research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and PIXEL calculations of a 1:1 epimeric mixture of 3-[(4-nitro­benzyl­­idene)amino]-2(R,S)-(4-nitro­phenyl)-5(S)-(propan-2-yl)imidazolidin-4-one

aREQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto, Portugal, bFP-ENAS-Faculdade de Ciências de Saúde, Escola Superior de Saúde da UFP, Universidade Fernando Pessoa, Rua Carlos da Maia, 296, P-4200-150 Porto, Portugal, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dInstituto de Tecnologia em Fármacos–Farmanguinhos, Fundaçâo Oswaldo Cruz, 21041-250 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: jnlow111@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 2 October 2019; accepted 11 October 2019; online 29 October 2019)

A 1:1 epimeric mixture of 3-[(4-nitro­benzyl­idene)amino]-2(R,S)-(4-nitro­phen­yl)-5(S)-(propan-2-yl)imidazolidin-4-one, C19H19N5O5, was isolated from a reaction mixture of 2(S)-amino-3-methyl-1-oxo­butane­hydrazine and 4-nitro­benz­alde­hyde in ethanol. The product was derived from an initial reaction of 2(S)-amino-3-methyl-1-oxo­butane­hydrazine at its hydrazine group to provide a 4-nitro­benzyl­idene derivative, followed by a cyclization reaction with another mol­ecule of 4-nitro­benzaldehyde to form the chiral five-membered imidazolidin-4-one ring. The formation of the five-membered imidazolidin-4-one ring occurred with retention of the configuration at the 5-position, but with racemization at the 2-position. In the crystal, N—H⋯O(nitro) hydrogen bonds, weak C—H⋯O(carbon­yl) and C—H⋯O(nitro) hydrogen bonds, as well as C—H⋯π, N—H⋯π and ππ inter­actions, are present. These combine to generate a three-dimensional array. Hirshfeld surface analysis and PIXEL calculations are also reported.

1. Chemical context

Imidazolidin-4-ones have been widely studied (Blackmore & Thompson, 2011[Blackmore, T. R. & Thompson, P. E. (2011). Heterocycles, 83, 1953-1975.]) due to their wide range of uses, for example, as chiral ligands in catalysis (Lin et al., 2013[Lin, Z., Chen, Z., Yang, G. & Lu, C. (2013). Catal. Commun. 35, 105.]; Mondini et al., 2013[Mondini, S., Puglisi, A., Benaglia, M., Ramella, D., Drago, C., Ferretti, A. M. & Ponti, A. (2013). J. Nanopart. Res. 15, article no. UNSP 2025.]; Seebach et al., 2008[Seebach, D., Groselj, U., Baldine, D. M., Schweizer, W. B. & Beck, A. K. (2008). Helv. Chim. Acta, 91, 1999-2034.]; Puglisi et al., 2013[Puglisi, A., Benaglia, M., Annunziata, R., Chiroli, V., Porta, R. & Gervasini, A. (2013). J. Org. Chem. 78, 11326-11334.]) and for their biological activities (Elrod & Worley, 1999[Elrod, D. B. & Worley, S. D. (1999). J. Bioact. Compat. Pol. 14, 258-269.]; Gomes et al., 2004[Gomes, P., Araujo, M. J., Rodfrigues, M., Vale, N., Azevedo, Z., Iley, J., Chambel, P., Morais, J. & Moreira, R. (2004). Tetrahedron, 60, 5551-5562.]; Guerra et al., 2011[Guerra, A. S. H. D., Malta, D. J. D., Laranjeira, L. P. M., Maia, M. B. S., Colaco, N. C., de Lima, M. D. A., Galdino, S. L., Pitta, I. D. & Goncalves-Silva, T. (2011). Int. J. Immunopharmacol. 11, 1816-1822.]; Barrow et al., 2007[Barrow, J. C., Rittle, K. E., Ngo, P. L., Selnick, H. G., Graham, S. L., Pitzenberger, S. M., McGaughey, G. B., Colussi, D., Lai, M. T., Huang, Q., Tugusheva, K., Espesth, A. S., Simon, A. J. K., Munishi, S. K. & Vacca, J. P. (2007). ChemMedChem, 2, 995-999.]). As a consequence of their utility, there are a number of well-established synthetic routes, in particular those involving chiral synthesis (Blackmore & Thompson, 2011[Blackmore, T. R. & Thompson, P. E. (2011). Heterocycles, 83, 1953-1975.]; Eyilcim et al., 2018[Eyilcim, O., Issever, S., Ocal, N., Gronert, S. & Erden, I. (2018). Tetrahedron Lett. 59, 3674-3677.]; Li et al., 2004[Li, J. Z., Zhang, Z. F. & Fan, E. K. (2004). Tetrahedron Lett. 45, 1267-1284.]; Vale et al., 2008[Vale, N., Matos, J., Moreira, R. & Gomes, T. (2008). Tetrahedron, 64, 11144-11149.], 2009[Vale, N., Nogueira, F., do Rosario, V. E., Gomes, P. & Moreira, R. (2009). Eur. J. Med. Chem. 44, 2506-2516.]; Catalano et al., 2011[Catalano, A., Carocci, A., Lentini, G., Di Mola, A., Bruno, C. & Francini, C. (2011). Heterocycl. Chem. 48, 261-266.]; Xu et al., 2010[Xu, Z., Buechler, T., Wheeler, K. & Wang, H. (2010). Chem. Eur. J. 16, 2972-2976.]). As part of our studies on nitro­gen-containing heterocyclic com­pounds, we report the crystal structure, Hirshfeld surface analysis and PIXEL calculations of a 1:1 epimeric mixture of 3-[(4-nitro­benzyl­idene)amino]-2(R,S)-(4-nitro­phen­yl)-5(S)-(pro­pan-2-yl)imidazolidin-4-one, 1.

2. Structural commentary

The title com­pound, 1, contains one mol­ecule each of the epimers in the asymmetric unit. The 3-[(4-nitro­benzyl­idene)amino]-2(S)-(4-nitro­phen­yl)-5(S)-(propan-2-yl)imidazolidin-4-one stereoisomer is termed MolA and the 3-[(4-nitro­benzyl­idene)amino]-2(R)-(4-nitro­phen­yl)-5(S)-(propan-2-yl)imidazolidin-4-one stereoisomer is termed MolB (see Figs. 1[link]a and 1b). In MolA, the configurations at atoms C12 and C14 are S. In MolB, the configurations at atoms C12 and C14 are R and S, respectively (Fig. 1[link]). The asymmetric unit is shown in Fig. 1[link](c).

[Figure 1]
Figure 1
Compound 1, showing the mol­ecular structures and numbering schemes for (a) MolA and (b) MolB. Displacement ellipsoids are drawn at the 50% probability level. (c) The asymmetric unit containing MolA and MolB, with rings designated as A, B and C.

In both mol­ecules, the imidazoline rings are puckered, the puckers in each case being a twist at C12—N13 and C22—N23 in MolA and MolB, respectively. In the case of MolA, the Cremer & Pople puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) are Q(2) of 0.287 (2)Å and φ(2) of 54.7 (5)° for reference bond N11—C12; for MolB, Q(2) is 0.103 (3)Å and φ(2) is 230.3 (15)° for reference bond N21—C22. In MolA, the dihedral angles between the mean planes of the imidazoline ring and the benzene ring (pivot atom C121) is 45.83 (18)°, between the imidazoline ring and the benzene ring (pivot atom C131) is 28.04 (12)° and between the two benzene rings is 69.86 (11)°. In MolB, the dihedral angles between the mean planes of the imidazoline ring and the benzene ring (pivot atom C221) is 59.83 (13)°, between the imidazoline ring and the benzene ring (pivot atom C131) is 6.86 (13)° and between the two benzene rings is 66.38 (11).

3. Supra­molecular features

3.1. Inter­molecular inter­actions and contacts

As seen, each of the mol­ecules of the asymmetric unit (Fig. 1[link]c) has two nitro groups, whose O atoms can act as acceptors for hydrogen bonding, and three rings that are able to participate in ππ stacking. Fig. 1[link](c) shows the two mol­ecules labelled for the nitro O atom and the oxo atoms (O15 and O25), as well as the identification of ring A (benzene rings with pivot atoms C131 and C231), B (benzene rings with pivot atoms C121 and C221) and C (imidazoline rings).

