-nitrophenyl)-5(S)-(propan-2-yl)imidazolidin-4-one, C19H19N5O5, was isolated from a reaction mixture of 2(S)-amino-3-methyl-1-oxobutanehydrazine and 4-nitrobenzaldehyde in ethanol. The product was derived from an initial reaction of 2(S)-amino-3-methyl-1-oxobutanehydrazine at its hydrazine group to provide a 4-nitrobenzylidene derivative, followed by a reaction with another molecule of 4-nitrobenzaldehyde to form the chiral five-membered imidazolidin-4-one ring. The formation of the five-membered imidazolidin-4-one ring occurred with retention of the configuration at the 5-position, but with at the 2-position. In the crystal, N—H⋯O(nitro) hydrogen bonds, weak C—H⋯O(carbonyl) and C—H⋯O(nitro) hydrogen bonds, as well as C—H⋯π, N—H⋯π and π–π interactions, are present. These combine to generate a three-dimensional array. Hirshfeld surface analysis and PIXEL calculations are also reported.
1. Chemical context
Imidazolidin-4-ones have been widely studied (Blackmore & Thompson, 2011) due to their wide range of uses, for example, as chiral ligands in catalysis (Lin et al., 2013; Mondini et al., 2013; Seebach et al., 2008; Puglisi et al., 2013) and for their biological activities (Elrod & Worley, 1999; Gomes et al., 2004; Guerra et al., 2011; Barrow et al., 2007). As a consequence of their utility, there are a number of well-established synthetic routes, in particular those involving chiral synthesis (Blackmore & Thompson, 2011; Eyilcim et al., 2018; Li et al., 2004; Vale et al., 2008, 2009; Catalano et al., 2011; Xu et al., 2010). As part of our studies on nitrogen-containing heterocyclic compounds, we report the Hirshfeld surface analysis and PIXEL calculations of a 1:1 epimeric mixture of 3-[(4-nitrobenzylidene)amino]-2(R,S)-(4-nitrophenyl)-5(S)-(propan-2-yl)imidazolidin-4-one, 1.
2. Structural commentary
The title compound, 1, contains one molecule each of the in the The 3-[(4-nitrobenzylidene)amino]-2(S)-(4-nitrophenyl)-5(S)-(propan-2-yl)imidazolidin-4-one stereoisomer is termed MolA and the 3-[(4-nitrobenzylidene)amino]-2(R)-(4-nitrophenyl)-5(S)-(propan-2-yl)imidazolidin-4-one stereoisomer is termed MolB (see Figs. 1a and 1b). In MolA, the configurations at atoms C12 and C14 are S. In MolB, the configurations at atoms C12 and C14 are R and S, respectively (Fig. 1). The is shown in Fig. 1(c).
In both molecules, the imidazoline rings are puckered, the puckers in each case being a twist at C12—N13 and C22—N23 in MolA and MolB, respectively. In the case of MolA, the Cremer & Pople puckering parameters (Cremer & Pople, 1975) are Q(2) of 0.287 (2)Å and φ(2) of 54.7 (5)° for reference bond N11—C12; for MolB, Q(2) is 0.103 (3)Å and φ(2) is 230.3 (15)° for reference bond N21—C22. In MolA, the dihedral angles between the mean planes of the imidazoline ring and the benzene ring (pivot atom C121) is 45.83 (18)°, between the imidazoline ring and the benzene ring (pivot atom C131) is 28.04 (12)° and between the two benzene rings is 69.86 (11)°. In MolB, the dihedral angles between the mean planes of the imidazoline ring and the benzene ring (pivot atom C221) is 59.83 (13)°, between the imidazoline ring and the benzene ring (pivot atom C131) is 6.86 (13)° and between the two benzene rings is 66.38 (11).
3. Supramolecular features
3.1. Intermolecular interactions and contacts
As seen, each of the molecules of the c) has two nitro groups, whose O atoms can act as acceptors for hydrogen bonding, and three rings that are able to participate in π–π stacking. Fig. 1(c) shows the two molecules labelled for the nitro O atom and the oxo atoms (O15 and O25), as well as the identification of ring A (benzene rings with pivot atoms C131 and C231), B (benzene rings with pivot atoms C121 and C221) and C (imidazoline rings).
(Fig. 1A PLATON analysis (Spek, 2009) indicates the possibility in 1 of N—H⋯O(nitro), C—H⋯O(nitro) and C—H⋯O(oxo) hydrogen bonds, and C—H⋯π, N—O⋯π and π–π intermolecular interactions. All details of the hydrogen bonding (molecular contacts) and π–π stacking are given in Tables 1 and 2, respectively. Noticeable among these is the three-centred hydrogen bond between N23 in MolB and the nitro-group atoms O128/O129 in MolA (symmetry code: x + 1, y − 1, z + 1), which generate chains running parallel to the [11] direction. Within the chosen (see Fig. 1c), the benzene rings with pivot atoms C131 and C231 are π–π stacked, forming a dimer. This stacking is supplemented by the C22—H22⋯O139, C243—H24D⋯O138 and C12—H12⋯O239 weak hydrogen bonds. Details are given in Tables 1 and 2. Such π–π-linked dimers are linked by further π–π interactions, forming a π–π stacked column, which extends along the a axis by unit translation (see Table 2). The C122—H122⋯O129 and C224—H224⋯O229 weak hydrogen bonds
supplement the interdimer π–π stacking (Fig. 2). These π–π-stacked dimers are also linked by the N23—H23⋯O128/O129 hydrogen bond described above; this interaction creates chains, which propagate parallel to the [11] direction (Fig. 3, see Table 1 for details). The C112—H112⋯ O15 and C212—H21⋯O25 are possible intramolecular hydrogen bonds. The C133—H133⋯O15(x, y − 1, z) and C233—H233⋯O25(x, y − 1, z) hydrogen bonds, found by PLATON, separately create C(9) chains that propagate in the direction of the b axis. There is one intermolecular C—H⋯π interaction involving C143—H14A⋯Cg2(x, y + 1, z) [Cg2 is the centroid of the benzene ring with pivot atom C121(x, y + 1, z)], with an H⋯Cg2 distance of 2.95°, an angle at H of 128° and a C143⋯Cg2 distance of 3.638 (3)°.
|
3.2. Hirshfeld surface and quantitative analyses of intermolecular interactions
Hirshfeld surfaces (Spackman & Jayatilaka, 2009) and two-dimensional fingerprint (FP) plots (Spackman & McKinnon, 2002) provide complementary information concerning the intermolecular interactions deduced from the PLATON analysis. The Hirshfeld analysis, generated using CrystalExplorer (Version 3.1; Wolff et al., 2012) and mapped over dnorm (ranging from −0.329 to 1.708), indicated red areas related to specific intermolecular short contacts (see Figs. 4–7).
Briefly, the Hirshfeld surface analysis revealed that in MolA all the O atoms participate in hydrogen bonding, but in MolB only three do, the exception being O238 in ring A. A summary of these interactions is made in Table 3. Carbonyl atoms O15 or O25 of heterocyclic ring C and nitro atoms O129 or O229 of ring B are involved in hydrogen bonding between two similar molecules, i.e. MolA⋯MolA or MolB⋯MolB. Those pairs interact in a similar way. All the nitro-group O atoms of MolA (O128, O129, O138 and O139) act as acceptors for H atoms of MolB.
|
PIXEL energy calculations, as implemented in PIXEL3.1 (Gavezzotti, 2003, 2008), were run in order to calculate the total stabilization energy of the crystal packing, Etot, distributed as Coulombic, ECoul, polarization, Epol, dispersion, Edisp, and repulsion, Erep, terms. Partial analysis of the PIXEL calculations have been made and the results obtained were used to identify pairs of molecules within the crystal network that most contribute to the total energy of the packing.
The compound crystallized with two molecules (MolA and MolB) in the and each has five O atoms that may be involved in the formation of hydrogen bonds, which are labelled in Fig. 1(c). In short, each molecule has two 4-NO2-phenyl substituents, one substituent connected to the imine C atom, ring A (pivot atoms C131 and C231 in MolA and MolB, respectively), and the other to the imidazoline ring, ring C (pivot atoms C121 and C221 in MolA and MolB, respectively). In addition, there is a carbonyl O atom in heterocyclic ring C (pivot atoms N11 and N21 in MolA and MolB, respectively), together with a potential donor, i.e. the –NH group on the same ring.
The Hirshfeld surface mapped over dnorm ranging from −0.329 to 1.708 for 1 show various red areas due to intramolecular short contacts (refer to Figs. 4–7). Briefly, the analysis revealed that in MolA all the O atoms participate in hydrogen bonds, while only one of the nitro O atoms of ring A of MolB establishes interactions. A summary of these interactions is made in Table 3. The carbonyl O atom of heterocyclic ring C and the nitro atoms O129 or O229 of ring B are involved in hydrogen bonding between two molecules with the same labels, that is A⋯A or B⋯B. These pairs interact in a similar way. In contrast, it seems that all the O atoms of MolA act as acceptors for H atoms of MolB. Some C⋯π interactions that define some substructures are identified in Table 3.
PIXEL energy calculations, as implemented in PIXEL3.1 (Gavezzotti, 2003, 2008), give a total stabilization energy of −170.4 kJ mol−1 for the crystal packing, distributed as follows: ECoul = −78.4, Epol = −30.6, Edisp = −199.51 and Erep = 138.2 kJ mol−1 for Coulombic, polarization, dispersion and repulsion energies, respectively. The polarization term is clearly less important than the Coulombic one. Partial analysis of the PIXEL calculations was also carried out to identify pairs of molecules within the crystal framework that contribute most to the total energy of the packing. Fig. 8 lists the the specific close contacts and the individual energy components for each molecule pair. The identified molecule pairs, I to IX, are depicted in Figs. 4 to 7, together with appropriate views of the Hirshfeld surface. In the figures of the molecule pairs, the epimeric molecules are coloured green (MolA) and blue (MolB), the partner to the specific epimer in the molecular pair is coloured in standard element colours and any other relevant molecule is coloured grey.
Substructures I and II connect MolA with MolA (Table 3 and Fig. 4) and subtructures VIII and IX connect MolB with MolB (Table 3 and Fig. 7). There is a similarity between substructures I and VII, as well as between substructures II and IX. Pairs I and VII are made by Carom—H⋯Ooxo interactions that give two isoenergetic subsets for each pair (Ia/Ib and VIIa/VIIb). These pairs relate MolA⋯MolA and MolB⋯MolB in chains, as can be visualized in Figs. 4 and 7. The total energies for the substructures of pairs I and pairs VII differ by about 5 kJ mol−1 (higher value for I) and this may be due to the presence of an additional C—H⋯π interaction in I that is not detected in VIII [VII?]. The similar substructures IIa/IIb and IXa/IXb, are built utilizing similar C—H⋯O interactions, involving the O atom of the nitro group of ring B. Nevertheless, the total energies for those pairs also differ by about 5 kJ mol−1, this time with a higher value for pairs IX due to a higher contribution of the dispersion term.
The molecules that constitute the III. In this the nitro O atoms of ring A act as acceptors in both molecules, but they interact with different H atoms, e.g. (i) a methyl H atom to form the O138 ⋯H24D—C243 hydrogen bond in the MolA⋯MolB contact and (ii) an H atom of the imidazoline ring thereby generating an O239⋯H12—C12 hydrogen bond in the MolB⋯MolA contact (see Fig. 5).
form the nonsymmetric dimericIn IV, the N—H hydrogen of MolB makes a bifurcated hydrogen-bond interaction with both O atoms of the nitro group located in ring B of MolA, e.g. O129⋯H23—N23 and O128⋯H23—N23 (see pair IV in Fig. 5). This according to the model used for the calculation of interactions energies, contributes the highest amount of energy to the stabilization of the crystal packing. In the made by pair V, atom O139 of MolA acts as an acceptor for atom H226 of MolB (see Fig. 7). This layout permits a supramolecular arrangement where aromatic rings appear to stack, but the Hirshfeld surface (HS) analysis did not reveal spots related to C⋯C close contacts that are typical of the π–π interactions.
Finally, two more substructures have been identified as energetically important in the stabilization of the supramolecular structure for 1. Molecular pairs involved in substructures VI and VII, relate the molecule at (x, y, z) with the molecules at (−x, y + 1, z + 1) (for VI) and (x, y + 1, z) (for VII). Although those molecules are not connected in a classical way, the pairs make a significant contribution to the lattice stabilization energy, i.e. −32.5 and −25.9 kJ mol−1, respectively, for VI and VII. These pairs are depicted in Fig. 6, with the grey molecule in pair VI shown in order to clarify a possible path explaining the electronic interactions, while in pair VII, the those interactions are made via molB of the asymmetric unit.
Fig. 9 shows the fingerprint (FP) plots for MolA and MolB. The FP plots show two pairs of spikes pointing south-west and ending at (1.2; 0.9/0.9; 1.2) that are due to O⋯H/H⋯O close contacts, the light blue in the middle is due to the H⋯H and C⋯C close contacts. The percentages for atom–atom contacts were taken from the FP plots and are given in Table 4. These percentages are similar for both molecules with an exception made for the O⋯H contacts that are smaller in MolB and the N⋯H and H⋯H contacts that are higher in MolA.
|
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.39, August 2018 update; Groom et al., 2016) was carried out. The closest structure in the database to that of 1 is the 1:1 epimeric mixture of 5-isobutyl-2-(2-nitrophenyl)-3-(phenylamino)imidazolidin-4-one (CSD refcode VAQZUJ; Verardo et al., 2003); this compound was also formed from a chiral reagent on reaction with a carbonyl compound. Other structures with a more remote relationship to 1 are 4-[(2S,4S)-4-benzyl-1-methyl-5-oxoimidazolidin-2-yl]benzonitrile (ZAZKUI; Brase et al., 2012), (2S,5S)-5-benzyl-2-(4-fluorophenyl)-3-methylimidazolidin-4-one (ZAZKOC; Brase et al., 2012), 3-benzyl-5-methyl-4-oxo-2-phenylimidazolidin-1-ium chloride (QITMIP; Nieger, 2000), 2-tert-butyl-3-methyl-4-oxo-5-(pentafluorobenzyl)imidazolidin-1-ium chloride (LUGTAK; Holland et al., 2015), cyclo-[(1S,2S,3R,4R,5R,7S,10S,11S)-(N-{2-[(D-galactopentitol-1-yl)-4-(4-hydroxybenzyl)-5-oxoimidazolin-1-yl]acetyl}glycyl)-L-phenylalanyl-L-leucine 4′-O-ester (DACMAW; Kojic-Prodic et al., 2004) and 4-[(2S,4S)-4-isopropyl-5-oxo-3-(3-oxobutyl)-1-(pyridin-2-yl)imidazolidin-2-yl]benzonitrile (NURSOJ; Xu et al., 2010).
5. Synthesis and crystallization
L-Valine (2) was converted to 2(S)-amino-3-methyl-1-oxo-butanehydrazine (3) in two stages, as outlined in Scheme 1.
To a stirred solution of 3 (1 mmol) in ethanol (10 ml) was added 4-nitrobenzaldehyde (2.2 mmol). The reaction mixture was stirred for 20 h at 351 K and rotary evaporated. The residue was purified by using a mixture of 9.7:0.3 (v/v) dichloromethane–methanol as Further purification was achieved by crystallization from ethanol. The crystal of 1 used in the was obtained by slow evaporation of an ethanol solution at room temperature.
M.p. 411–414 K. 1H NMR (400 MHz, DMSO-d6): δ 0.96 (6H, m, Me), 0.97 (6H, m, Me), 1.42 (2H, m), 2.00 (1H, m), 2.09 (1H, m), 4.06 (2H, m), 7.66–7.71 (4H, m), 7.82–7.85 (4H, m), 8.422–8.48 (8H, m).