A PLATON analysis (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) indicates the possibility in 1 of N—H⋯O(nitro), C—H⋯O(nitro) and C—H⋯O(oxo) hydrogen bonds, and C—H⋯π, N—O⋯π and ππ inter­molecular inter­actions. All details of the hydrogen bonding (mol­ecular contacts) and ππ stacking are given in Tables 1[link] and 2[link], respectively. Noticeable among these is the three-centred hydrogen bond between N23 in MolB and the nitro-group atoms O128/O129 in MolA (symmetry code: x + 1, y − 1, z + 1), which generate chains running parallel to the [1[\overline{1}]1] direction. Within the chosen asymmetric unit (see Fig. 1[link]c), the benzene rings with pivot atoms C131 and C231 are ππ stacked, forming a dimer. This stacking is supplemented by the C22—H22⋯O139, C243—H24D⋯O138 and C12—H12⋯O239 weak hydrogen bonds. Details are given in Tables 1[link] and 2[link]. Such ππ-linked dimers are linked by further ππ inter­actions, forming a ππ stacked column, which extends along the a axis by unit translation (see Table 2[link]). The C122—H122⋯O129 and C224—H224⋯O229 weak hydrogen bonds

[Scheme 1]
supplement the inter­dimer ππ stacking (Fig. 2[link]). These ππ-stacked dimers are also linked by the N23—H23⋯O128/O129 hydrogen bond described above; this inter­action creates chains, which propagate parallel to the [1[\overline{1}]1] direction (Fig. 3[link], see Table 1[link] for details). The C112—H112⋯ O15 and C212—H21⋯O25 are possible intra­molecular hydrogen bonds. The C133—H133⋯O15(x, y − 1, z) and C233—H233⋯O25(x, y − 1, z) hydrogen bonds, found by PLATON, separately create C(9) chains that propagate in the direction of the b axis. There is one inter­molecular C—H⋯π inter­action involving C143—H14ACg2(x, y + 1, z) [Cg2 is the centroid of the benzene ring with pivot atom C121(x, y + 1, z)], with an H⋯Cg2 distance of 2.95°, an angle at H of 128° and a C143⋯Cg2 distance of 3.638 (3)°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N23—H23⋯O128i 0.89 (4) 2.55 (4) 3.338 (3) 147 (3)
N23—H23⋯O129i 0.89 (4) 2.36 (4) 3.202 (3) 159 (3)
C112—H112⋯O15 0.95 2.30 2.822 (3) 114
C212—H212⋯O25 0.95 2.16 2.832 (3) 127
C133—H133⋯O15ii 0.95 2.29 3.154 (3) 151
C233—H233⋯O25iii 0.95 2.36 3.141 (3) 139
C243—H24D⋯O138 0.98 2.52 3.480 (3) 165
C122—H122⋯O129iv 0.95 2.48 3.212 (3) 134
C222—H222⋯O229v 0.95 2.60 3.297 (3) 131
C226—H226⋯O139iv 0.95 2.57 3.197 (3) 124
Symmetry codes: (i) x+1, y-1, z+1; (ii) x, y-1, z; (iii) x, y+1, z; (iv) x+1, y, z; (v) x-1, y, z.

Table 2
Analysis of short ring inter­actions with the CgCg distances

Cg(I) Cg(J) CgCg Slippage
Cg3 Cg6(x − 1, y, z) 3.6278 (13) 1.394
Cg3 Cg6(x, y, z) 3.7548 (13) 1.772
Cg6 Cg3(x + 1, y, z) 3.6277 (13) 1.433
Cg6 Cg3(x, y, z) 3.7548 (13) 1.672
Notes: Cg(I) = plane number I, CgCg = distance between ring centroids (Å), slippage = distance between Cg(I) and perpendicular projection of Cg(J) on ring I (Å). Cg3 and Cg6 are the centroids of the rings with pivot atoms C131 and C231, respectively.
[Figure 2]
Figure 2
Dimers of ππ stacked MolA and MolB, which com­prise the asymmetric unit, further linked by ππ inter­actions extending the chain by unit translation along the a axis. The ππ inter­actions are augmented by C—H⋯O hydrogen bonds.
[Figure 3]
Figure 3
Part of a chain of mol­ecules linked by N23⋯·O128/129 hydrogen bonds connect the asymmetric unit dimers into a chain. Only the atoms in the N23⋯O128/O129 three-centred hydrogen bond are labelled for clarity.

3.2. Hirshfeld surface and qu­anti­tative analyses of inter­molecular inter­actions

Hirshfeld surfaces (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and two-dimensional fingerprint (FP) plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]) provide com­plementary information concerning the inter­molecular inter­actions deduced from the PLATON analysis. The Hirshfeld analysis, generated using CrystalExplorer (Version 3.1; Wolff et al., 2012[Wolff, S. K., Grimwood, D. I., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. Version 3.1. The University of Western Australia.]) and mapped over dnorm (ranging from −0.329 to 1.708), indicated red areas related to specific inter­molecular short contacts (see Figs. 4[link]–7[link][link][link]).

[Figure 4]
Figure 4
Inter­actions connecting mol­ecule pairs I and II, and a view of the Hirsfeld surface.
[Figure 5]
Figure 5
Top: inter­actions connecting mol­ecule pair III and a view of the Hirshfeld surface. Middle: inter­actions connecting mol­ecule pair IV and a view of the Hirshfeld surface. Bottom: inter­actions connecting mol­ecule pair V and a view of the Hirshfeld surface.
[Figure 6]
Figure 6
Mol­ecular pairs involved in substructures VI and VII, made by the green stick mol­ecule at (x, y, z) with the [colour missing?] colour atoms mol­ecules at (−x, y + 1, z + 1) (VI) and (x, y − 1, z) (VII). The grey mol­ecule in pair VI is considered to act as the conduit for electronic inter­actions, while in pair VII, the conduit is considered to be MolB (blue) of the asymmetric unit.
[Figure 7]
Figure 7
The mol­ecular pairs involved in substructures VII and IX. The figure also depicts the Hirshfeld surface images.

Briefly, the Hirshfeld surface analysis revealed that in MolA all the O atoms participate in hydrogen bonding, but in MolB only three do, the exception being O238 in ring A. A summary of these inter­actions is made in Table 3[link]. Carbonyl atoms O15 or O25 of heterocyclic ring C and nitro atoms O129 or O229 of ring B are involved in hydrogen bonding between two similar mol­ecules, i.e. MolAMolA or MolBMolB. Those pairs inter­act in a similar way. All the nitro-group O atoms of MolA (O128, O129, O138 and O139) act as acceptors for H atoms of MolB.

Table 3
Summary of the hydrogen bonding

  p-NO2 (ring A) p-NO2 (ring B) (ring C)
  O138/O238 O139/O239 O128/O228 O129/O229 O15/O25 N—H13/N—H23
MolA A⋯B (III) A⋯B (V) A⋯B (IV) A⋯B (II) A⋯B (IV) A⋯A (I)  
MolB   B⋯A (III)   B⋯B (IX) B⋯B (VIII) B⋯A (IV)

PIXEL energy calculations, as implemented in PIXEL3.1 (Gavezzotti, 2003[Gavezzotti, A. (2003). J. Phys. Chem. B, 107, 2344-2353.], 2008[Gavezzotti, A. (2008). Mol. Phys. 106, 1473-1485.]), were run in order to calculate the total stabilization energy of the crystal packing, Etot, distributed as Coulombic, ECoul, polarization, Epol, dispersion, Edisp, and repulsion, Erep, terms. Partial analysis of the PIXEL calculations have been made and the results obtained were used to identify pairs of mol­ecules within the crystal network that most contribute to the total energy of the packing.

The com­pound crystallized with two mol­ecules (MolA and MolB) in the asymmetric unit and each has five O atoms that may be involved in the formation of hydrogen bonds, which are labelled in Fig. 1[link](c). In short, each mol­ecule has two 4-NO2-phenyl substituents, one substituent connected to the imine C atom, ring A (pivot atoms C131 and C231 in MolA and MolB, respectively), and the other to the imidazoline ring, ring C (pivot atoms C121 and C221 in MolA and MolB, respectively). In addition, there is a carbonyl O atom in heterocyclic ring C (pivot atoms N11 and N21 in MolA and MolB, respectively), together with a potential donor, i.e. the –NH group on the same ring.