13C NMR (100 MHz, DMSO-d6): δ 17.2,17.4,18.9, 29.9, 30.3, 61.8, 62.53, 124.0, 123.7, 128.1, 128.1, 128.3, 128.9, 140.2, 1140.1, 146.2, 146.3, 147.7, 148.2, 148.7, 171.1, 171.6. IR (KBr, cm−1): ν 3015 (br), 1670, 1518, 1337.
6. Refinement
Crystal data, data collection and structure . H atoms attached to C atoms were refined as riding atoms at calculated positions. That attached to the N atom was refined.
details are summarized in Table 5
|
Supporting information
https://doi.org/10.1107/S2056989019013938/lh5929sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019013938/lh5929Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019013938/lh5929Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2017); cell
CrysAlis PRO (Rigaku OD, 2017); data reduction: CrysAlis PRO (Rigaku OD, 2017); program(s) used to solve structure: OSCAIL (McArdle et al., 2004) and SHELXT (Sheldrick, 2015a); program(s) used to refine structure: OSCAIL (McArdle et al., 2004), ShelXle (Hübschle et al., 2011) and SHELXL2017 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: OSCAIL (McArdle et al., 2004), SHELXL2017 (Sheldrick, 2015b) and PLATON (Spek, 2009).C19H19N5O5 | Z = 2 |
Mr = 397.39 | F(000) = 416 |
Triclinic, P1 | Dx = 1.392 Mg m−3 |
a = 6.9346 (1) Å | Cu Kα radiation, λ = 1.54178 Å |
b = 8.4380 (2) Å | Cell parameters from 10799 reflections |
c = 16.6963 (5) Å | θ = 2.6–70.2° |
α = 79.826 (2)° | µ = 0.87 mm−1 |
β = 89.848 (2)° | T = 100 K |
γ = 80.488 (2)° | Block, yellow |
V = 948.03 (4) Å3 | 0.15 × 0.10 × 0.08 mm |
Rigaku 007HF equipped with Varimax confocal mirrors and an C11 goniometer and HyPix 6000 detector diffractometer | 5885 independent reflections |
Radiation source: Rotating anode, Rigaku 007 HF | 5634 reflections with I > 2σ(I) |
Varimax focusing mirrors monochromator | Rint = 0.032 |
Detector resolution: 10 pixels mm-1 | θmax = 68.2°, θmin = 2.7° |
profile data from ω–scans | h = −8→8 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2017) | k = −10→10 |
Tmin = 0.876, Tmax = 1.000 | l = −20→20 |
17290 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.031 | w = 1/[σ2(Fo2) + (0.0635P)2 + 0.0162P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.089 | (Δ/σ)max < 0.001 |
S = 1.06 | Δρmax = 0.18 e Å−3 |
5885 reflections | Δρmin = −0.15 e Å−3 |
535 parameters | Absolute structure: Flack x determined using 2216 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
3 restraints | Absolute structure parameter: 0.06 (12) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O15 | 0.4298 (3) | 1.1382 (2) | 0.37596 (10) | 0.0355 (4) | |
O25 | 0.7120 (3) | −0.1997 (2) | 0.63494 (11) | 0.0454 (5) | |
O128 | 0.0134 (3) | 0.6977 (3) | −0.07548 (12) | 0.0515 (6) | |
O129 | −0.2170 (3) | 0.7084 (3) | 0.01078 (11) | 0.0445 (5) | |
O138 | 0.2174 (3) | 0.1363 (3) | 0.59026 (13) | 0.0478 (5) | |
O139 | 0.1723 (3) | 0.2713 (3) | 0.68946 (12) | 0.0496 (5) | |
O228 | 0.9876 (3) | 0.2933 (3) | 1.07358 (13) | 0.0578 (6) | |
O229 | 1.2157 (3) | 0.2968 (3) | 0.98725 (12) | 0.0476 (5) | |
O238 | 0.7903 (3) | 0.8399 (3) | 0.38544 (13) | 0.0456 (5) | |
O239 | 0.8329 (3) | 0.6925 (3) | 0.29111 (12) | 0.0487 (5) | |
N11 | 0.3637 (3) | 0.9864 (2) | 0.27940 (11) | 0.0276 (4) | |
N13 | 0.4764 (3) | 1.1352 (3) | 0.16385 (12) | 0.0306 (4) | |
H13 | 0.362 (5) | 1.192 (4) | 0.1427 (18) | 0.034 (7)* | |
N21 | 0.6624 (3) | −0.0012 (3) | 0.71543 (12) | 0.0302 (4) | |
N23 | 0.5744 (3) | −0.1541 (3) | 0.83569 (13) | 0.0353 (5) | |
H23 | 0.660 (6) | −0.187 (5) | 0.877 (2) | 0.058 (10)* | |
N111 | 0.3401 (3) | 0.8408 (2) | 0.32899 (11) | 0.0270 (4) | |
N211 | 0.6703 (3) | 0.1435 (2) | 0.66255 (11) | 0.0288 (4) | |
C12 | 0.4363 (3) | 0.9729 (3) | 0.19724 (14) | 0.0277 (5) | |
H12 | 0.562548 | 0.894474 | 0.203010 | 0.033* | |
C14 | 0.5332 (3) | 1.2011 (3) | 0.23511 (13) | 0.0286 (5) | |
H14 | 0.678098 | 1.168896 | 0.243608 | 0.034* | |
C15 | 0.4376 (3) | 1.1108 (3) | 0.30696 (13) | 0.0287 (5) | |
C22 | 0.5853 (4) | 0.0145 (3) | 0.79628 (14) | 0.0298 (5) | |
H22 | 0.450305 | 0.079596 | 0.789649 | 0.036* | |
C24 | 0.6057 (4) | −0.2618 (3) | 0.77444 (14) | 0.0335 (5) | |
H24 | 0.715645 | −0.353217 | 0.793820 | 0.040* | |
C25 | 0.6675 (4) | −0.1559 (3) | 0.69896 (15) | 0.0348 (5) | |
C112 | 0.2670 (3) | 0.8488 (3) | 0.39906 (14) | 0.0279 (5) | |
H112 | 0.225845 | 0.951561 | 0.414946 | 0.033* | |
C121 | 0.2980 (3) | 0.9158 (3) | 0.14341 (14) | 0.0262 (5) | |
C122 | 0.3699 (4) | 0.8750 (3) | 0.07013 (14) | 0.0308 (5) | |
H122 | 0.499729 | 0.887882 | 0.055715 | 0.037* | |
C123 | 0.2556 (4) | 0.8164 (3) | 0.01828 (14) | 0.0320 (5) | |
H123 | 0.304016 | 0.790033 | −0.031853 | 0.038* | |
C124 | 0.0687 (4) | 0.7973 (3) | 0.04175 (14) | 0.0293 (5) | |
C125 | −0.0089 (3) | 0.8388 (3) | 0.11285 (14) | 0.0312 (5) | |
H125 | −0.138837 | 0.825399 | 0.126857 | 0.037* | |
C126 | 0.1067 (4) | 0.9007 (3) | 0.16358 (14) | 0.0313 (5) | |
H126 | 0.054796 | 0.932735 | 0.212100 | 0.038* | |
N127 | −0.0521 (3) | 0.7287 (3) | −0.01117 (12) | 0.0323 (5) | |
C131 | 0.2478 (3) | 0.6970 (3) | 0.45425 (13) | 0.0261 (5) | |
C132 | 0.2849 (3) | 0.5462 (3) | 0.42896 (14) | 0.0264 (5) | |
H132 | 0.320914 | 0.541502 | 0.374383 | 0.032* | |
C133 | 0.2700 (3) | 0.4040 (3) | 0.48178 (14) | 0.0287 (5) | |
H133 | 0.295345 | 0.301262 | 0.464512 | 0.034* | |
C134 | 0.2168 (3) | 0.4152 (3) | 0.56112 (14) | 0.0302 (5) | |
C135 | 0.1772 (3) | 0.5612 (3) | 0.58830 (14) | 0.0318 (5) | |
H135 | 0.140140 | 0.564508 | 0.642882 | 0.038* | |
C136 | 0.1922 (3) | 0.7036 (3) | 0.53455 (14) | 0.0307 (5) | |
H136 | 0.164724 | 0.805932 | 0.552131 | 0.037* | |
N137 | 0.2007 (3) | 0.2631 (3) | 0.61757 (13) | 0.0378 (5) | |
C141 | 0.4849 (4) | 1.3855 (3) | 0.22729 (14) | 0.0324 (5) | |
H141 | 0.522467 | 1.411918 | 0.280582 | 0.039* | |
C142 | 0.6066 (5) | 1.4719 (4) | 0.16285 (18) | 0.0451 (7) | |
H14D | 0.580595 | 1.589617 | 0.163030 | 0.068* | |
H14E | 0.571639 | 1.451708 | 0.109156 | 0.068* | |
H14F | 0.745792 | 1.430079 | 0.174926 | 0.068* | |
C143 | 0.2666 (4) | 1.4489 (3) | 0.21372 (16) | 0.0387 (6) | |
H14A | 0.238790 | 1.563576 | 0.220178 | 0.058* | |
H14B | 0.193577 | 1.384089 | 0.253620 | 0.058* | |
H14C | 0.227059 | 1.439805 | 0.158629 | 0.058* | |
C212 | 0.7367 (3) | 0.1361 (3) | 0.59108 (15) | 0.0301 (5) | |
H212 | 0.777043 | 0.033090 | 0.575349 | 0.036* | |
C221 | 0.7088 (3) | 0.0917 (3) | 0.84770 (14) | 0.0282 (5) | |
C222 | 0.6347 (4) | 0.1260 (3) | 0.92174 (14) | 0.0299 (5) | |
H222 | 0.506428 | 0.107886 | 0.936016 | 0.036* | |
C223 | 0.7456 (4) | 0.1858 (3) | 0.97467 (14) | 0.0308 (5) | |
H223 | 0.696374 | 0.206566 | 1.025638 | 0.037* | |
C224 | 0.9301 (4) | 0.2146 (3) | 0.95128 (14) | 0.0286 (5) | |
C225 | 1.0058 (4) | 0.1867 (3) | 0.87724 (15) | 0.0325 (5) | |
H225 | 1.131517 | 0.210277 | 0.862046 | 0.039* | |
C226 | 0.8942 (3) | 0.1235 (3) | 0.82574 (14) | 0.0301 (5) | |
H226 | 0.944672 | 0.101824 | 0.775113 | 0.036* | |
N227 | 1.0519 (3) | 0.2745 (3) | 1.00771 (12) | 0.0339 (5) | |
C231 | 0.7499 (3) | 0.2873 (3) | 0.53383 (13) | 0.0277 (5) | |
C232 | 0.7186 (3) | 0.4406 (3) | 0.55683 (14) | 0.0287 (5) | |
H232 | 0.685933 | 0.449496 | 0.611332 | 0.034* | |
C233 | 0.7347 (3) | 0.5795 (3) | 0.50108 (15) | 0.0299 (5) | |
H233 | 0.712742 | 0.683984 | 0.516467 | 0.036* | |
C234 | 0.7840 (3) | 0.5624 (3) | 0.42183 (15) | 0.0307 (5) | |
C235 | 0.8170 (3) | 0.4122 (3) | 0.39713 (14) | 0.0314 (5) | |
H235 | 0.850887 | 0.403867 | 0.342684 | 0.038* | |
C236 | 0.7993 (3) | 0.2746 (3) | 0.45354 (14) | 0.0303 (5) | |
H236 | 0.820955 | 0.170474 | 0.437723 | 0.036* | |
N237 | 0.8038 (3) | 0.7084 (3) | 0.36213 (13) | 0.0366 (5) | |
C241 | 0.4241 (4) | −0.3336 (3) | 0.75728 (15) | 0.0345 (5) | |
H241 | 0.445003 | −0.378380 | 0.705741 | 0.041* | |
C242 | 0.3982 (5) | −0.4738 (4) | 0.82522 (19) | 0.0455 (7) | |
H24A | 0.515569 | −0.557757 | 0.830591 | 0.068* | |
H24B | 0.284532 | −0.520913 | 0.812321 | 0.068* | |
H24C | 0.377662 | −0.432928 | 0.876535 | 0.068* | |
C243 | 0.2417 (4) | −0.2027 (3) | 0.74492 (16) | 0.0369 (5) | |
H24D | 0.259555 | −0.117069 | 0.698937 | 0.055* | |
H24E | 0.219738 | −0.155144 | 0.794304 | 0.055* | |
H24F | 0.128424 | −0.251832 | 0.733575 | 0.055* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O15 | 0.0480 (10) | 0.0339 (9) | 0.0271 (8) | −0.0136 (8) | −0.0009 (7) | −0.0057 (7) |
O25 | 0.0636 (12) | 0.0408 (11) | 0.0385 (10) | −0.0199 (9) | 0.0130 (9) | −0.0150 (8) |
O128 | 0.0459 (11) | 0.0821 (16) | 0.0359 (11) | −0.0172 (10) | 0.0023 (8) | −0.0293 (11) |
O129 | 0.0418 (10) | 0.0597 (13) | 0.0372 (10) | −0.0232 (9) | 0.0006 (8) | −0.0087 (9) |
O138 | 0.0493 (12) | 0.0346 (11) | 0.0559 (12) | −0.0119 (9) | −0.0051 (9) | 0.0066 (9) |
O139 | 0.0474 (11) | 0.0619 (13) | 0.0327 (10) | −0.0116 (10) | 0.0032 (8) | 0.0120 (9) |
O228 | 0.0529 (12) | 0.0899 (18) | 0.0419 (11) | −0.0211 (12) | 0.0018 (9) | −0.0340 (12) |
O229 | 0.0443 (11) | 0.0625 (14) | 0.0433 (11) | −0.0252 (10) | −0.0014 (9) | −0.0134 (10) |
O238 | 0.0378 (10) | 0.0405 (11) | 0.0533 (12) | −0.0083 (8) | −0.0046 (8) | 0.0074 (9) |
O239 | 0.0458 (11) | 0.0592 (13) | 0.0333 (10) | −0.0063 (9) | 0.0048 (8) | 0.0101 (9) |
N11 | 0.0356 (10) | 0.0262 (11) | 0.0222 (9) | −0.0108 (8) | 0.0005 (8) | −0.0023 (8) |
N13 | 0.0390 (11) | 0.0278 (11) | 0.0261 (10) | −0.0118 (9) | −0.0003 (8) | −0.0016 (8) |
N21 | 0.0349 (11) | 0.0332 (12) | 0.0243 (9) | −0.0125 (9) | 0.0008 (8) | −0.0039 (8) |
N23 | 0.0469 (12) | 0.0353 (12) | 0.0261 (10) | −0.0177 (10) | −0.0048 (9) | −0.0021 (9) |
N111 | 0.0300 (10) | 0.0274 (11) | 0.0238 (10) | −0.0099 (8) | −0.0039 (7) | −0.0002 (8) |
N211 | 0.0295 (10) | 0.0339 (11) | 0.0237 (10) | −0.0116 (9) | −0.0026 (8) | −0.0013 (8) |
C12 | 0.0321 (12) | 0.0283 (13) | 0.0228 (11) | −0.0074 (10) | 0.0006 (9) | −0.0025 (9) |
C14 | 0.0310 (11) | 0.0278 (12) | 0.0274 (11) | −0.0077 (9) | −0.0021 (9) | −0.0032 (9) |