The Hirshfeld surface mapped over dnorm ranging from −0.329 to 1.708 for 1 show various red areas due to intra­molecular short contacts (refer to Figs. 4[link]–7[link][link][link]). Briefly, the analysis revealed that in MolA all the O atoms participate in hydrogen bonds, while only one of the nitro O atoms of ring A of MolB establishes inter­actions. A summary of these inter­actions is made in Table 3[link]. The carbonyl O atom of heterocyclic ring C and the nitro atoms O129 or O229 of ring B are involved in hydrogen bonding between two mol­ecules with the same labels, that is A⋯A or B⋯B. These pairs inter­act in a similar way. In contrast, it seems that all the O atoms of MolA act as acceptors for H atoms of MolB. Some C⋯π inter­actions that define some substructures are identified in Table 3[link].

PIXEL energy calculations, as implemented in PIXEL3.1 (Gavezzotti, 2003[Gavezzotti, A. (2003). J. Phys. Chem. B, 107, 2344-2353.], 2008[Gavezzotti, A. (2008). Mol. Phys. 106, 1473-1485.]), give a total stabilization energy of −170.4 kJ mol−1 for the crystal packing, distributed as follows: ECoul = −78.4, Epol = −30.6, Edisp = −199.51 and Erep = 138.2 kJ mol−1 for Coulombic, polarization, dispersion and repulsion energies, respectively. The polarization term is clearly less important than the Coulombic one. Partial analysis of the PIXEL calculations was also carried out to identify pairs of mol­ecules within the crystal framework that contribute most to the total energy of the packing. Fig. 8[link] lists the symmetry operation, the specific close contacts and the individual energy com­ponents for each mol­ecule pair. The identified mol­ecule pairs, I to IX, are depicted in Figs. 4[link] to 7, together with appropriate views of the Hirshfeld surface. In the figures of the mol­ecule pairs, the epimeric mol­ecules are coloured green (MolA) and blue (MolB), the partner to the specific epimer in the mol­ecular pair is coloured in standard element colours and any other relevant mol­ecule is coloured grey.

[Figure 8]
Figure 8
Energies, close contacts and symmetry codes of the mol­ecule pairs. A⋯A stands for MolAMolA com­plexes, B⋯B for MolBMolB com­plexes and A⋯B for MolAMolB.

Substructures I and II connect MolA with MolA (Table 3[link] and Fig. 4[link]) and subtructures VIII and IX connect MolB with MolB (Table 3[link] and Fig. 7[link]). There is a similarity between substructures I and VII, as well as between substructures II and IX. Pairs I and VII are made by Carom—H⋯Ooxo inter­actions that give two isoenergetic subsets for each pair (Ia/Ib and VIIa/VIIb). These pairs relate MolAMolA and MolBMolB in chains, as can be visualized in Figs. 4[link] and 7[link]. The total energies for the substructures of pairs I and pairs VII differ by about 5 kJ mol−1 (higher value for substructure I) and this may be due to the presence of an additional C—H⋯π inter­action in I that is not detected in VIII [VII?]. The similar substructures IIa/IIb and IXa/IXb, are built utilizing similar C—H⋯O inter­actions, involving the O atom of the nitro group of ring B. Nevertheless, the total energies for those pairs also differ by about 5 kJ mol−1, this time with a higher value for pairs IX due to a higher contribution of the dispersion term.

The mol­ecules that constitute the asymmetric unit form the nonsymmetric dimeric substructure III. In this substructure, the nitro O atoms of ring A act as acceptors in both mol­ecules, but they inter­act with different H atoms, e.g. (i) a methyl H atom to form the O138 ⋯H24D—C243 hydrogen bond in the MolAMolB contact and (ii) an H atom of the imidazoline ring thereby generating an O239⋯H12—C12 hydrogen bond in the MolBMolA contact (see Fig. 5[link]).

In substructure IV, the N—H hydrogen of MolB makes a bifurcated hydrogen-bond inter­action with both O atoms of the nitro group located in ring B of MolA, e.g. O129⋯H23—N23 and O128⋯H23—N23 (see pair IV in Fig. 5[link]). This substructure, according to the model used for the calculation of inter­actions energies, contributes the highest amount of energy to the stabilization of the crystal packing. In the substructure made by pair V, atom O139 of MolA acts as an acceptor for atom H226 of MolB (see Fig. 7[link]). This layout permits a supra­molecular arrangement where aromatic rings appear to stack, but the Hirshfeld surface (HS) analysis did not reveal spots related to C⋯C close contacts that are typical of the ππ inter­actions.

Finally, two more substructures have been identified as energetically important in the stabilization of the supra­molecular structure for 1. Mol­ecular pairs involved in substructures VI and VII, relate the mol­ecule at (x, y, z) with the mol­ecules at (−x, y + 1, z + 1) (for VI) and (x, y + 1, z) (for VII). Although those mol­ecules are not connected in a classical way, the pairs make a significant contribution to the lattice stabilization energy, i.e. −32.5 and −25.9 kJ mol−1, respectively, for VI and VII. These pairs are depicted in Fig. 6[link], with the grey mol­ecule in pair VI shown in order to clarify a possible path explaining the electronic inter­actions, while in pair VII, the those inter­actions are made via molB of the asymmetric unit.

Fig. 9[link] shows the fingerprint (FP) plots for MolA and MolB. The FP plots show two pairs of spikes pointing south-west and ending at (1.2; 0.9/0.9; 1.2) that are due to O⋯H/H⋯O close contacts, the light blue in the middle is due to the H⋯H and C⋯C close contacts. The percentages for atom–atom contacts were taken from the FP plots and are given in Table 4[link]. These percentages are similar for both mol­ecules with an exception made for the O⋯H contacts that are smaller in MolB and the N⋯H and H⋯H contacts that are higher in MolA.

Table 4
Percentages for atom–atom close contacts

1 H⋯H H⋯O/O⋯H H⋯C/C⋯H C⋯C H⋯N/N⋯H O⋯C/C⋯O O⋯N /N⋯O C⋯N/N⋯C N⋯N O⋯O
MolA 36.9 35.5 11.3 4.7 2.2 3.1 1.7 1.9 1.0 1.6
MolB 36.5 36.2 11.5 4.7 1.6 3.3 1.7 1.9 1.0 1.6
[Figure 9]
Figure 9
FP plots for MolA and MolB. The spikes are due to O⋯H/H⋯O contacts and the outer ones due to the N⋯H⋯N contacts.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.39, August 2018 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) was carried out. The closest structure in the database to that of 1 is the 1:1 epimeric mixture of 5-isobutyl-2-(2-nitro­phen­yl)-3-(phenyl­amino)­imidazolidin-4-one (CSD refcode VAQZUJ; Verardo et al., 2003[Verardo, G., Geatti, P., Martinuzzi, P., Merli, M. & Toniutti, N. (2003). Eur. J. Org. Chem. 2003, 3840-2849.]); this com­pound was also formed from a chiral reagent on reaction with a carbonyl com­pound. Other structures with a more remote relationship to 1 are 4-[(2S,4S)-4-benzyl-1-methyl-5-oxoimidazolidin-2-yl]benzo­nitrile (ZAZ­KUI; Brase et al., 2012[Brase, S., Volz, N., Glaser, F. & Nieger, M. (2012). Beilstein J. Org. Chem, 8, 1385-1392.]), (2S,5S)-5-benzyl-2-(4-fluoro­phen­yl)-3-methyl­imidazolidin-4-one (ZAZKOC; Brase et al., 2012[Brase, S., Volz, N., Glaser, F. & Nieger, M. (2012). Beilstein J. Org. Chem, 8, 1385-1392.]), 3-benzyl-5-methyl-4-oxo-2-phenyl­imidazolidin-1-ium chloride (QITMIP; Nieger, 2000[Nieger, M. (2000). CSD Communication (Private Communication). CCDC, Cambridge, England.]), 2-tert-butyl-3-methyl-4-oxo-5-(penta­fluoro­benz­yl)imidazolidin-1-ium chloride (LUGTAK; Holland et al., 2015[Holland, M. C., Metternich, J. B., Daniliuc, C., Schweizer, W. C. & Gilmour, R. (2015). Chem. Eur. J. 21, 10031-10038.]), cyclo-[(1S,2S,3R,4R,5R,7S,10S,11S)-(N-{2-[(D-galactopentitol-1-yl)-4-(4-hy­droxy­benz­yl)-5-oxoimidazolin-1-yl]acet­yl}glyc­yl)-L-phenyl­alanyl-L-leucine 4′-O-ester (DAC­MAW; Kojic-Prodic et al., 2004[Kojic-Prodic, B., Peric, B., Roscic, M., Novak, P. & Horvat, S. (2004). J. Pept. Sci. 10, 47-55.]) and 4-[(2S,4S)-4-isopropyl-5-oxo-3-(3-oxobut­yl)-1-(pyridin-2-yl)imidazolidin-2-yl]benzo­nitrile (NURSOJ; Xu et al., 2010[Xu, Z., Buechler, T., Wheeler, K. & Wang, H. (2010). Chem. Eur. J. 16, 2972-2976.]).