C15 | 0.0329 (12) | 0.0258 (12) | 0.0267 (11) | −0.0052 (9) | −0.0034 (9) | −0.0025 (9) |
C22 | 0.0325 (12) | 0.0348 (13) | 0.0226 (11) | −0.0112 (10) | 0.0019 (9) | −0.0012 (10) |
C24 | 0.0371 (13) | 0.0312 (13) | 0.0314 (12) | −0.0073 (10) | −0.0026 (10) | −0.0018 (9) |
C25 | 0.0360 (12) | 0.0358 (14) | 0.0342 (12) | −0.0109 (10) | 0.0010 (10) | −0.0060 (10) |
C112 | 0.0275 (11) | 0.0307 (12) | 0.0265 (11) | −0.0080 (9) | −0.0012 (9) | −0.0047 (9) |
C121 | 0.0338 (12) | 0.0202 (11) | 0.0231 (11) | −0.0057 (9) | −0.0006 (9) | 0.0010 (8) |
C122 | 0.0350 (12) | 0.0326 (13) | 0.0253 (12) | −0.0106 (10) | 0.0034 (9) | −0.0022 (10) |
C123 | 0.0394 (13) | 0.0325 (13) | 0.0247 (12) | −0.0093 (10) | 0.0031 (10) | −0.0036 (9) |
C124 | 0.0362 (12) | 0.0261 (12) | 0.0244 (11) | −0.0064 (10) | −0.0044 (9) | −0.0003 (9) |
C125 | 0.0295 (12) | 0.0357 (13) | 0.0273 (12) | −0.0064 (10) | 0.0001 (9) | −0.0022 (10) |
C126 | 0.0352 (12) | 0.0343 (13) | 0.0238 (11) | −0.0045 (10) | −0.0002 (9) | −0.0045 (9) |
N127 | 0.0360 (11) | 0.0325 (11) | 0.0286 (11) | −0.0083 (9) | −0.0026 (8) | −0.0030 (8) |
C131 | 0.0226 (11) | 0.0341 (13) | 0.0226 (11) | −0.0088 (10) | −0.0028 (8) | −0.0037 (9) |
C132 | 0.0254 (11) | 0.0341 (13) | 0.0209 (10) | −0.0095 (9) | −0.0005 (8) | −0.0043 (9) |
C133 | 0.0229 (11) | 0.0337 (13) | 0.0306 (12) | −0.0081 (10) | −0.0035 (9) | −0.0058 (10) |
C134 | 0.0227 (11) | 0.0378 (14) | 0.0278 (11) | −0.0097 (10) | −0.0037 (9) | 0.0047 (10) |
C135 | 0.0277 (11) | 0.0458 (16) | 0.0228 (11) | −0.0110 (11) | −0.0006 (9) | −0.0038 (10) |
C136 | 0.0307 (12) | 0.0378 (14) | 0.0256 (11) | −0.0095 (10) | 0.0002 (9) | −0.0078 (10) |
N137 | 0.0258 (10) | 0.0467 (15) | 0.0366 (12) | −0.0093 (10) | −0.0032 (9) | 0.0067 (10) |
C141 | 0.0403 (13) | 0.0290 (12) | 0.0290 (11) | −0.0094 (10) | −0.0022 (9) | −0.0046 (9) |
C142 | 0.0623 (18) | 0.0298 (14) | 0.0442 (15) | −0.0159 (13) | 0.0078 (13) | −0.0020 (12) |
C143 | 0.0437 (14) | 0.0309 (13) | 0.0402 (13) | −0.0031 (11) | −0.0100 (11) | −0.0058 (10) |
C212 | 0.0301 (11) | 0.0353 (13) | 0.0274 (12) | −0.0114 (10) | −0.0006 (9) | −0.0071 (10) |
C221 | 0.0336 (12) | 0.0271 (12) | 0.0233 (11) | −0.0074 (10) | −0.0015 (9) | −0.0008 (9) |
C222 | 0.0325 (12) | 0.0309 (13) | 0.0260 (12) | −0.0089 (10) | 0.0016 (9) | −0.0009 (9) |
C223 | 0.0375 (13) | 0.0326 (13) | 0.0221 (11) | −0.0064 (10) | 0.0014 (9) | −0.0034 (9) |
C224 | 0.0374 (12) | 0.0234 (11) | 0.0245 (11) | −0.0074 (10) | −0.0044 (9) | −0.0012 (9) |
C225 | 0.0333 (12) | 0.0359 (13) | 0.0296 (12) | −0.0111 (10) | 0.0015 (10) | −0.0045 (10) |
C226 | 0.0323 (12) | 0.0347 (13) | 0.0242 (11) | −0.0098 (10) | 0.0025 (9) | −0.0038 (9) |
N227 | 0.0400 (12) | 0.0325 (12) | 0.0293 (11) | −0.0056 (9) | −0.0053 (9) | −0.0058 (9) |
C231 | 0.0224 (11) | 0.0391 (14) | 0.0230 (11) | −0.0099 (10) | −0.0018 (9) | −0.0049 (10) |
C232 | 0.0235 (11) | 0.0407 (14) | 0.0236 (11) | −0.0088 (10) | −0.0039 (9) | −0.0067 (10) |
C233 | 0.0234 (11) | 0.0355 (14) | 0.0314 (12) | −0.0081 (10) | −0.0036 (9) | −0.0048 (10) |
C234 | 0.0223 (11) | 0.0414 (14) | 0.0267 (11) | −0.0086 (10) | −0.0037 (9) | 0.0015 (10) |
C235 | 0.0254 (11) | 0.0476 (15) | 0.0216 (11) | −0.0098 (10) | −0.0011 (9) | −0.0038 (10) |
C236 | 0.0266 (11) | 0.0406 (14) | 0.0257 (11) | −0.0110 (10) | −0.0008 (9) | −0.0068 (10) |
N237 | 0.0253 (10) | 0.0434 (14) | 0.0364 (12) | −0.0071 (9) | −0.0013 (8) | 0.0070 (10) |
C241 | 0.0442 (14) | 0.0300 (13) | 0.0316 (12) | −0.0130 (11) | 0.0002 (10) | −0.0051 (10) |
C242 | 0.0566 (17) | 0.0313 (15) | 0.0480 (16) | −0.0143 (13) | 0.0027 (13) | 0.0013 (12) |
C243 | 0.0381 (13) | 0.0378 (14) | 0.0362 (12) | −0.0109 (11) | −0.0026 (10) | −0.0061 (10) |
O15—C15 | 1.213 (3) | C132—H132 | 0.9500 |
O25—C25 | 1.214 (3) | C133—C134 | 1.389 (3) |
O128—N127 | 1.219 (3) | C133—H133 | 0.9500 |
O129—N127 | 1.229 (3) | C134—C135 | 1.373 (4) |
O138—N137 | 1.224 (3) | C134—N137 | 1.472 (3) |
O139—N137 | 1.228 (3) | C135—C136 | 1.386 (4) |
O228—N227 | 1.212 (3) | C135—H135 | 0.9500 |
O229—N227 | 1.220 (3) | C136—H136 | 0.9500 |
O238—N237 | 1.229 (3) | C141—C143 | 1.523 (4) |
O239—N237 | 1.229 (3) | C141—C142 | 1.524 (4) |
N11—C15 | 1.388 (3) | C141—H141 | 1.0000 |
N11—N111 | 1.388 (3) | C142—H14D | 0.9800 |
N11—C12 | 1.477 (3) | C142—H14E | 0.9800 |
N13—C12 | 1.456 (3) | C142—H14F | 0.9800 |
N13—C14 | 1.479 (3) | C143—H14A | 0.9800 |
N13—H13 | 0.89 (3) | C143—H14B | 0.9800 |
N21—C25 | 1.375 (3) | C143—H14C | 0.9800 |
N21—N211 | 1.384 (3) | C212—C231 | 1.469 (3) |
N21—C22 | 1.470 (3) | C212—H212 | 0.9500 |
N23—C22 | 1.471 (3) | C221—C226 | 1.391 (3) |
N23—C24 | 1.477 (3) | C221—C222 | 1.396 (3) |
N23—H23 | 0.89 (4) | C222—C223 | 1.385 (3) |
N111—C112 | 1.282 (3) | C222—H222 | 0.9500 |
N211—C212 | 1.286 (3) | C223—C224 | 1.384 (3) |
C12—C121 | 1.507 (3) | C223—H223 | 0.9500 |
C12—H12 | 1.0000 | C224—C225 | 1.385 (3) |
C14—C15 | 1.516 (3) | C224—N227 | 1.473 (3) |
C14—C141 | 1.518 (3) | C225—C226 | 1.387 (3) |