5. Synthesis and crystallization

L-Valine (2) was converted to 2(S)-amino-3-methyl-1-oxo-butane­hydrazine (3) in two stages, as outlined in Scheme 1[link].

To a stirred solution of 3 (1 mmol) in ethanol (10 ml) was added 4-nitro­benzaldehyde (2.2 mmol). The reaction mixture was stirred for 20 h at 351 K and rotary evaporated. The residue was purified by column chromatography using a mixture of 9.7:0.3 (v/v) di­chloro­methane–methanol as eluent. Further purification was achieved by crystallization from ethanol. The crystal of 1 used in the structure determination was obtained by slow evaporation of an ethanol solution at room temperature.

M.p. 411–414 K. 1H NMR (400 MHz, DMSO-d6): δ 0.96 (6H, m, Me), 0.97 (6H, m, Me), 1.42 (2H, m), 2.00 (1H, m), 2.09 (1H, m), 4.06 (2H, m), 7.66–7.71 (4H, m), 7.82–7.85 (4H, m), 8.422–8.48 (8H, m).

13C NMR (100 MHz, DMSO-d6): δ 17.2,17.4,18.9, 29.9, 30.3, 61.8, 62.53, 124.0, 123.7, 128.1, 128.1, 128.3, 128.9, 140.2, 1140.1, 146.2, 146.3, 147.7, 148.2, 148.7, 171.1, 171.6. IR (KBr, cm−1): ν 3015 (br), 1670, 1518, 1337.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. H atoms attached to C atoms were refined as riding atoms at calculated positions. That attached to the N atom was refined.

Table 5
Experimental details

Crystal data
Chemical formula C19H19N5O5
Mr 397.39
Crystal system, space group Triclinic, P1
Temperature (K) 100
a, b, c (Å) 6.9346 (1), 8.4380 (2), 16.6963 (5)
α, β, γ (°) 79.826 (2), 89.848 (2), 80.488 (2)
V3) 948.03 (4)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.87
Crystal size (mm) 0.15 × 0.10 × 0.08
 
Data collection
Diffractometer Rigaku 007HF equipped with Varimax confocal mirrors and an C11 goniometer and HyPix 6000 detector
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2017[Rigaku OD (2017). CryAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.876, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 17290, 5885, 5634
Rint 0.032
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.089, 1.06
No. of reflections 5885
No. of parameters 535
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.18, −0.15
Absolute structure Flack x determined using 2216 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.06 (12)
Computer programs: CrysAlis PRO (Rigaku OD, 2017[Rigaku OD (2017). CryAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), OSCAIL (McArdle et al., 2004[McArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm, 6, 300-309.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2017); cell refinement: CrysAlis PRO (Rigaku OD, 2017); data reduction: CrysAlis PRO (Rigaku OD, 2017); program(s) used to solve structure: OSCAIL (McArdle et al., 2004) and SHELXT (Sheldrick, 2015a); program(s) used to refine structure: OSCAIL (McArdle et al., 2004), ShelXle (Hübschle et al., 2011) and SHELXL2017 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: OSCAIL (McArdle et al., 2004), SHELXL2017 (Sheldrick, 2015b) and PLATON (Spek, 2009).