C14—H14 | 1.0000 | C225—H225 | 0.9500 |
C22—C221 | 1.510 (3) | C226—H226 | 0.9500 |
C22—H22 | 1.0000 | C231—C232 | 1.396 (4) |
C24—C25 | 1.515 (3) | C231—C236 | 1.401 (3) |
C24—C241 | 1.533 (3) | C232—C233 | 1.382 (4) |
C24—H24 | 1.0000 | C232—H232 | 0.9500 |
C112—C131 | 1.465 (3) | C233—C234 | 1.392 (3) |
C112—H112 | 0.9500 | C233—H233 | 0.9500 |
C121—C126 | 1.389 (3) | C234—C235 | 1.385 (4) |
C121—C122 | 1.397 (3) | C234—N237 | 1.467 (3) |
C122—C123 | 1.381 (3) | C235—C236 | 1.382 (4) |
C122—H122 | 0.9500 | C235—H235 | 0.9500 |
C123—C124 | 1.379 (4) | C236—H236 | 0.9500 |
C123—H123 | 0.9500 | C241—C242 | 1.521 (4) |
C124—C125 | 1.379 (3) | C241—C243 | 1.524 (4) |
C124—N127 | 1.471 (3) | C241—H241 | 1.0000 |
C125—C126 | 1.389 (3) | C242—H24A | 0.9800 |
C125—H125 | 0.9500 | C242—H24B | 0.9800 |
C126—H126 | 0.9500 | C242—H24C | 0.9800 |
C131—C132 | 1.395 (3) | C243—H24D | 0.9800 |
C131—C136 | 1.402 (3) | C243—H24E | 0.9800 |
C132—C133 | 1.377 (3) | C243—H24F | 0.9800 |
C15—N11—N111 | 123.74 (18) | C131—C136—H136 | 119.9 |
C15—N11—C12 | 109.37 (18) | O138—N137—O139 | 123.9 (2) |
N111—N11—C12 | 115.87 (18) | O138—N137—C134 | 118.2 (2) |
C12—N13—C14 | 104.96 (18) | O139—N137—C134 | 117.8 (2) |
C12—N13—H13 | 105.6 (19) | C14—C141—C143 | 112.28 (19) |
C14—N13—H13 | 109.4 (19) | C14—C141—C142 | 111.7 (2) |
C25—N21—N211 | 129.5 (2) | C143—C141—C142 | 112.2 (2) |
C25—N21—C22 | 112.2 (2) | C14—C141—H141 | 106.7 |
N211—N21—C22 | 116.06 (19) | C143—C141—H141 | 106.7 |
C22—N23—C24 | 109.21 (19) | C142—C141—H141 | 106.7 |
C22—N23—H23 | 111 (2) | C141—C142—H14D | 109.5 |
C24—N23—H23 | 112 (2) | C141—C142—H14E | 109.5 |
C112—N111—N11 | 117.58 (19) | H14D—C142—H14E | 109.5 |
C212—N211—N21 | 118.4 (2) | C141—C142—H14F | 109.5 |
N13—C12—N11 | 104.41 (18) | H14D—C142—H14F | 109.5 |
N13—C12—C121 | 112.35 (19) | H14E—C142—H14F | 109.5 |
N11—C12—C121 | 114.42 (19) | C141—C143—H14A | 109.5 |
N13—C12—H12 | 108.5 | C141—C143—H14B | 109.5 |
N11—C12—H12 | 108.5 | H14A—C143—H14B | 109.5 |
C121—C12—H12 | 108.5 | C141—C143—H14C | 109.5 |
N13—C14—C15 | 105.22 (17) | H14A—C143—H14C | 109.5 |
N13—C14—C141 | 115.33 (19) | H14B—C143—H14C | 109.5 |
C15—C14—C141 | 113.03 (19) | N211—C212—C231 | 119.8 (2) |
N13—C14—H14 | 107.6 | N211—C212—H212 | 120.1 |
C15—C14—H14 | 107.6 | C231—C212—H212 | 120.1 |
C141—C14—H14 | 107.6 | C226—C221—C222 | 119.4 (2) |
O15—C15—N11 | 125.9 (2) | C226—C221—C22 | 122.8 (2) |
O15—C15—C14 | 127.3 (2) | C222—C221—C22 | 117.8 (2) |
N11—C15—C14 | 106.73 (18) | C223—C222—C221 | 121.0 (2) |
N21—C22—N23 | 104.4 (2) | C223—C222—H222 | 119.5 |
N21—C22—C221 | 114.65 (19) | C221—C222—H222 | 119.5 |
N23—C22—C221 | 110.4 (2) | C224—C223—C222 | 118.1 (2) |
N21—C22—H22 | 109.1 | C224—C223—H223 | 120.9 |
N23—C22—H22 | 109.1 | C222—C223—H223 | 120.9 |
C221—C22—H22 | 109.1 | C223—C224—C225 | 122.4 (2) |
N23—C24—C25 | 104.9 (2) | C223—C224—N227 | 118.9 (2) |
N23—C24—C241 | 113.3 (2) | C225—C224—N227 | 118.7 (2) |
C25—C24—C241 | 111.6 (2) | C224—C225—C226 | 118.6 (2) |
N23—C24—H24 | 108.9 | C224—C225—H225 | 120.7 |
C25—C24—H24 | 108.9 | C226—C225—H225 | 120.7 |
C241—C24—H24 | 108.9 | C225—C226—C221 | 120.5 (2) |
O25—C25—N21 | 126.1 (2) | C225—C226—H226 | 119.8 |
O25—C25—C24 | 125.9 (2) | C221—C226—H226 | 119.8 |
N21—C25—C24 | 108.0 (2) | O228—N227—O229 | 123.0 (2) |
N111—C112—C131 | 119.0 (2) | O228—N227—C224 | 118.5 (2) |
N111—C112—H112 | 120.5 | O229—N227—C224 | 118.5 (2) |
C131—C112—H112 | 120.5 | C232—C231—C236 | 119.5 (2) |
C126—C121—C122 | 119.4 (2) | C232—C231—C212 | 122.6 (2) |
C126—C121—C12 | 123.4 (2) | C236—C231—C212 | 117.9 (2) |
C122—C121—C12 | 117.2 (2) | C233—C232—C231 | 120.6 (2) |
C123—C122—C121 | 121.2 (2) | C233—C232—H232 | 119.7 |
C123—C122—H122 | 119.4 | C231—C232—H232 | 119.7 |
C121—C122—H122 | 119.4 | C232—C233—C234 | 118.4 (2) |
C124—C123—C122 | 117.7 (2) | C232—C233—H233 | 120.8 |
C124—C123—H123 | 121.1 | C234—C233—H233 | 120.8 |
C122—C123—H123 | 121.1 | C235—C234—C233 | 122.5 (2) |
C125—C124—C123 | 122.8 (2) | C235—C234—N237 | 118.5 (2) |
C125—C124—N127 | 118.7 (2) | C233—C234—N237 | 119.0 (2) |
C123—C124—N127 | 118.4 (2) | C236—C235—C234 | 118.4 (2) |
C124—C125—C126 | 118.7 (2) | C236—C235—H235 | 120.8 |
C124—C125—H125 | 120.7 | C234—C235—H235 | 120.8 |
C126—C125—H125 | 120.7 | C235—C236—C231 | 120.6 (2) |
C121—C126—C125 | 120.1 (2) | C235—C236—H236 | 119.7 |
C121—C126—H126 | 120.0 | C231—C236—H236 | 119.7 |
C125—C126—H126 | 120.0 | O239—N237—O238 | 123.4 (2) |
O128—N127—O129 | 122.8 (2) | O239—N237—C234 | 118.0 (2) |
O128—N127—C124 | 118.8 (2) | O238—N237—C234 | 118.6 (2) |
O129—N127—C124 | 118.3 (2) | C242—C241—C243 | 111.2 (2) |
C132—C131—C136 | 119.3 (2) | C242—C241—C24 | 110.5 (2) |
C132—C131—C112 | 121.6 (2) | C243—C241—C24 | 111.3 (2) |
C136—C131—C112 | 119.1 (2) | C242—C241—H241 | 107.9 |
C133—C132—C131 | 121.1 (2) | C243—C241—H241 | 107.9 |
C133—C132—H132 | 119.5 | C24—C241—H241 | 107.9 |
C131—C132—H132 | 119.5 | C241—C242—H24A | 109.5 |