3-[(4-Nitrobenzylidene)amino]-2(R,S)-(4-nitrophenyl)-5(S)-(propan-2-yl)imidazolidin-4-one top
Crystal data top
C19H19N5O5Z = 2
Mr = 397.39F(000) = 416
Triclinic, P1Dx = 1.392 Mg m3
a = 6.9346 (1) ÅCu Kα radiation, λ = 1.54178 Å
b = 8.4380 (2) ÅCell parameters from 10799 reflections
c = 16.6963 (5) Åθ = 2.6–70.2°
α = 79.826 (2)°µ = 0.87 mm1
β = 89.848 (2)°T = 100 K
γ = 80.488 (2)°Block, yellow
V = 948.03 (4) Å30.15 × 0.10 × 0.08 mm
Data collection top
Rigaku 007HF equipped with Varimax confocal mirrors and an C11 goniometer and HyPix 6000 detector
diffractometer
5885 independent reflections
Radiation source: Rotating anode, Rigaku 007 HF5634 reflections with I > 2σ(I)
Varimax focusing mirrors monochromatorRint = 0.032
Detector resolution: 10 pixels mm-1θmax = 68.2°, θmin = 2.7°
profile data from ω–scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2017)
k = 1010
Tmin = 0.876, Tmax = 1.000l = 2020
17290 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0635P)2 + 0.0162P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.089(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.18 e Å3
5885 reflectionsΔρmin = 0.15 e Å3
535 parametersAbsolute structure: Flack x determined using 2216 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
3 restraintsAbsolute structure parameter: 0.06 (12)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O150.4298 (3)1.1382 (2)0.37596 (10)0.0355 (4)
O250.7120 (3)0.1997 (2)0.63494 (11)0.0454 (5)
O1280.0134 (3)0.6977 (3)0.07548 (12)0.0515 (6)
O1290.2170 (3)0.7084 (3)0.01078 (11)0.0445 (5)
O1380.2174 (3)0.1363 (3)0.59026 (13)0.0478 (5)
O1390.1723 (3)0.2713 (3)0.68946 (12)0.0496 (5)
O2280.9876 (3)0.2933 (3)1.07358 (13)0.0578 (6)
O2291.2157 (3)0.2968 (3)0.98725 (12)0.0476 (5)
O2380.7903 (3)0.8399 (3)0.38544 (13)0.0456 (5)
O2390.8329 (3)0.6925 (3)0.29111 (12)0.0487 (5)
N110.3637 (3)0.9864 (2)0.27940 (11)0.0276 (4)
N130.4764 (3)1.1352 (3)0.16385 (12)0.0306 (4)
H130.362 (5)1.192 (4)0.1427 (18)0.034 (7)*
N210.6624 (3)0.0012 (3)0.71543 (12)0.0302 (4)
N230.5744 (3)0.1541 (3)0.83569 (13)0.0353 (5)
H230.660 (6)0.187 (5)0.877 (2)0.058 (10)*
N1110.3401 (3)0.8408 (2)0.32899 (11)0.0270 (4)
N2110.6703 (3)0.1435 (2)0.66255 (11)0.0288 (4)
C120.4363 (3)0.9729 (3)0.19724 (14)0.0277 (5)
H120.5625480.8944740.2030100.033*
C140.5332 (3)1.2011 (3)0.23511 (13)0.0286 (5)
H140.6780981.1688960.2436080.034*
C150.4376 (3)1.1108 (3)0.30696 (13)0.0287 (5)
C220.5853 (4)0.0145 (3)0.79628 (14)0.0298 (5)
H220.4503050.0795960.7896490.036*
C240.6057 (4)0.2618 (3)0.77444 (14)0.0335 (5)
H240.7156450.3532170.7938200.040*
C250.6675 (4)0.1559 (3)0.69896 (15)0.0348 (5)
C1120.2670 (3)0.8488 (3)0.39906 (14)0.0279 (5)
H1120.2258450.9515610.4149460.033*
C1210.2980 (3)0.9158 (3)0.14341 (14)0.0262 (5)
C1220.3699 (4)0.8750 (3)0.07013 (14)0.0308 (5)
H1220.4997290.8878820.0557150.037*
C1230.2556 (4)0.8164 (3)0.01828 (14)0.0320 (5)
H1230.3040160.7900330.0318530.038*
C1240.0687 (4)0.7973 (3)0.04175 (14)0.0293 (5)
C1250.0089 (3)0.8388 (3)0.11285 (14)0.0312 (5)
H1250.1388370.8253990.1268570.037*
C1260.1067 (4)0.9007 (3)0.16358 (14)0.0313 (5)
H1260.0547960.9327350.2121000.038*
N1270.0521 (3)0.7287 (3)0.01117 (12)0.0323 (5)
C1310.2478 (3)0.6970 (3)0.45425 (13)0.0261 (5)
C1320.2849 (3)0.5462 (3)0.42896 (14)0.0264 (5)
H1320.3209140.5415020.3743830.032*
C1330.2700 (3)0.4040 (3)0.48178 (14)0.0287 (5)
H1330.2953450.3012620.4645120.034*
C1340.2168 (3)0.4152 (3)0.56112 (14)0.0302 (5)
C1350.1772 (3)0.5612 (3)0.58830 (14)0.0318 (5)
H1350.1401400.5645080.6428820.038*
C1360.1922 (3)0.7036 (3)0.53455 (14)0.0307 (5)
H1360.1647240.8059320.5521310.037*
N1370.2007 (3)0.2631 (3)0.61757 (13)0.0378 (5)
C1410.4849 (4)1.3855 (3)0.22729 (14)0.0324 (5)
H1410.5224671.4119180.2805820.039*
C1420.6066 (5)1.4719 (4)0.16285 (18)0.0451 (7)
H14D0.5805951.5896170.1630300.068*
H14E0.5716391.4517080.1091560.068*
H14F0.7457921.4300790.1749260.068*
C1430.2666 (4)1.4489 (3)0.21372 (16)0.0387 (6)
H14A0.2387901.5635760.2201780.058*
H14B0.1935771.3840890.2536200.058*
H14C0.2270591.4398050.1586290.058*
C2120.7367 (3)0.1361 (3)0.59108 (15)0.0301 (5)
H2120.7770430.0330900.5753490.036*
C2210.7088 (3)0.0917 (3)0.84770 (14)0.0282 (5)
C2220.6347 (4)0.1260 (3)0.92174 (14)0.0299 (5)
H2220.5064280.1078860.9360160.036*
C2230.7456 (4)0.1858 (3)0.97467 (14)0.0308 (5)
H2230.6963740.2065661.0256380.037*
C2240.9301 (4)0.2146 (3)0.95128 (14)0.0286 (5)
C2251.0058 (4)0.1867 (3)0.87724 (15)0.0325 (5)
H2251.1315170.2102770.8620460.039*
C2260.8942 (3)0.1235 (3)0.82574 (14)0.0301 (5)
H2260.9446720.1018240.7751130.036*
N2271.0519 (3)0.2745 (3)1.00771 (12)0.0339 (5)
C2310.7499 (3)0.2873 (3)0.53383 (13)0.0277 (5)
C2320.7186 (3)0.4406 (3)0.55683 (14)0.0287 (5)
H2320.6859330.4494960.6113320.034*
C2330.7347 (3)0.5795 (3)0.50108 (15)0.0299 (5)
H2330.7127420.6839840.5164670.036*
C2340.7840 (3)0.5624 (3)0.42183 (15)0.0307 (5)
C2350.8170 (3)0.4122 (3)0.39713 (14)0.0314 (5)
H2350.8508870.4038670.3426840.038*
C2360.7993 (3)0.2746 (3)0.45354 (14)0.0303 (5)
H2360.8209550.1704740.4377230.036*
N2370.8038 (3)0.7084 (3)0.36213 (13)0.0366 (5)
C2410.4241 (4)0.3336 (3)0.75728 (15)0.0345 (5)
H2410.4450030.3783800.7057410.041*
C2420.3982 (5)0.4738 (4)0.82522 (19)0.0455 (7)
H24A0.5155690.5577570.8305910.068*
H24B0.2845320.5209130.8123210.068*
H24C0.3776620.4329280.8765350.068*
C2430.2417 (4)0.2027 (3)0.74492 (16)0.0369 (5)
H24D0.2595550.1170690.6989370.055*
H24E0.2197380.1551440.7943040.055*
H24F0.1284240.2518320.7335750.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O150.0480 (10)0.0339 (9)0.0271 (8)0.0136 (8)0.0009 (7)0.0057 (7)
O250.0636 (12)0.0408 (11)0.0385 (10)0.0199 (9)0.0130 (9)0.0150 (8)
O1280.0459 (11)0.0821 (16)0.0359 (11)0.0172 (10)0.0023 (8)0.0293 (11)
O1290.0418 (10)0.0597 (13)0.0372 (10)0.0232 (9)0.0006 (8)0.0087 (9)
O1380.0493 (12)0.0346 (11)0.0559 (12)0.0119 (9)0.0051 (9)0.0066 (9)
O1390.0474 (11)0.0619 (13)0.0327 (10)0.0116 (10)0.0032 (8)0.0120 (9)
O2280.0529 (12)0.0899 (18)0.0419 (11)0.0211 (12)0.0018 (9)0.0340 (12)
O2290.0443 (11)0.0625 (14)0.0433 (11)0.0252 (10)0.0014 (9)0.0134 (10)
O2380.0378 (10)0.0405 (11)0.0533 (12)0.0083 (8)0.0046 (8)0.0074 (9)
O2390.0458 (11)0.0592 (13)0.0333 (10)0.0063 (9)0.0048 (8)0.0101 (9)
N110.0356 (10)0.0262 (11)0.0222 (9)0.0108 (8)0.0005 (8)0.0023 (8)
N130.0390 (11)0.0278 (11)0.0261 (10)0.0118 (9)0.0003 (8)0.0016 (8)
N210.0349 (11)0.0332 (12)0.0243 (9)0.0125 (9)0.0008 (8)0.0039 (8)
N230.0469 (12)0.0353 (12)0.0261 (10)0.0177 (10)0.0048 (9)0.0021 (9)
N1110.0300 (10)0.0274 (11)0.0238 (10)0.0099 (8)0.0039 (7)0.0002 (8)
N2110.0295 (10)0.0339 (11)0.0237 (10)0.0116 (9)0.0026 (8)0.0013 (8)
C120.0321 (12)0.0283 (13)0.0228 (11)0.0074 (10)0.0006 (9)0.0025 (9)
C140.0310 (11)0.0278 (12)0.0274 (11)0.0077 (9)0.0021 (9)0.0032 (9)
C150.0329 (12)0.0258 (12)0.0267 (11)0.0052 (9)0.0034 (9)0.0025 (9)
C220.0325 (12)0.0348 (13)0.0226 (11)0.0112 (10)0.0019 (9)0.0012 (10)
C240.0371 (13)0.0312 (13)0.0314 (12)0.0073 (10)0.0026 (10)0.0018 (9)
C250.0360 (12)0.0358 (14)0.0342 (12)0.0109 (10)0.0010 (10)0.0060 (10)
C1120.0275 (11)0.0307 (12)0.0265 (11)0.0080 (9)0.0012 (9)0.0047 (9)
C1210.0338 (12)0.0202 (11)0.0231 (11)0.0057 (9)0.0006 (9)0.0010 (8)
C1220.0350 (12)0.0326 (13)0.0253 (12)0.0106 (10)0.0034 (9)0.0022 (10)
C1230.0394 (13)0.0325 (13)0.0247 (12)0.0093 (10)0.0031 (10)0.0036 (9)
C1240.0362 (12)0.0261 (12)0.0244 (11)0.0064 (10)0.0044 (9)0.0003 (9)
C1250.0295 (12)0.0357 (13)0.0273 (12)0.0064 (10)0.0001 (9)0.0022 (10)
C1260.0352 (12)0.0343 (13)0.0238 (11)0.0045 (10)0.0002 (9)0.0045 (9)
N1270.0360 (11)0.0325 (11)0.0286 (11)0.0083 (9)0.0026 (8)0.0030 (8)
C1310.0226 (11)0.0341 (13)0.0226 (11)0.0088 (10)0.0028 (8)0.0037 (9)
C1320.0254 (11)0.0341 (13)0.0209 (10)0.0095 (9)0.0005 (8)0.0043 (9)
C1330.0229 (11)0.0337 (13)0.0306 (12)0.0081 (10)0.0035 (9)0.0058 (10)
C1340.0227 (11)0.0378 (14)0.0278 (11)0.0097 (10)0.0037 (9)0.0047 (10)
C1350.0277 (11)0.0458 (16)0.0228 (11)0.0110 (11)0.0006 (9)0.0038 (10)
C1360.0307 (12)0.0378 (14)0.0256 (11)0.0095 (10)0.0002 (9)0.0078 (10)
N1370.0258 (10)0.0467 (15)0.0366 (12)0.0093 (10)0.0032 (9)0.0067 (10)
C1410.0403 (13)0.0290 (12)0.0290 (11)0.0094 (10)0.0022 (9)0.0046 (9)
C1420.0623 (18)0.0298 (14)0.0442 (15)0.0159 (13)0.0078 (13)0.0020 (12)
C1430.0437 (14)0.0309 (13)0.0402 (13)0.0031 (11)0.0100 (11)0.0058 (10)
C2120.0301 (11)0.0353 (13)0.0274 (12)0.0114 (10)0.0006 (9)0.0071 (10)
C2210.0336 (12)0.0271 (12)0.0233 (11)0.0074 (10)0.0015 (9)0.0008 (9)
C2220.0325 (12)0.0309 (13)0.0260 (12)0.0089 (10)0.0016 (9)0.0009 (9)
C2230.0375 (13)0.0326 (13)0.0221 (11)0.0064 (10)0.0014 (9)0.0034 (9)
C2240.0374 (12)0.0234 (11)0.0245 (11)0.0074 (10)0.0044 (9)0.0012 (9)
C2250.0333 (12)0.0359 (13)0.0296 (12)0.0111 (10)0.0015 (10)0.0045 (10)
C2260.0323 (12)0.0347 (13)0.0242 (11)0.0098 (10)0.0025 (9)0.0038 (9)
N2270.0400 (12)0.0325 (12)0.0293 (11)0.0056 (9)0.0053 (9)0.0058 (9)
C2310.0224 (11)0.0391 (14)0.0230 (11)0.0099 (10)0.0018 (9)0.0049 (10)
C2320.0235 (11)0.0407 (14)0.0236 (11)0.0088 (10)0.0039 (9)0.0067 (10)
C2330.0234 (11)0.0355 (14)0.0314 (12)0.0081 (10)0.0036 (9)0.0048 (10)
C2340.0223 (11)0.0414 (14)0.0267 (11)0.0086 (10)0.0037 (9)0.0015 (10)
C2350.0254 (11)0.0476 (15)0.0216 (11)0.0098 (10)0.0011 (9)0.0038 (10)
C2360.0266 (11)0.0406 (14)0.0257 (11)0.0110 (10)0.0008 (9)0.0068 (10)
N2370.0253 (10)0.0434 (14)0.0364 (12)0.0071 (9)0.0013 (8)0.0070 (10)
C2410.0442 (14)0.0300 (13)0.0316 (12)0.0130 (11)0.0002 (10)0.0051 (10)
C2420.0566 (17)0.0313 (15)0.0480 (16)0.0143 (13)0.0027 (13)0.0013 (12)
C2430.0381 (13)0.0378 (14)0.0362 (12)0.0109 (11)0.0026 (10)0.0061 (10)
Geometric parameters (Å, º) top
O15—C151.213 (3)C132—H1320.9500
O25—C251.214 (3)C133—C1341.389 (3)
O128—N1271.219 (3)C133—H1330.9500
O129—N1271.229 (3)C134—C1351.373 (4)
O138—N1371.224 (3)C134—N1371.472 (3)
O139—N1371.228 (3)C135—C1361.386 (4)
O228—N2271.212 (3)C135—H1350.9500
O229—N2271.220 (3)C136—H1360.9500
O238—N2371.229 (3)C141—C1431.523 (4)
O239—N2371.229 (3)C141—C1421.524 (4)
N11—C151.388 (3)C141—H1411.0000
N11—N1111.388 (3)C142—H14D0.9800
N11—C121.477 (3)C142—H14E0.9800
N13—C121.456 (3)C142—H14F0.9800
N13—C141.479 (3)C143—H14A0.9800
N13—H130.89 (3)C143—H14B0.9800
N21—C251.375 (3)C143—H14C0.9800
N21—N2111.384 (3)C212—C2311.469 (3)
N21—C221.470 (3)C212—H2120.9500
N23—C221.471 (3)C221—C2261.391 (3)
N23—C241.477 (3)C221—C2221.396 (3)
N23—H230.89 (4)C222—C2231.385 (3)
N111—C1121.282 (3)C222—H2220.9500
N211—C2121.286 (3)C223—C2241.384 (3)
C12—C1211.507 (3)C223—H2230.9500
C12—H121.0000C224—C2251.385 (3)
C14—C151.516 (3)C224—N2271.473 (3)
C14—C1411.518 (3)C225—C2261.387 (3)
C14—H141.0000C225—H2250.9500
C22—C2211.510 (3)C226—H2260.9500
C22—H221.0000C231—C2321.396 (4)
C24—C251.515 (3)C231—C2361.401 (3)
C24—C2411.533 (3)C232—C2331.382 (4)
C24—H241.0000C232—H2320.9500
C112—C1311.465 (3)C233—C2341.392 (3)
C112—H1120.9500C233—H2330.9500
C121—C1261.389 (3)C234—C2351.385 (4)
C121—C1221.397 (3)C234—N2371.467 (3)
C122—C1231.381 (3)C235—C2361.382 (4)
C122—H1220.9500C235—H2350.9500
C123—C1241.379 (4)C236—H2360.9500
C123—H1230.9500C241—C2421.521 (4)
C124—C1251.379 (3)C241—C2431.524 (4)
C124—N1271.471 (3)C241—H2411.0000
C125—C1261.389 (3)C242—H24A0.9800
C125—H1250.9500C242—H24B0.9800
C126—H1260.9500C242—H24C0.9800
C131—C1321.395 (3)C243—H24D0.9800
C131—C1361.402 (3)C243—H24E0.9800
C132—C1331.377 (3)C243—H24F0.9800
C15—N11—N111123.74 (18)C131—C136—H136119.9
C15—N11—C12109.37 (18)O138—N137—O139123.9 (2)
N111—N11—C12115.87 (18)O138—N137—C134118.2 (2)
C12—N13—C14104.96 (18)O139—N137—C134117.8 (2)
C12—N13—H13105.6 (19)C14—C141—C143112.28 (19)
C14—N13—H13109.4 (19)C14—C141—C142111.7 (2)
C25—N21—N211129.5 (2)C143—C141—C142112.2 (2)
C25—N21—C22112.2 (2)C14—C141—H141106.7
N211—N21—C22116.06 (19)C143—C141—H141106.7
C22—N23—C24109.21 (19)C142—C141—H141106.7
C22—N23—H23111 (2)C141—C142—H14D109.5
C24—N23—H23112 (2)C141—C142—H14E109.5
C112—N111—N11117.58 (19)H14D—C142—H14E109.5
C212—N211—N21118.4 (2)C141—C142—H14F109.5
N13—C12—N11104.41 (18)H14D—C142—H14F109.5
N13—C12—C121112.35 (19)H14E—C142—H14F109.5
N11—C12—C121114.42 (19)C141—C143—H14A109.5
N13—C12—H12108.5C141—C143—H14B109.5
N11—C12—H12108.5H14A—C143—H14B109.5
C121—C12—H12108.5C141—C143—H14C109.5
N13—C14—C15105.22 (17)H14A—C143—H14C109.5
N13—C14—C141115.33 (19)H14B—C143—H14C109.5
C15—C14—C141113.03 (19)N211—C212—C231119.8 (2)
N13—C14—H14107.6N211—C212—H212120.1
C15—C14—H14107.6C231—C212—H212120.1
C141—C14—H14107.6C226—C221—C222119.4 (2)
O15—C15—N11125.9 (2)C226—C221—C22122.8 (2)
O15—C15—C14127.3 (2)C222—C221—C22117.8 (2)
N11—C15—C14106.73 (18)C223—C222—C221121.0 (2)
N21—C22—N23104.4 (2)C223—C222—H222119.5
N21—C22—C221114.65 (19)C221—C222—H222119.5
N23—C22—C221110.4 (2)C224—C223—C222118.1 (2)
N21—C22—H22109.1C224—C223—H223120.9
N23—C22—H22109.1C222—C223—H223120.9
C221—C22—H22109.1C223—C224—C225122.4 (2)
N23—C24—C25104.9 (2)C223—C224—N227118.9 (2)
N23—C24—C241113.3 (2)C225—C224—N227118.7 (2)
C25—C24—C241111.6 (2)C224—C225—C226118.6 (2)
N23—C24—H24108.9C224—C225—H225120.7