C132—C133—C134 | 118.0 (2) | C241—C242—H24B | 109.5 |
C132—C133—H133 | 121.0 | H24A—C242—H24B | 109.5 |
C134—C133—H133 | 121.0 | C241—C242—H24C | 109.5 |
C135—C134—C133 | 122.9 (2) | H24A—C242—H24C | 109.5 |
C135—C134—N137 | 119.2 (2) | H24B—C242—H24C | 109.5 |
C133—C134—N137 | 118.0 (2) | C241—C243—H24D | 109.5 |
C134—C135—C136 | 118.7 (2) | C241—C243—H24E | 109.5 |
C134—C135—H135 | 120.7 | H24D—C243—H24E | 109.5 |
C136—C135—H135 | 120.7 | C241—C243—H24F | 109.5 |
C135—C136—C131 | 120.1 (2) | H24D—C243—H24F | 109.5 |
C135—C136—H136 | 119.9 | H24E—C243—H24F | 109.5 |
C15—N11—N111—C112 | 43.7 (3) | C136—C131—C132—C133 | −0.8 (3) |
C12—N11—N111—C112 | −176.19 (19) | C112—C131—C132—C133 | 178.75 (19) |
C25—N21—N211—C212 | −18.6 (3) | C131—C132—C133—C134 | 0.0 (3) |
C22—N21—N211—C212 | 179.98 (19) | C132—C133—C134—C135 | 0.6 (3) |
C14—N13—C12—N11 | 30.7 (2) | C132—C133—C134—N137 | 179.92 (18) |
C14—N13—C12—C121 | 155.3 (2) | C133—C134—C135—C136 | −0.5 (3) |
C15—N11—C12—N13 | −25.8 (2) | N137—C134—C135—C136 | −179.8 (2) |
N111—N11—C12—N13 | −171.33 (18) | C134—C135—C136—C131 | −0.3 (3) |
C15—N11—C12—C121 | −149.0 (2) | C132—C131—C136—C135 | 0.9 (3) |
N111—N11—C12—C121 | 65.4 (3) | C112—C131—C136—C135 | −178.6 (2) |
C12—N13—C14—C15 | −25.1 (2) | C135—C134—N137—O138 | 172.8 (2) |
C12—N13—C14—C141 | −150.3 (2) | C133—C134—N137—O138 | −6.5 (3) |
N111—N11—C15—O15 | −26.3 (4) | C135—C134—N137—O139 | −7.6 (3) |
C12—N11—C15—O15 | −168.6 (2) | C133—C134—N137—O139 | 173.1 (2) |
N111—N11—C15—C14 | 152.1 (2) | N13—C14—C141—C143 | 59.6 (3) |
C12—N11—C15—C14 | 9.9 (3) | C15—C14—C141—C143 | −61.5 (3) |
N13—C14—C15—O15 | −172.1 (2) | N13—C14—C141—C142 | −67.5 (3) |
C141—C14—C15—O15 | −45.4 (3) | C15—C14—C141—C142 | 171.4 (2) |
N13—C14—C15—N11 | 9.5 (2) | N21—N211—C212—C231 | −179.07 (18) |
C141—C14—C15—N11 | 136.1 (2) | N21—C22—C221—C226 | −9.1 (3) |
C25—N21—C22—N23 | 9.8 (3) | N23—C22—C221—C226 | 108.5 (3) |
N211—N21—C22—N23 | 174.33 (17) | N21—C22—C221—C222 | 173.6 (2) |
C25—N21—C22—C221 | 130.7 (2) | N23—C22—C221—C222 | −68.8 (3) |
N211—N21—C22—C221 | −64.7 (3) | C226—C221—C222—C223 | −2.2 (4) |
C24—N23—C22—N21 | −11.1 (3) | C22—C221—C222—C223 | 175.3 (2) |
C24—N23—C22—C221 | −134.8 (2) | C221—C222—C223—C224 | 1.5 (4) |
C22—N23—C24—C25 | 8.6 (3) | C222—C223—C224—C225 | 0.4 (4) |
C22—N23—C24—C241 | −113.4 (2) | C222—C223—C224—N227 | −178.5 (2) |
N211—N21—C25—O25 | 12.8 (4) | C223—C224—C225—C226 | −1.7 (4) |
C22—N21—C25—O25 | 174.8 (2) | N227—C224—C225—C226 | 177.2 (2) |
N211—N21—C25—C24 | −166.5 (2) | C224—C225—C226—C221 | 1.1 (4) |
C22—N21—C25—C24 | −4.6 (3) | C222—C221—C226—C225 | 0.8 (4) |
N23—C24—C25—O25 | 178.1 (2) | C22—C221—C226—C225 | −176.5 (2) |
C241—C24—C25—O25 | −58.8 (3) | C223—C224—N227—O228 | 1.5 (3) |
N23—C24—C25—N21 | −2.5 (3) | C225—C224—N227—O228 | −177.5 (2) |
C241—C24—C25—N21 | 120.6 (2) | C223—C224—N227—O229 | 178.7 (2) |
N11—N111—C112—C131 | −177.45 (18) | C225—C224—N227—O229 | −0.3 (3) |
N13—C12—C121—C126 | −109.4 (3) | N211—C212—C231—C232 | 9.0 (3) |
N11—C12—C121—C126 | 9.5 (3) | N211—C212—C231—C236 | −172.1 (2) |
N13—C12—C121—C122 | 71.3 (3) | C236—C231—C232—C233 | 0.4 (3) |
N11—C12—C121—C122 | −169.9 (2) | C212—C231—C232—C233 | 179.3 (2) |
C126—C121—C122—C123 | −1.5 (4) | C231—C232—C233—C234 | −0.4 (3) |
C12—C121—C122—C123 | 177.8 (2) | C232—C233—C234—C235 | 0.1 (3) |
C121—C122—C123—C124 | −0.8 (4) | C232—C233—C234—N237 | −179.35 (19) |
C122—C123—C124—C125 | 2.0 (4) | C233—C234—C235—C236 | 0.2 (3) |
C122—C123—C124—N127 | −177.5 (2) | N237—C234—C235—C236 | 179.65 (19) |
C123—C124—C125—C126 | −0.8 (4) | C234—C235—C236—C231 | −0.2 (3) |
N127—C124—C125—C126 | 178.8 (2) | C232—C231—C236—C235 | −0.1 (3) |
C122—C121—C126—C125 | 2.8 (4) | C212—C231—C236—C235 | −179.0 (2) |
C12—C121—C126—C125 | −176.5 (2) | C235—C234—N237—O239 | 5.9 (3) |
C124—C125—C126—C121 | −1.7 (4) | C233—C234—N237—O239 | −174.7 (2) |
C125—C124—N127—O128 | 177.3 (2) | C235—C234—N237—O238 | −174.1 (2) |
C123—C124—N127—O128 | −3.1 (4) | C233—C234—N237—O238 | 5.3 (3) |
C125—C124—N127—O129 | −1.2 (4) | N23—C24—C241—C242 | −77.5 (3) |
C123—C124—N127—O129 | 178.4 (2) | C25—C24—C241—C242 | 164.3 (2) |
N111—C112—C131—C132 | −7.8 (3) | N23—C24—C241—C243 | 46.6 (3) |
N111—C112—C131—C136 | 171.7 (2) | C25—C24—C241—C243 | −71.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N23—H23···O128i | 0.89 (4) | 2.55 (4) | 3.338 (3) | 147 (3) |
N23—H23···O129i | 0.89 (4) | 2.36 (4) | 3.202 (3) | 159 (3) |
C112—H112···O15 | 0.95 | 2.30 | 2.822 (3) | 114 |
C212—H212···O25 | 0.95 | 2.16 | 2.832 (3) | 127 |
C133—H133···O15ii | 0.95 | 2.29 | 3.154 (3) | 151 |
C233—H233···O25iii | 0.95 | 2.36 | 3.141 (3) | 139 |
C243—H24D···O138 | 0.98 | 2.52 | 3.480 (3) | 165 |
C122—H122···O129iv | 0.95 | 2.48 | 3.212 (3) | 134 |
C222—H222···O229v | 0.95 | 2.60 | 3.297 (3) | 131 |
C226—H226···O139iv | 0.95 | 2.57 | 3.197 (3) | 124 |
Symmetry codes: (i) x+1, y−1, z+1; (ii) x, y−1, z; (iii) x, y+1, z; (iv) x+1, y, z; (v) x−1, y, z. |
Cg(I) | Cg(J) | Cg–Cg | Slippage |
Cg3 | Cg6(x-1, y, z) | 3.6278 (13) | 1.394 |
Cg3 | Cg6(x, y, z) | 3.7548 (13) | 1.772 |
Cg6 | Cg3(x+1, y, z) | 3.6277 (13) | 1.433 |
Cg6 | Cg3(x, y, z) | 3.7548 (13) | 1.672 |
Notes: Cg(I) = plane number I, Cg–Cg = distance between ring centroids (Å), slippage = distance between Cg(I) and perpendicular projection of Cg(J) on ring I (Å). Cg3 and Cg6 are the centroids of ring with pivot atoms C131 and C231, respectively. |
p-NO2 (ring A) | p-NO2 (ring B) | (ring C) | ||||
O138/O238 | O139/O239 | O128/O228 | O129/O229 | O15/O25 | N—H13/N—H23 | |
MolA | A···B (III) | A···B (V) | A···B (IV) | A···B (II) A···B (IV) | A···A (I) | |
MolB | B···A (III) | B···B (IX) | B···B (VIII) | B···A (IV) |
1 | H···H | H···O/O···H | H···C/C···H | C···C | H···N/N···H | O···C/C···O | O···N /N···O | C···N/N···C | N···N | O···O |
MolA | 36.9 | 35.5 | 11.3 | 4.7 | 2.2 | 3.1 | 1.7 | 1.9 | 1.0 | 1.6 |
MolB | 36.5 | 36.2 | 11.5 | 4.7 | 1.6 | 3.3 | 1.7 | 1.9 | 1.0 | 1.6 |
Acknowledgements
The authors thank the staff at the National Crystallographic Service, University of Southampton (Coles & Gale, 2012), for the data collection, help and advice.
References
Barrow, J. C., Rittle, K. E., Ngo, P. L., Selnick, H. G., Graham, S. L., Pitzenberger, S. M., McGaughey, G. B., Colussi, D., Lai, M. T., Huang, Q., Tugusheva, K., Espesth, A. S., Simon, A. J. K., Munishi, S. K. & Vacca, J. P. (2007). ChemMedChem, 2, 995–999. CrossRef PubMed CAS Google Scholar
Blackmore, T. R. & Thompson, P. E. (2011). Heterocycles, 83, 1953–1975. CAS Google Scholar
Brase, S., Volz, N., Glaser, F. & Nieger, M. (2012). Beilstein J. Org. Chem, 8, 1385–1392. CAS PubMed Google Scholar
Catalano, A., Carocci, A., Lentini, G., Di Mola, A., Bruno, C. & Francini, C. (2011). Heterocycl. Chem. 48, 261–266. CrossRef CAS Google Scholar
Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683–689. Web of Science CSD CrossRef CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Elrod, D. B. & Worley, S. D. (1999). J. Bioact. Compat. Pol. 14, 258–269. CrossRef CAS Google Scholar
Eyilcim, O., Issever, S., Ocal, N., Gronert, S. & Erden, I. (2018). Tetrahedron Lett. 59, 3674–3677. CrossRef CAS PubMed Google Scholar
Gavezzotti, A. (2003). J. Phys. Chem. B, 107, 2344–2353. Web of Science CrossRef CAS Google Scholar
Gavezzotti, A. (2008). Mol. Phys. 106, 1473–1485. Web of Science CrossRef CAS Google Scholar
Gomes, P., Araujo, M. J., Rodfrigues, M., Vale, N., Azevedo, Z., Iley, J., Chambel, P., Morais, J. & Moreira, R. (2004). Tetrahedron, 60, 5551–5562. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guerra, A. S. H. D., Malta, D. J. D., Laranjeira, L. P. M., Maia, M. B. S., Colaco, N. C., de Lima, M. D. A., Galdino, S. L., Pitta, I. D. & Goncalves-Silva, T. (2011). Int. J. Immunopharmacol. 11, 1816–1822. CAS Google Scholar
Holland, M. C., Metternich, J. B., Daniliuc, C., Schweizer, W. C. & Gilmour, R. (2015). Chem. Eur. J. 21, 10031–10038. CrossRef CAS PubMed Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Kojic-Prodic, B., Peric, B., Roscic, M., Novak, P. & Horvat, S. (2004). J. Pept. Sci. 10, 47–55. PubMed CAS Google Scholar
Li, J. Z., Zhang, Z. F. & Fan, E. K. (2004). Tetrahedron Lett. 45, 1267–1284. CrossRef CAS Google Scholar
Lin, Z., Chen, Z., Yang, G. & Lu, C. (2013). Catal. Commun. 35, 105. CrossRef Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
McArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm, 6, 300–309. CrossRef Google Scholar
Mondini, S., Puglisi, A., Benaglia, M., Ramella, D., Drago, C., Ferretti, A. M. & Ponti, A. (2013). J. Nanopart. Res. 15, article no. UNSP 2025. CrossRef Google Scholar
Nieger, M. (2000). CSD Communication (Private Communication). CCDC, Cambridge, England. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Puglisi, A., Benaglia, M., Annunziata, R., Chiroli, V., Porta, R. & Gervasini, A. (2013). J. Org. Chem. 78, 11326–11334. CrossRef CAS PubMed Google Scholar
Rigaku OD (2017). CryAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Seebach, D., Groselj, U., Baldine, D. M., Schweizer, W. B. & Beck, A. K. (2008). Helv. Chim. Acta, 91, 1999–2034. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vale, N., Matos, J., Moreira, R. & Gomes, T. (2008). Tetrahedron, 64, 11144–11149. CrossRef CAS Google Scholar
Vale, N., Nogueira, F., do Rosario, V. E., Gomes, P. & Moreira, R. (2009). Eur. J. Med. Chem. 44, 2506–2516. CrossRef PubMed CAS Google Scholar
Verardo, G., Geatti, P., Martinuzzi, P., Merli, M. & Toniutti, N. (2003). Eur. J. Org. Chem. 2003, 3840–2849. CrossRef Google Scholar
Wolff, S. K., Grimwood, D. I., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. Version 3.1. The University of Western Australia. Google Scholar
Xu, Z., Buechler, T., Wheeler, K. & Wang, H. (2010). Chem. Eur. J. 16, 2972–2976. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.