C25—C24—H24108.9C226—C225—H225120.7
C241—C24—H24108.9C225—C226—C221120.5 (2)
O25—C25—N21126.1 (2)C225—C226—H226119.8
O25—C25—C24125.9 (2)C221—C226—H226119.8
N21—C25—C24108.0 (2)O228—N227—O229123.0 (2)
N111—C112—C131119.0 (2)O228—N227—C224118.5 (2)
N111—C112—H112120.5O229—N227—C224118.5 (2)
C131—C112—H112120.5C232—C231—C236119.5 (2)
C126—C121—C122119.4 (2)C232—C231—C212122.6 (2)
C126—C121—C12123.4 (2)C236—C231—C212117.9 (2)
C122—C121—C12117.2 (2)C233—C232—C231120.6 (2)
C123—C122—C121121.2 (2)C233—C232—H232119.7
C123—C122—H122119.4C231—C232—H232119.7
C121—C122—H122119.4C232—C233—C234118.4 (2)
C124—C123—C122117.7 (2)C232—C233—H233120.8
C124—C123—H123121.1C234—C233—H233120.8
C122—C123—H123121.1C235—C234—C233122.5 (2)
C125—C124—C123122.8 (2)C235—C234—N237118.5 (2)
C125—C124—N127118.7 (2)C233—C234—N237119.0 (2)
C123—C124—N127118.4 (2)C236—C235—C234118.4 (2)
C124—C125—C126118.7 (2)C236—C235—H235120.8
C124—C125—H125120.7C234—C235—H235120.8
C126—C125—H125120.7C235—C236—C231120.6 (2)
C121—C126—C125120.1 (2)C235—C236—H236119.7
C121—C126—H126120.0C231—C236—H236119.7
C125—C126—H126120.0O239—N237—O238123.4 (2)
O128—N127—O129122.8 (2)O239—N237—C234118.0 (2)
O128—N127—C124118.8 (2)O238—N237—C234118.6 (2)
O129—N127—C124118.3 (2)C242—C241—C243111.2 (2)
C132—C131—C136119.3 (2)C242—C241—C24110.5 (2)
C132—C131—C112121.6 (2)C243—C241—C24111.3 (2)
C136—C131—C112119.1 (2)C242—C241—H241107.9
C133—C132—C131121.1 (2)C243—C241—H241107.9
C133—C132—H132119.5C24—C241—H241107.9
C131—C132—H132119.5C241—C242—H24A109.5
C132—C133—C134118.0 (2)C241—C242—H24B109.5
C132—C133—H133121.0H24A—C242—H24B109.5
C134—C133—H133121.0C241—C242—H24C109.5
C135—C134—C133122.9 (2)H24A—C242—H24C109.5
C135—C134—N137119.2 (2)H24B—C242—H24C109.5
C133—C134—N137118.0 (2)C241—C243—H24D109.5
C134—C135—C136118.7 (2)C241—C243—H24E109.5
C134—C135—H135120.7H24D—C243—H24E109.5
C136—C135—H135120.7C241—C243—H24F109.5
C135—C136—C131120.1 (2)H24D—C243—H24F109.5
C135—C136—H136119.9H24E—C243—H24F109.5
C15—N11—N111—C11243.7 (3)C136—C131—C132—C1330.8 (3)
C12—N11—N111—C112176.19 (19)C112—C131—C132—C133178.75 (19)
C25—N21—N211—C21218.6 (3)C131—C132—C133—C1340.0 (3)
C22—N21—N211—C212179.98 (19)C132—C133—C134—C1350.6 (3)
C14—N13—C12—N1130.7 (2)C132—C133—C134—N137179.92 (18)
C14—N13—C12—C121155.3 (2)C133—C134—C135—C1360.5 (3)
C15—N11—C12—N1325.8 (2)N137—C134—C135—C136179.8 (2)
N111—N11—C12—N13171.33 (18)C134—C135—C136—C1310.3 (3)
C15—N11—C12—C121149.0 (2)C132—C131—C136—C1350.9 (3)
N111—N11—C12—C12165.4 (3)C112—C131—C136—C135178.6 (2)
C12—N13—C14—C1525.1 (2)C135—C134—N137—O138172.8 (2)
C12—N13—C14—C141150.3 (2)C133—C134—N137—O1386.5 (3)
N111—N11—C15—O1526.3 (4)C135—C134—N137—O1397.6 (3)
C12—N11—C15—O15168.6 (2)C133—C134—N137—O139173.1 (2)
N111—N11—C15—C14152.1 (2)N13—C14—C141—C14359.6 (3)
C12—N11—C15—C149.9 (3)C15—C14—C141—C14361.5 (3)
N13—C14—C15—O15172.1 (2)N13—C14—C141—C14267.5 (3)
C141—C14—C15—O1545.4 (3)C15—C14—C141—C142171.4 (2)
N13—C14—C15—N119.5 (2)N21—N211—C212—C231179.07 (18)
C141—C14—C15—N11136.1 (2)N21—C22—C221—C2269.1 (3)
C25—N21—C22—N239.8 (3)N23—C22—C221—C226108.5 (3)
N211—N21—C22—N23174.33 (17)N21—C22—C221—C222173.6 (2)
C25—N21—C22—C221130.7 (2)N23—C22—C221—C22268.8 (3)
N211—N21—C22—C22164.7 (3)C226—C221—C222—C2232.2 (4)
C24—N23—C22—N2111.1 (3)C22—C221—C222—C223175.3 (2)
C24—N23—C22—C221134.8 (2)C221—C222—C223—C2241.5 (4)
C22—N23—C24—C258.6 (3)C222—C223—C224—C2250.4 (4)
C22—N23—C24—C241113.4 (2)C222—C223—C224—N227178.5 (2)
N211—N21—C25—O2512.8 (4)C223—C224—C225—C2261.7 (4)
C22—N21—C25—O25174.8 (2)N227—C224—C225—C226177.2 (2)
N211—N21—C25—C24166.5 (2)C224—C225—C226—C2211.1 (4)
C22—N21—C25—C244.6 (3)C222—C221—C226—C2250.8 (4)
N23—C24—C25—O25178.1 (2)C22—C221—C226—C225176.5 (2)
C241—C24—C25—O2558.8 (3)C223—C224—N227—O2281.5 (3)
N23—C24—C25—N212.5 (3)C225—C224—N227—O228177.5 (2)
C241—C24—C25—N21120.6 (2)C223—C224—N227—O229178.7 (2)
N11—N111—C112—C131177.45 (18)C225—C224—N227—O2290.3 (3)
N13—C12—C121—C126109.4 (3)N211—C212—C231—C2329.0 (3)
N11—C12—C121—C1269.5 (3)N211—C212—C231—C236172.1 (2)
N13—C12—C121—C12271.3 (3)C236—C231—C232—C2330.4 (3)
N11—C12—C121—C122169.9 (2)C212—C231—C232—C233179.3 (2)
C126—C121—C122—C1231.5 (4)C231—C232—C233—C2340.4 (3)
C12—C121—C122—C123177.8 (2)C232—C233—C234—C2350.1 (3)
C121—C122—C123—C1240.8 (4)C232—C233—C234—N237179.35 (19)
C122—C123—C124—C1252.0 (4)C233—C234—C235—C2360.2 (3)
C122—C123—C124—N127177.5 (2)N237—C234—C235—C236179.65 (19)
C123—C124—C125—C1260.8 (4)C234—C235—C236—C2310.2 (3)
N127—C124—C125—C126178.8 (2)C232—C231—C236—C2350.1 (3)
C122—C121—C126—C1252.8 (4)C212—C231—C236—C235179.0 (2)
C12—C121—C126—C125176.5 (2)C235—C234—N237—O2395.9 (3)
C124—C125—C126—C1211.7 (4)C233—C234—N237—O239174.7 (2)
C125—C124—N127—O128177.3 (2)C235—C234—N237—O238174.1 (2)
C123—C124—N127—O1283.1 (4)C233—C234—N237—O2385.3 (3)
C125—C124—N127—O1291.2 (4)N23—C24—C241—C24277.5 (3)
C123—C124—N127—O129178.4 (2)C25—C24—C241—C242164.3 (2)
N111—C112—C131—C1327.8 (3)N23—C24—C241—C24346.6 (3)
N111—C112—C131—C136171.7 (2)C25—C24—C241—C24371.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N23—H23···O128i0.89 (4)2.55 (4)3.338 (3)147 (3)
N23—H23···O129i0.89 (4)2.36 (4)3.202 (3)159 (3)
C112—H112···O150.952.302.822 (3)114
C212—H212···O250.952.162.832 (3)127
C133—H133···O15ii0.952.293.154 (3)151
C233—H233···O25iii0.952.363.141 (3)139
C243—H24D···O1380.982.523.480 (3)165
C122—H122···O129iv0.952.483.212 (3)134
C222—H222···O229v0.952.603.297 (3)131
C226—H226···O139iv0.952.573.197 (3)124
Symmetry codes: (i) x+1, y1, z+1; (ii) x, y1, z; (iii) x, y+1, z; (iv) x+1, y, z; (v) x1, y, z.
Analysis of short ring interactions with CgCg distance top
Cg(I)Cg(J)CgCgSlippage
Cg3Cg6(x-1, y, z)3.6278 (13)1.394
Cg3Cg6(x, y, z)3.7548 (13)1.772
Cg6Cg3(x+1, y, z)3.6277 (13)1.433
Cg6Cg3(x, y, z)3.7548 (13)1.672
Notes: Cg(I) = plane number I, CgCg = distance between ring centroids (Å), slippage = distance between Cg(I) and perpendicular projection of Cg(J) on ring I (Å). Cg3 and Cg6 are the centroids of ring with pivot atoms C131 and C231, respectively.
Summary of the hydrogen bonding top
p-NO2 (ring A)p-NO2 (ring B)(ring C)
O138/O238O139/O239O128/O228O129/O229O15/O25N—H13/N—H23
MolAA···B (III)A···B (V)A···B (IV)A···B (II) A···B (IV)A···A (I)
MolBB···A (III)B···B (IX)B···B (VIII)B···A (IV)
Percentages for atom–atom close contacts top
1H···HH···O/O···HH···C/C···HC···CH···N/N···HO···C/C···OO···N /N···OC···N/N···CN···NO···O
MolA36.935.511.34.72.23.11.71.91.01.6
MolB36.536.211.54.71.63.31.71.91.01.6
 

Acknowledgements

The authors thank the staff at the National Crystallographic Service, University of Southampton (Coles & Gale, 2012[Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683-689.]), for the data collection, help and advice.

References

First citationBarrow, J. C., Rittle, K. E., Ngo, P. L., Selnick, H. G., Graham, S. L., Pitzenberger, S. M., McGaughey, G. B., Colussi, D., Lai, M. T., Huang, Q., Tugusheva, K., Espesth, A. S., Simon, A. J. K., Munishi, S. K. & Vacca, J. P. (2007). ChemMedChem, 2, 995–999.  CrossRef PubMed CAS Google Scholar
First citationBlackmore, T. R. & Thompson, P. E. (2011). Heterocycles, 83, 1953–1975.  CAS Google Scholar
First citationBrase, S., Volz, N., Glaser, F. & Nieger, M. (2012). Beilstein J. Org. Chem, 8, 1385–1392.  CAS PubMed Google Scholar
First citationCatalano, A., Carocci, A., Lentini, G., Di Mola, A., Bruno, C. & Francini, C. (2011). Heterocycl. Chem. 48, 261–266.  CrossRef CAS Google Scholar
First citationColes, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683–689.  Web of Science CSD CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationElrod, D. B. & Worley, S. D. (1999). J. Bioact. Compat. Pol. 14, 258–269.  CrossRef CAS Google Scholar
First citationEyilcim, O., Issever, S., Ocal, N., Gronert, S. & Erden, I. (2018). Tetrahedron Lett. 59, 3674–3677.  CrossRef CAS PubMed Google Scholar
First citationGavezzotti, A. (2003). J. Phys. Chem. B, 107, 2344–2353.  Web of Science CrossRef CAS Google Scholar
First citationGavezzotti, A. (2008). Mol. Phys. 106, 1473–1485.  Web of Science CrossRef CAS Google Scholar
First citationGomes, P., Araujo, M. J., Rodfrigues, M., Vale, N., Azevedo, Z., Iley, J., Chambel, P., Morais, J. & Moreira, R. (2004). Tetrahedron, 60, 5551–5562.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuerra, A. S. H. D., Malta, D. J. D., Laranjeira, L. P. M., Maia, M. B. S., Colaco, N. C., de Lima, M. D. A., Galdino, S. L., Pitta, I. D. & Goncalves-Silva, T. (2011). Int. J. Immunopharmacol. 11, 1816–1822.  CAS Google Scholar
First citationHolland, M. C., Metternich, J. B., Daniliuc, C., Schweizer, W. C. & Gilmour, R. (2015). Chem. Eur. J. 21, 10031–10038.  CrossRef CAS PubMed Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKojic-Prodic, B., Peric, B., Roscic, M., Novak, P. & Horvat, S. (2004). J. Pept. Sci. 10, 47–55.  PubMed CAS Google Scholar
First citationLi, J. Z., Zhang, Z. F. & Fan, E. K. (2004). Tetrahedron Lett. 45, 1267–1284.  CrossRef CAS Google Scholar
First citationLin, Z., Chen, Z., Yang, G. & Lu, C. (2013). Catal. Commun. 35, 105.  CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm, 6, 300–309.  CrossRef Google Scholar
First citationMondini, S., Puglisi, A., Benaglia, M., Ramella, D., Drago, C., Ferretti, A. M. & Ponti, A. (2013). J. Nanopart. Res. 15, article no. UNSP 2025.  CrossRef Google Scholar
First citationNieger, M. (2000). CSD Communication (Private Communication). CCDC, Cambridge, England.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPuglisi, A., Benaglia, M., Annunziata, R., Chiroli, V., Porta, R. & Gervasini, A. (2013). J. Org. Chem. 78, 11326–11334.  CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2017). CryAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSeebach, D., Groselj, U., Baldine, D. M., Schweizer, W. B. & Beck, A. K. (2008). Helv. Chim. Acta, 91, 1999–2034.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVale, N., Matos, J., Moreira, R. & Gomes, T. (2008). Tetrahedron, 64, 11144–11149.  CrossRef CAS Google Scholar
First citationVale, N., Nogueira, F., do Rosario, V. E., Gomes, P. & Moreira, R. (2009). Eur. J. Med. Chem. 44, 2506–2516.  CrossRef PubMed CAS Google Scholar
First citationVerardo, G., Geatti, P., Martinuzzi, P., Merli, M. & Toniutti, N. (2003). Eur. J. Org. Chem. 2003, 3840–2849.  CrossRef Google Scholar
First citationWolff, S. K., Grimwood, D. I., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. Version 3.1. The University of Western Australia.  Google Scholar
First citationXu, Z., Buechler, T., Wheeler, K. & Wang, H. (2010). Chem. Eur. J. 16, 2972–2976.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds