research communications
Crystal structures of the two isomeric hydrogen-bonded cocrystals 2-chloro-4-nitrobenzoic acid–5-nitroquinoline (1/1) and 5-chloro-2-nitrobenzoic acid–5-nitroquinoline (1/1)
aDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: ishidah@cc.okayama-u.ac.jp
The structures of two isomeric compounds of 5-nitroquinoline with chloro- and nitro-substituted benzoic acid, namely, 2-chloro-4-nitrobenzoic acid–5-nitroquinoline (1/1), (I), and 5-chloro-2-nitrobenzoic acid–5-nitroquinoline (1/1), (II), both C7H4ClNO4·C9H6N2O2, have been determined at 190 K. In each compound, the acid and base molecules are held together by an O—H⋯N hydrogen bond. In the crystal of (I), the hydrogen-bonded acid–base units are linked by a C—H⋯O hydrogen bond, forming a tape structure along [10]. The tapes are stacked into a layer parallel to the ab plane via N—O⋯π interactions between the nitro group of the base molecule and the quinoline ring system. The layers are further linked by other C—H⋯O hydrogen bonds, forming a three-dimensional network. In the crystal of (II), the hydrogen-bonded acid–base units are linked into a wide ribbon structure running along [10] via C—H⋯O hydrogen bonds. The ribbons are further linked via another C—H⋯O hydrogen bond, forming a layer parallel to (110). Weak π–π interactions [centroid–centroid distances of 3.7080 (10) and 3.7543 (9) Å] are observed between the quinoline ring systems of adjacent layers. Hirshfeld surfaces for the 5-nitroquinoline molecules of the two compounds mapped over shape index and dnorm were generated to visualize the weak intermolecular interactions.
1. Chemical context
The properties of hydrogen bonds formed between organic acids and organic bases depend on the pKa values of the acids and bases, as well as the intermolecular interactions in the crystals. For the system of quinoline and chloro- and nitro-substituted benzoic acids, we have shown that three compounds of quinoline with 3-chloro-2-nitrobenzoic acid, 4-chloro-2-nitrobenzoic acid and 5-chloro-2-nitorbenzoic acid, the ΔpKa [pKa(base) – pKa(acid)] values of which are 3.08, 2.93 and 3.04, respectively, have a short double-well O⋯H⋯N hydrogen bond between the carboxy O atom and the aromatic N atom (Gotoh & Ishida, 2009). Similar O⋯H⋯N hydrogen bonds have also been observed in compounds of phthalazine with 3-chloro-2-nitrobenzoic acid and 4-chloro-2-nitrobenzoic acid with ΔpKa values of 1.65 and 1.50, respectively (Gotoh & Ishida, 2011a), and of isoquinoline with 3-chloro-2-nitrobenzoic acid with ΔpKa = 3.58 (Gotoh & Ishida, 2015). On the other hand, in 2-chloro-4-nitrobenzoic acid–quinoline (1/1) with ΔpKa = 2.86 (Gotoh & Ishida, 2011b), 3-chloro-2-nitrobenzoic acid–5-nitroquinoline (1/1) with ΔpKa = 0.98, 3-chloro-2-nitrobenzoic acid–6-nitroquinolune (1/1) with ΔpKa = 1.42 and 8-hydroxyquinolinium 3-chloro-2-nitrobenzoate with ΔpKa = 3.02 (Gotoh & Ishida, 2019), such a short disordered hydrogen bond was not observed, suggesting that the strength of the hydrogen bond between the acid O atom and the base N atom is strongly influenced by other weak intermolecular interactions.
We report here the crystal structures of the isomeric compounds 2-chloro-4-nitrobenzoic acid–5-nitroquinoline (1/1) (ΔpKa = 0.76) and 5-chloro-2-nitrobenzoic acid–5-nitroquinoline (1/1) (ΔpKa = 0.94), in order to extend our studies of short hydrogen bonding and weak intermolecular interactions in the quinoline derivative–chloro- and nitro-substituted benzoic acid system.
2. Structural commentary
Compound (I) crystallizes in the noncentrosymmetric P21, where the acid and base molecules are held together by an O—H⋯N hydrogen bond between the carboxy group and the N atom of the base (Fig. 1 and Table 1). The hydrogen-bonded acid–base unit is approximately planar; the quinoline ring system (N2/C8–C16) makes dihedral angles of 3.94 (17) and 7.5 (5)°, respectively, with the benzene ring (C1–C6) and the carboxy group (O1/C7/O2). In the acid molecule, the benzene ring makes dihedral angles of 4.3 (5) and 2.5 (5)°, respectively, with the carboxy group and the nitro group (O3/N1/O4), while in the base molecule, the quinoline ring system and the attached nitro group (O5/N3/O6) are somewhat twisted with a dihedral angle of 36.2 (5)°.
The molecular structure of (II) is shown in Fig. 2. Similar to (I), the acid and base molecules are held together by an O—H⋯N hydrogen bond (Table 2). In the acid–base unit, the quinoline ring system and the hydrogen-bonded carboxy group are almost coplanar, with a dihedral angle of 2.9 (2)°, while the quinoline ring system and the benzene ring of the acid are twisted with respect to each other by a dihedral angle of 37.37 (6)°. In the acid molecule, the benzene ring makes dihedral angles of 40.3 (2) and 47.12 (19)°, respectively, with the carboxy and nitro groups. In the base molecule, the dihedral angle between the quinoline ring system and the attached nitro group is 11.3 (2)°.
3. Supramolecular features
In the crystal of (I), the hydrogen-bonded acid–base units are linked by a C—H⋯O hydrogen bond (C13—H13⋯O4ii; symmetry code as in Table 1), forming a tape structure along [10]. The tapes are stacked into a layer parallel to the ab plane (Fig. 3) via N—O⋯π contacts (N3—O5⋯Cg3iii and N3—O5⋯Cg4iii; Table 1) between the nitro group of the base and the quinoline ring system; Cg3 and Cg4 are the centroids of the C11–C16 ring and the N2/C8–C16 ring system of the base molecule, respectively. The layers are further linked by other C—H⋯O hydrogen bonds (C8—H8⋯O2i and C9—H9⋯O2i; Table 1), forming a three-dimensional network.
In the crystal of (II), the hydrogen-bonded acid–base units are linked into a wide ribbon structure running along [10] (Fig. 4) via C—H⋯O hydrogen bonds (C3—H3⋯O4i, C13—H13⋯O2iii and C14—H14⋯O2iii; symmetry codes as in Table 2); the mean plane of the non-H atoms in the ribbon is parallel to (773). The ribbons are further linked via another C—H⋯O hydrogen bond (C10—H10⋯O3ii; Table 2), forming a layer parallel to (110). Between the layers, weak π–π interactions are observed; the centroid–centroid distances are 3.7080 (10) and 3.7543 (9) Å, respectively, for Cg2⋯Cg2iv and Cg2⋯Cg4vi, where Cg2 and Cg4 are the centroids of the N2/C8–C11/C16 ring and the N2/C8–C16 ring system of the base molecule, respectively [symmetry code: (iv) −x, −y + 1, −z + 1].
Hirshfeld surfaces for the 5-nitroquinoline molecules of (I) and (II), mapped over shape index and dnorm (Turner et al., 2017; McKinnon et al., 2004, 2007), are shown in Figs. 5 and 6. The three C—H⋯O interactions in (I) (C8—H8⋯O2i, C9—H9⋯O2i and C13—H13⋯O4ii; Table 1) are viewed as faint-red spots on the dnorm surfaces [arrows (1)–(3); Fig. 5]. In addition to these interactions, the N—O⋯π contacts (N3—O5⋯Cg3iii and N3—O5⋯Cg4iii; Table 1) are shown as broad blue and red regions, respectively, in the front and back views of shape-index surfaces [arrows (4)]. The three C—H⋯O interactions in (II) (C10—H10⋯O3ii, C13—H13⋯O2iii and C14—H14⋯O2iii; Table 2) are also represented as faint-red spots on the dnorm surfaces [arrows (1)–(3); Fig. 6]. By contrast with the shape-index surfaces of (I), π–π interactions between the quinoline ring systems of inversion-related molecules [Cg2⋯Cg2iv and Cg2⋯Cg4vi; symmetry code: (iv) −x, −y + 1, −z + 1] are indicated by blue and red triangles on the shape-index surface [arrow (4) in the front view of (II)].
4. Database survey
A search of the Cambridge Structural Database (Version 5.40, last update August 2019; Groom et al., 2016) for organic cocrystals/salts of 5-nitroquinoline with carboxylic acid derivatives gave five structures, namely, 3-aminobenzoic acid–5-nitroquinoline (1/1) (refcode PANYIM; Lynch et al., 1997), 4-animobenzoic acid–5-nitroquinoline (1/2) (PANZEJ; Lynch et al., 1997), indole-2-carboxylic acid–5-nitroquinoline (1/2) (GISGUK; Lynch et al., 1998), indole-3-acetic acid–5-nitroquinoline (1/2) (GISHAR: Lynch et al., 1998) and (2,4,5-trichlorophenoxy)acetic acid–5-nitroquinoline (1/1) (XAPWOA; Lynch et al., 1999). In these compounds, the dihedral angles between the quinoline ring system and the attached nitro group vary in the wide range 2.2 (4)–32.9 (4)°, which implies that the orientation of the nitro group is mainly affected by intermolecular interactions.
A search for organic cocrystals/salts of 2-chloro-4-nitrobenzoic acid with base molecules gave 60 structures, while for organic cocrystals/salts of 5-chloro-2-nitrobenzoic acid with base molecules, five compounds were reported. Limiting the search to quinoline derivatives of these compounds gave three compounds, namely, 2-chloro-4-nitrobenzoic acid–quinoline (1/1) (YAGFAP; Gotoh & Ishida, 2011b), 8-hydroxyquinolinium 2-chloro-4-nitrobenzoate (WOPDEM; Babu & Chandrasekaran, 2014) and 5-chloro-2-nitrobenzoic acid–quinoline (1/1) (AJIXAT; Gotoh & Ishida, 2009).
5. Synthesis and crystallization
Crystals of compounds (I) and (II) were obtained by slow evaporation from acetonitrile solutions of 5-nitroquinoline with chloronitrobenzoic acids in a 1:1 molar ratio at room temperature [80 ml acetonitrile solution of 5-nitroquinoline (0.117 g) and 2-chloro-4-nitrobenzoic acid (0.135 g) for (I), and 50 ml acetonitrile solution of 5-nitroquinoline (0.099 g) and 5-chloro-2-nitrobenzoic acid (0.112 g) for (II)].
6. Refinement
Crystal data, data collection, and structure . All H atoms in compounds (I) and (II) were found in difference Fourier maps. H atoms on O atoms in (I) and (II) were refined freely, with distances of O1—H1 = 1.02 (8) Å in (I) and O1—H1 = 0.99 (4) Å in (II). Other H atoms were positioned geometrically (C—H = 0.95 Å) and treated as riding, with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989019013896/lh5931sup1.cif
contains datablocks global, I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019013896/lh5931Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989019013896/lh5931IIsup3.hkl
For both structures, data collection: PROCESS-AUTO (Rigaku, 2006); cell
PROCESS-AUTO (Rigaku, 2006); data reduction: PROCESS-AUTO (Rigaku, 2006); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: CrystalStructure (Rigaku, 2018) and PLATON (Spek, 2015).C7H4ClNO4·C9H6N2O2 | F(000) = 384.00 |
Mr = 375.72 | Dx = 1.604 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71075 Å |
a = 12.8265 (13) Å | Cell parameters from 11483 reflections |
b = 4.7699 (5) Å | θ = 3.1–30.0° |
c = 13.5033 (16) Å | µ = 0.29 mm−1 |
β = 109.713 (3)° | T = 190 K |
V = 777.73 (15) Å3 | Block, colorless |
Z = 2 | 0.37 × 0.18 × 0.10 mm |
Rigaku R-AXIS RAPID diffractometer | 2859 reflections with I > 2σ(I) |
Detector resolution: 10.000 pixels mm-1 | Rint = 0.058 |
ω scans | θmax = 30.0°, θmin = 3.1° |
Absorption correction: numerical (NUMABS; Higashi, 1999) | h = −17→18 |
Tmin = 0.913, Tmax = 0.972 | k = −6→6 |
14435 measured reflections | l = −18→18 |
4168 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.056 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.169 | w = 1/[σ2(Fo2) + (0.0939P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
4168 reflections | Δρmax = 0.34 e Å−3 |
239 parameters | Δρmin = −0.64 e Å−3 |
1 restraint | Absolute structure: Flack x determined using 898 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.01 (6) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.57519 (8) | 0.0684 (3) | 0.43612 (8) | 0.0493 (3) | |
O1 | 0.5077 (3) | 0.4634 (8) | 0.2687 (3) | 0.0477 (8) | |
O2 | 0.5751 (3) | 0.4867 (9) | 0.1386 (3) | 0.0558 (10) | |
O3 | 0.9097 (3) | −0.5701 (8) | 0.4815 (3) | 0.0521 (8) | |
O4 | 0.9774 (2) | −0.4811 (7) | 0.3586 (3) | 0.0484 (8) | |
O5 | 0.0470 (2) | 1.5716 (7) | 0.0857 (3) | 0.0485 (7) | |
O6 | −0.0635 (2) | 1.3007 (9) | 0.1321 (3) | 0.0555 (9) | |
N1 | 0.9100 (3) | −0.4421 (8) | 0.4027 (3) | 0.0383 (7) | |
N2 | 0.3733 (3) | 0.8494 (8) | 0.1655 (3) | 0.0372 (8) | |
N3 | 0.0279 (3) | 1.3624 (8) | 0.1297 (3) | 0.0410 (8) | |
C1 | 0.6593 (3) | 0.1676 (9) | 0.2761 (3) | 0.0338 (8) | |
C2 | 0.6664 (3) | 0.0245 (9) | 0.3678 (3) | 0.0369 (9) | |
C3 | 0.7492 (3) | −0.1771 (10) | 0.4099 (3) | 0.0381 (9) | |
H3 | 0.753753 | −0.276100 | 0.472305 | 0.046* | |
C4 | 0.8238 (3) | −0.2282 (9) | 0.3586 (3) | 0.0365 (8) | |
C5 | 0.8196 (3) | −0.0934 (10) | 0.2676 (3) | 0.0381 (9) | |
H5 | 0.871190 | −0.135533 | 0.233150 | 0.046* | |
C6 | 0.7376 (3) | 0.1061 (9) | 0.2273 (3) | 0.0371 (9) | |
H6 | 0.734210 | 0.204031 | 0.165071 | 0.045* | |
C7 | 0.5754 (3) | 0.3898 (9) | 0.2214 (3) | 0.0364 (9) | |
C8 | 0.3804 (3) | 0.9609 (11) | 0.0786 (3) | 0.0411 (10) | |
H8 | 0.438654 | 0.903116 | 0.054610 | 0.049* | |
C9 | 0.3047 (4) | 1.1621 (10) | 0.0206 (3) | 0.0424 (10) | |
H9 | 0.313962 | 1.243052 | −0.040174 | 0.051* | |
C10 | 0.2177 (3) | 1.2428 (10) | 0.0506 (3) | 0.0389 (9) | |
H10 | 0.165082 | 1.375120 | 0.010283 | 0.047* | |
C11 | 0.2075 (3) | 1.1243 (8) | 0.1438 (3) | 0.0341 (9) | |
C12 | 0.1202 (3) | 1.1733 (9) | 0.1847 (3) | 0.0371 (9) | |
C13 | 0.1160 (3) | 1.0509 (11) | 0.2741 (3) | 0.0402 (9) | |
H13 | 0.057188 | 1.093775 | 0.299480 | 0.048* | |
C14 | 0.1991 (4) | 0.8605 (10) | 0.3290 (3) | 0.0435 (10) | |
H14 | 0.196326 | 0.774460 | 0.391516 | 0.052* | |
C15 | 0.2838 (3) | 0.7987 (10) | 0.2925 (3) | 0.0411 (10) | |
H15 | 0.339701 | 0.669393 | 0.329616 | 0.049* | |
C16 | 0.2884 (3) | 0.9272 (9) | 0.1997 (3) | 0.0343 (8) | |
H1 | 0.463 (5) | 0.632 (17) | 0.231 (5) | 0.09 (2)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0495 (5) | 0.0641 (7) | 0.0462 (5) | 0.0116 (6) | 0.0317 (4) | 0.0062 (5) |
O1 | 0.0504 (17) | 0.0543 (19) | 0.0481 (18) | 0.0154 (16) | 0.0296 (14) | 0.0074 (15) |
O2 | 0.0569 (18) | 0.072 (3) | 0.0509 (18) | 0.0215 (19) | 0.0349 (16) | 0.0194 (17) |
O3 | 0.0518 (17) | 0.053 (2) | 0.058 (2) | 0.0071 (17) | 0.0268 (15) | 0.0135 (17) |
O4 | 0.0453 (15) | 0.051 (2) | 0.0562 (18) | 0.0121 (16) | 0.0265 (14) | −0.0026 (15) |
O5 | 0.0488 (16) | 0.0386 (16) | 0.0605 (18) | 0.0045 (17) | 0.0214 (14) | 0.0071 (17) |
O6 | 0.0395 (16) | 0.075 (3) | 0.059 (2) | 0.0106 (18) | 0.0262 (14) | 0.0093 (19) |
N1 | 0.0357 (15) | 0.0351 (17) | 0.0474 (18) | 0.0017 (17) | 0.0183 (13) | −0.0015 (17) |
N2 | 0.0367 (16) | 0.0413 (19) | 0.0407 (18) | 0.0012 (16) | 0.0221 (14) | −0.0009 (15) |
N3 | 0.0418 (18) | 0.044 (2) | 0.0441 (19) | 0.0080 (17) | 0.0230 (16) | −0.0009 (16) |
C1 | 0.0354 (19) | 0.0340 (19) | 0.0375 (19) | −0.0036 (17) | 0.0196 (16) | −0.0050 (16) |
C2 | 0.0375 (17) | 0.042 (2) | 0.0383 (19) | −0.0025 (19) | 0.0218 (15) | −0.0042 (18) |
C3 | 0.040 (2) | 0.040 (2) | 0.039 (2) | 0.0023 (19) | 0.0194 (16) | 0.0000 (18) |
C4 | 0.0366 (19) | 0.033 (2) | 0.043 (2) | 0.0024 (18) | 0.0178 (16) | −0.0027 (17) |
C5 | 0.0365 (19) | 0.042 (2) | 0.043 (2) | 0.0039 (18) | 0.0229 (17) | −0.0003 (18) |
C6 | 0.0378 (19) | 0.043 (2) | 0.0368 (18) | −0.0002 (19) | 0.0206 (16) | −0.0005 (18) |
C7 | 0.0346 (18) | 0.039 (2) | 0.041 (2) | 0.0002 (18) | 0.0197 (16) | −0.0029 (17) |
C8 | 0.0389 (19) | 0.050 (2) | 0.042 (2) | 0.001 (2) | 0.0235 (18) | −0.0018 (19) |
C9 | 0.045 (2) | 0.051 (3) | 0.039 (2) | 0.000 (2) | 0.0238 (18) | 0.0054 (18) |
C10 | 0.041 (2) | 0.042 (2) | 0.037 (2) | −0.0007 (19) | 0.0179 (16) | 0.0021 (18) |
C11 | 0.0347 (18) | 0.036 (2) | 0.0365 (18) | −0.0015 (17) | 0.0181 (15) | −0.0025 (16) |
C12 | 0.036 (2) | 0.037 (2) | 0.043 (2) | 0.0049 (17) | 0.0197 (17) | −0.0022 (17) |
C13 | 0.0387 (18) | 0.046 (2) | 0.044 (2) | 0.002 (2) | 0.0254 (16) | −0.004 (2) |
C14 | 0.045 (2) | 0.053 (3) | 0.041 (2) | 0.003 (2) | 0.0243 (17) | 0.002 (2) |
C15 | 0.041 (2) | 0.047 (2) | 0.042 (2) | 0.009 (2) | 0.0223 (17) | 0.007 (2) |
C16 | 0.0344 (17) | 0.036 (2) | 0.0374 (19) | 0.0017 (17) | 0.0187 (15) | 0.0009 (16) |
Cl1—C2 | 1.729 (4) | C5—C6 | 1.386 (6) |
O1—C7 | 1.288 (5) | C5—H5 | 0.9500 |
O1—H1 | 1.02 (8) | C6—H6 | 0.9500 |
O2—C7 | 1.209 (5) | C8—C9 | 1.402 (7) |
O3—N1 | 1.228 (5) | C8—H8 | 0.9500 |
O4—N1 | 1.218 (4) | C9—C10 | 1.365 (5) |
O5—N3 | 1.228 (5) | C9—H9 | 0.9500 |
O6—N3 | 1.220 (4) | C10—C11 | 1.425 (5) |
N1—C4 | 1.474 (5) | C10—H10 | 0.9500 |
N2—C8 | 1.320 (5) | C11—C16 | 1.415 (6) |
N2—C16 | 1.370 (4) | C11—C12 | 1.425 (5) |
N3—C12 | 1.474 (5) | C12—C13 | 1.359 (6) |
C1—C2 | 1.390 (6) | C13—C14 | 1.406 (6) |
C1—C6 | 1.405 (5) | C13—H13 | 0.9500 |
C1—C7 | 1.514 (6) | C14—C15 | 1.369 (5) |
C2—C3 | 1.403 (6) | C14—H14 | 0.9500 |
C3—C4 | 1.380 (5) | C15—C16 | 1.413 (5) |
C3—H3 | 0.9500 | C15—H15 | 0.9500 |
C4—C5 | 1.372 (6) | ||
C7—O1—H1 | 109 (4) | O1—C7—C1 | 115.9 (4) |
O4—N1—O3 | 123.9 (4) | N2—C8—C9 | 122.0 (4) |
O4—N1—C4 | 117.9 (4) | N2—C8—H8 | 119.0 |
O3—N1—C4 | 118.2 (3) | C9—C8—H8 | 119.0 |
C8—N2—C16 | 119.5 (4) | C10—C9—C8 | 120.6 (4) |
O6—N3—O5 | 124.0 (4) | C10—C9—H9 | 119.7 |
O6—N3—C12 | 117.1 (4) | C8—C9—H9 | 119.7 |
O5—N3—C12 | 118.9 (3) | C9—C10—C11 | 118.6 (4) |
C2—C1—C6 | 118.2 (4) | C9—C10—H10 | 120.7 |
C2—C1—C7 | 126.9 (3) | C11—C10—H10 | 120.7 |
C6—C1—C7 | 114.8 (3) | C16—C11—C12 | 115.6 (3) |
C1—C2—C3 | 120.7 (3) | C16—C11—C10 | 117.8 (3) |
C1—C2—Cl1 | 124.3 (3) | C12—C11—C10 | 126.5 (4) |
C3—C2—Cl1 | 115.0 (3) | C13—C12—C11 | 123.1 (4) |
C4—C3—C2 | 118.4 (4) | C13—C12—N3 | 116.4 (3) |
C4—C3—H3 | 120.8 | C11—C12—N3 | 120.5 (4) |
C2—C3—H3 | 120.8 | C12—C13—C14 | 119.7 (3) |
C5—C4—C3 | 122.9 (4) | C12—C13—H13 | 120.1 |
C5—C4—N1 | 118.9 (3) | C14—C13—H13 | 120.1 |
C3—C4—N1 | 118.2 (4) | C15—C14—C13 | 120.2 (4) |
C4—C5—C6 | 117.9 (3) | C15—C14—H14 | 119.9 |
C4—C5—H5 | 121.0 | C13—C14—H14 | 119.9 |
C6—C5—H5 | 121.0 | C14—C15—C16 | 120.0 (4) |
C5—C6—C1 | 121.8 (4) | C14—C15—H15 | 120.0 |
C5—C6—H6 | 119.1 | C16—C15—H15 | 120.0 |
C1—C6—H6 | 119.1 | N2—C16—C15 | 117.2 (4) |
O2—C7—O1 | 124.2 (4) | N2—C16—C11 | 121.5 (4) |
O2—C7—C1 | 119.9 (4) | C15—C16—C11 | 121.3 (3) |
C6—C1—C2—C3 | −0.4 (6) | C8—C9—C10—C11 | 1.8 (7) |
C7—C1—C2—C3 | −179.9 (4) | C9—C10—C11—C16 | −0.4 (6) |
C6—C1—C2—Cl1 | −178.5 (3) | C9—C10—C11—C12 | −177.1 (4) |
C7—C1—C2—Cl1 | 2.1 (6) | C16—C11—C12—C13 | 2.9 (6) |
C1—C2—C3—C4 | 0.5 (6) | C10—C11—C12—C13 | 179.7 (4) |
Cl1—C2—C3—C4 | 178.7 (3) | C16—C11—C12—N3 | −176.6 (4) |
C2—C3—C4—C5 | −1.0 (7) | C10—C11—C12—N3 | 0.2 (6) |
C2—C3—C4—N1 | −179.4 (4) | O6—N3—C12—C13 | −34.6 (6) |
O4—N1—C4—C5 | 3.3 (6) | O5—N3—C12—C13 | 144.6 (4) |
O3—N1—C4—C5 | −176.7 (4) | O6—N3—C12—C11 | 144.9 (4) |
O4—N1—C4—C3 | −178.1 (4) | O5—N3—C12—C11 | −35.9 (6) |
O3—N1—C4—C3 | 1.8 (6) | C11—C12—C13—C14 | −1.7 (7) |
C3—C4—C5—C6 | 1.3 (7) | N3—C12—C13—C14 | 177.8 (4) |
N1—C4—C5—C6 | 179.7 (4) | C12—C13—C14—C15 | 0.0 (7) |
C4—C5—C6—C1 | −1.2 (6) | C13—C14—C15—C16 | 0.2 (7) |
C2—C1—C6—C5 | 0.8 (6) | C8—N2—C16—C15 | 179.2 (4) |
C7—C1—C6—C5 | −179.7 (4) | C8—N2—C16—C11 | 0.2 (6) |
C2—C1—C7—O2 | −176.0 (4) | C14—C15—C16—N2 | −177.9 (4) |
C6—C1—C7—O2 | 4.5 (6) | C14—C15—C16—C11 | 1.1 (7) |
C2—C1—C7—O1 | 4.2 (6) | C12—C11—C16—N2 | 176.4 (4) |
C6—C1—C7—O1 | −175.3 (4) | C10—C11—C16—N2 | −0.7 (6) |
C16—N2—C8—C9 | 1.3 (7) | C12—C11—C16—C15 | −2.6 (6) |
N2—C8—C9—C10 | −2.4 (7) | C10—C11—C16—C15 | −179.6 (4) |
Cg3 and Cg4 are the centroids of the C11–C16 ring and the N2/C8–C16 ring system, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N2 | 1.02 (8) | 1.58 (7) | 2.585 (5) | 168 (7) |
C8—H8···O2i | 0.95 | 2.59 | 3.174 (6) | 120 |
C9—H9···O2i | 0.95 | 2.56 | 3.152 (6) | 120 |
C13—H13···O4ii | 0.95 | 2.52 | 3.289 (6) | 138 |
N3—O5···Cg3iii | 1.23 (1) | 3.06 (1) | 3.724 (4) | 113 (1) |
N3—O5···Cg4iii | 1.23 (1) | 3.25 (1) | 4.118 (4) | 128 (1) |
Symmetry codes: (i) −x+1, y+1/2, −z; (ii) x−1, y+2, z; (iii) x, y+1, z. |
C7H4ClNO4·C9H6N2O2 | Z = 2 |
Mr = 375.72 | F(000) = 384.00 |
Triclinic, P1 | Dx = 1.596 Mg m−3 |
a = 7.6682 (6) Å | Mo Kα radiation, λ = 0.71075 Å |
b = 8.6515 (8) Å | Cell parameters from 7062 reflections |
c = 12.8609 (10) Å | θ = 3.1–30.1° |
α = 79.170 (3)° | µ = 0.29 mm−1 |
β = 78.968 (2)° | T = 190 K |
γ = 70.394 (3)° | Block, colorless |
V = 781.80 (11) Å3 | 0.26 × 0.20 × 0.18 mm |
Rigaku R-AXIS RAPID diffractometer | 3075 reflections with I > 2σ(I) |
Detector resolution: 10.000 pixels mm-1 | Rint = 0.055 |
ω scans | θmax = 30.0°, θmin = 3.1° |
Absorption correction: numerical (NUMABS; Higashi, 1999) | h = −10→10 |
Tmin = 0.933, Tmax = 0.950 | k = −12→12 |
9772 measured reflections | l = −18→16 |
4502 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: mixed |
wR(F2) = 0.148 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | w = 1/[σ2(Fo2) + (0.077P)2] where P = (Fo2 + 2Fc2)/3 |
4502 reflections | (Δ/σ)max < 0.001 |
239 parameters | Δρmax = 0.42 e Å−3 |
0 restraints | Δρmin = −0.39 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement. _reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.14420 (7) | 0.28783 (7) | −0.10243 (4) | 0.05199 (18) | |
O1 | 0.27021 (17) | 0.49296 (15) | 0.23397 (9) | 0.0398 (3) | |
O2 | 0.49601 (18) | 0.27221 (17) | 0.29240 (9) | 0.0464 (3) | |
O3 | 0.7904 (2) | 0.35306 (18) | 0.13902 (11) | 0.0517 (4) | |
O4 | 0.91612 (19) | 0.09724 (19) | 0.11445 (12) | 0.0560 (4) | |
O5 | −0.2211 (2) | 0.9235 (2) | 0.73000 (11) | 0.0588 (4) | |
O6 | −0.3859 (2) | 1.13276 (19) | 0.63614 (12) | 0.0585 (4) | |
N1 | 0.78959 (19) | 0.22747 (19) | 0.10917 (11) | 0.0375 (3) | |
N2 | 0.18718 (18) | 0.57290 (17) | 0.42980 (10) | 0.0304 (3) | |
N3 | −0.2703 (2) | 0.99626 (19) | 0.64474 (12) | 0.0363 (3) | |
C1 | 0.4473 (2) | 0.31055 (18) | 0.11065 (11) | 0.0280 (3) | |
C2 | 0.6260 (2) | 0.2358 (2) | 0.06195 (12) | 0.0311 (3) | |
C3 | 0.6607 (3) | 0.1738 (2) | −0.03429 (13) | 0.0394 (4) | |
H3 | 0.785039 | 0.121041 | −0.064631 | 0.047* | |
C4 | 0.5112 (3) | 0.1900 (2) | −0.08550 (13) | 0.0405 (4) | |
H4 | 0.531267 | 0.149424 | −0.151912 | 0.049* | |
C5 | 0.3327 (2) | 0.2660 (2) | −0.03861 (12) | 0.0347 (4) | |
C6 | 0.2973 (2) | 0.3264 (2) | 0.05903 (12) | 0.0322 (3) | |
H6 | 0.172692 | 0.377559 | 0.089801 | 0.039* | |
C7 | 0.4089 (2) | 0.3576 (2) | 0.22188 (12) | 0.0289 (3) | |
C8 | 0.2766 (2) | 0.4942 (2) | 0.51114 (13) | 0.0338 (4) | |
H8 | 0.379851 | 0.397342 | 0.501163 | 0.041* | |
C9 | 0.2254 (2) | 0.5479 (2) | 0.61268 (13) | 0.0360 (4) | |
H9 | 0.295494 | 0.488936 | 0.669132 | 0.043* | |
C10 | 0.0752 (2) | 0.6842 (2) | 0.62990 (12) | 0.0329 (4) | |
H10 | 0.039659 | 0.720138 | 0.698459 | 0.039* | |
C11 | −0.0277 (2) | 0.77237 (19) | 0.54485 (11) | 0.0262 (3) | |
C12 | −0.1866 (2) | 0.9174 (2) | 0.54633 (12) | 0.0287 (3) | |
C13 | −0.2716 (2) | 0.9935 (2) | 0.45823 (13) | 0.0335 (3) | |
H13 | −0.376955 | 1.090140 | 0.462933 | 0.040* | |
C14 | −0.2037 (2) | 0.9294 (2) | 0.36000 (13) | 0.0364 (4) | |
H14 | −0.264213 | 0.981948 | 0.298918 | 0.044* | |
C15 | −0.0520 (2) | 0.7928 (2) | 0.35311 (12) | 0.0335 (4) | |
H15 | −0.005289 | 0.751029 | 0.286601 | 0.040* | |
C16 | 0.0378 (2) | 0.71153 (19) | 0.44377 (11) | 0.0269 (3) | |
H1 | 0.249 (4) | 0.510 (4) | 0.310 (3) | 0.097 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0591 (3) | 0.0735 (4) | 0.0357 (3) | −0.0300 (3) | −0.0154 (2) | −0.0106 (2) |
O1 | 0.0383 (7) | 0.0413 (7) | 0.0295 (6) | 0.0079 (5) | −0.0075 (5) | −0.0150 (5) |
O2 | 0.0500 (8) | 0.0468 (8) | 0.0289 (6) | 0.0086 (6) | −0.0146 (5) | −0.0075 (5) |
O3 | 0.0544 (8) | 0.0521 (9) | 0.0544 (8) | −0.0177 (7) | −0.0210 (7) | −0.0056 (7) |
O4 | 0.0337 (7) | 0.0574 (10) | 0.0559 (8) | 0.0116 (6) | −0.0050 (6) | −0.0061 (7) |
O5 | 0.0689 (10) | 0.0644 (10) | 0.0325 (7) | −0.0043 (8) | 0.0003 (7) | −0.0192 (7) |
O6 | 0.0579 (9) | 0.0479 (9) | 0.0567 (9) | 0.0053 (7) | −0.0009 (7) | −0.0234 (7) |
N1 | 0.0296 (7) | 0.0450 (9) | 0.0289 (7) | −0.0034 (6) | −0.0018 (5) | −0.0007 (6) |
N2 | 0.0294 (6) | 0.0313 (7) | 0.0293 (6) | −0.0064 (5) | −0.0030 (5) | −0.0079 (5) |
N3 | 0.0347 (8) | 0.0400 (8) | 0.0355 (7) | −0.0129 (6) | 0.0037 (6) | −0.0147 (6) |
C1 | 0.0310 (8) | 0.0252 (7) | 0.0227 (7) | −0.0023 (6) | −0.0029 (6) | −0.0038 (6) |
C2 | 0.0302 (8) | 0.0287 (8) | 0.0288 (7) | −0.0030 (6) | −0.0037 (6) | −0.0022 (6) |
C3 | 0.0409 (9) | 0.0378 (9) | 0.0310 (8) | −0.0029 (7) | 0.0048 (7) | −0.0111 (7) |
C4 | 0.0538 (11) | 0.0396 (10) | 0.0275 (8) | −0.0120 (8) | −0.0001 (7) | −0.0130 (7) |
C5 | 0.0455 (10) | 0.0364 (9) | 0.0252 (7) | −0.0145 (7) | −0.0090 (7) | −0.0040 (7) |
C6 | 0.0324 (8) | 0.0343 (8) | 0.0262 (7) | −0.0045 (7) | −0.0042 (6) | −0.0057 (6) |
C7 | 0.0285 (7) | 0.0313 (8) | 0.0244 (7) | −0.0035 (6) | −0.0052 (6) | −0.0067 (6) |
C8 | 0.0298 (8) | 0.0339 (9) | 0.0371 (8) | −0.0069 (7) | −0.0079 (6) | −0.0054 (7) |
C9 | 0.0365 (9) | 0.0405 (9) | 0.0321 (8) | −0.0107 (7) | −0.0129 (7) | −0.0016 (7) |
C10 | 0.0356 (8) | 0.0410 (9) | 0.0251 (7) | −0.0134 (7) | −0.0057 (6) | −0.0078 (7) |
C11 | 0.0276 (7) | 0.0294 (8) | 0.0242 (7) | −0.0121 (6) | −0.0023 (5) | −0.0051 (6) |
C12 | 0.0279 (7) | 0.0305 (8) | 0.0283 (7) | −0.0109 (6) | 0.0021 (6) | −0.0080 (6) |
C13 | 0.0286 (8) | 0.0301 (8) | 0.0387 (9) | −0.0072 (6) | −0.0023 (6) | −0.0033 (7) |
C14 | 0.0355 (9) | 0.0393 (9) | 0.0305 (8) | −0.0070 (7) | −0.0089 (7) | 0.0007 (7) |
C15 | 0.0368 (9) | 0.0382 (9) | 0.0237 (7) | −0.0081 (7) | −0.0054 (6) | −0.0052 (6) |
C16 | 0.0268 (7) | 0.0298 (8) | 0.0245 (7) | −0.0093 (6) | −0.0027 (6) | −0.0045 (6) |
Cl1—C5 | 1.7351 (17) | C4—H4 | 0.9500 |
O1—C7 | 1.3022 (18) | C5—C6 | 1.395 (2) |
O1—H1 | 1.00 (3) | C6—H6 | 0.9500 |
O2—C7 | 1.2098 (19) | C8—C9 | 1.409 (2) |
O3—N1 | 1.2207 (19) | C8—H8 | 0.9500 |
O4—N1 | 1.2158 (19) | C9—C10 | 1.362 (2) |
O5—N3 | 1.217 (2) | C9—H9 | 0.9500 |
O6—N3 | 1.216 (2) | C10—C11 | 1.419 (2) |
N1—C2 | 1.470 (2) | C10—H10 | 0.9500 |
N2—C8 | 1.312 (2) | C11—C12 | 1.426 (2) |
N2—C16 | 1.365 (2) | C11—C16 | 1.431 (2) |
N3—C12 | 1.4829 (19) | C12—C13 | 1.362 (2) |
C1—C2 | 1.385 (2) | C13—C14 | 1.411 (2) |
C1—C6 | 1.391 (2) | C13—H13 | 0.9500 |
C1—C7 | 1.5085 (19) | C14—C15 | 1.355 (2) |
C2—C3 | 1.385 (2) | C14—H14 | 0.9500 |
C3—C4 | 1.384 (3) | C15—C16 | 1.415 (2) |
C3—H3 | 0.9500 | C15—H15 | 0.9500 |
C4—C5 | 1.378 (2) | ||
C7—O1—H1 | 107.9 (18) | O1—C7—C1 | 113.35 (13) |
O4—N1—O3 | 124.32 (16) | N2—C8—C9 | 122.56 (15) |
O4—N1—C2 | 118.09 (15) | N2—C8—H8 | 118.7 |
O3—N1—C2 | 117.58 (14) | C9—C8—H8 | 118.7 |
C8—N2—C16 | 119.04 (13) | C10—C9—C8 | 119.96 (15) |
O6—N3—O5 | 122.72 (14) | C10—C9—H9 | 120.0 |
O6—N3—C12 | 117.87 (15) | C8—C9—H9 | 120.0 |
O5—N3—C12 | 119.41 (15) | C9—C10—C11 | 119.64 (14) |
C2—C1—C6 | 118.14 (13) | C9—C10—H10 | 120.2 |
C2—C1—C7 | 122.53 (13) | C11—C10—H10 | 120.2 |
C6—C1—C7 | 118.97 (13) | C10—C11—C12 | 128.17 (13) |
C1—C2—C3 | 122.79 (15) | C10—C11—C16 | 116.46 (14) |
C1—C2—N1 | 120.19 (13) | C12—C11—C16 | 115.35 (14) |
C3—C2—N1 | 116.94 (14) | C13—C12—C11 | 122.78 (13) |
C4—C3—C2 | 118.91 (16) | C13—C12—N3 | 115.36 (14) |
C4—C3—H3 | 120.5 | C11—C12—N3 | 121.86 (14) |
C2—C3—H3 | 120.5 | C12—C13—C14 | 120.30 (15) |
C5—C4—C3 | 118.91 (14) | C12—C13—H13 | 119.9 |
C5—C4—H4 | 120.5 | C14—C13—H13 | 119.9 |
C3—C4—H4 | 120.5 | C15—C14—C13 | 119.77 (15) |
C4—C5—C6 | 122.30 (15) | C15—C14—H14 | 120.1 |
C4—C5—Cl1 | 119.31 (12) | C13—C14—H14 | 120.1 |
C6—C5—Cl1 | 118.40 (13) | C14—C15—C16 | 120.81 (14) |
C1—C6—C5 | 118.93 (15) | C14—C15—H15 | 119.6 |
C1—C6—H6 | 120.5 | C16—C15—H15 | 119.6 |
C5—C6—H6 | 120.5 | N2—C16—C15 | 116.71 (13) |
O2—C7—O1 | 124.62 (13) | N2—C16—C11 | 122.30 (14) |
O2—C7—C1 | 121.98 (14) | C15—C16—C11 | 120.99 (14) |
C6—C1—C2—C3 | −1.3 (3) | C8—C9—C10—C11 | −0.6 (2) |
C7—C1—C2—C3 | 171.77 (16) | C9—C10—C11—C12 | −179.44 (15) |
C6—C1—C2—N1 | 175.37 (14) | C9—C10—C11—C16 | −1.2 (2) |
C7—C1—C2—N1 | −11.5 (2) | C10—C11—C12—C13 | 178.45 (16) |
O4—N1—C2—C1 | 135.40 (16) | C16—C11—C12—C13 | 0.2 (2) |
O3—N1—C2—C1 | −45.7 (2) | C10—C11—C12—N3 | −1.3 (2) |
O4—N1—C2—C3 | −47.7 (2) | C16—C11—C12—N3 | −179.55 (13) |
O3—N1—C2—C3 | 131.17 (17) | O6—N3—C12—C13 | −11.0 (2) |
C1—C2—C3—C4 | 1.4 (3) | O5—N3—C12—C13 | 169.25 (16) |
N1—C2—C3—C4 | −175.35 (16) | O6—N3—C12—C11 | 168.68 (15) |
C2—C3—C4—C5 | −0.6 (3) | O5—N3—C12—C11 | −11.0 (2) |
C3—C4—C5—C6 | −0.3 (3) | C11—C12—C13—C14 | 0.2 (2) |
C3—C4—C5—Cl1 | 179.69 (14) | N3—C12—C13—C14 | 179.91 (14) |
C2—C1—C6—C5 | 0.4 (2) | C12—C13—C14—C15 | −0.8 (3) |
C7—C1—C6—C5 | −172.98 (15) | C13—C14—C15—C16 | 1.1 (3) |
C4—C5—C6—C1 | 0.4 (3) | C8—N2—C16—C15 | 179.18 (15) |
Cl1—C5—C6—C1 | −179.59 (12) | C8—N2—C16—C11 | −1.4 (2) |
C2—C1—C7—O2 | −37.4 (2) | C14—C15—C16—N2 | 178.69 (15) |
C6—C1—C7—O2 | 135.67 (18) | C14—C15—C16—C11 | −0.7 (2) |
C2—C1—C7—O1 | 145.23 (15) | C10—C11—C16—N2 | 2.2 (2) |
C6—C1—C7—O1 | −41.7 (2) | C12—C11—C16—N2 | −179.29 (13) |
C16—N2—C8—C9 | −0.5 (2) | C10—C11—C16—C15 | −178.39 (14) |
N2—C8—C9—C10 | 1.5 (3) | C12—C11—C16—C15 | 0.1 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N2 | 0.99 (4) | 1.66 (4) | 2.6405 (17) | 169 (3) |
C3—H3···O4i | 0.95 | 2.49 | 3.408 (3) | 162 |
C10—H10···O3ii | 0.95 | 2.54 | 3.254 (2) | 132 |
C13—H13···O2iii | 0.95 | 2.59 | 3.190 (2) | 121 |
C14—H14···O2iii | 0.95 | 2.56 | 3.173 (2) | 122 |
Symmetry codes: (i) −x+2, −y, −z; (ii) −x+1, −y+1, −z+1; (iii) x−1, y+1, z. |
References
Babu, B. & Chandrasekaran, J. (2014). Private Communication (refcode WOPDEM). CCDC, Cambridge, England. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gotoh, K. & Ishida, H. (2009). Acta Cryst. C65, o534–o538. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gotoh, K. & Ishida, H. (2011a). Acta Cryst. C67, o473–o478. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gotoh, K. & Ishida, H. (2011b). Acta Cryst. E67, o2883. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gotoh, K. & Ishida, H. (2015). Acta Cryst. E71, 31–34. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gotoh, K. & Ishida, H. (2019). Acta Cryst. E75, 1552–1557. CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Lynch, D. E., Cooper, C. J., Chauhan, V., Smith, G., Healy, P. & Parsons, S. (1999). Aust. J. Chem. 52, 695–704. CAS Google Scholar
Lynch, D. E., Mistry, N., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1998). Aust. J. Chem. 51, 813–818. Web of Science CSD CrossRef CAS Google Scholar
Lynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1997). Aust. J. Chem. 50, 977–986. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaja, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. CrossRef Google Scholar
McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668. Web of Science CrossRef CAS IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2018). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer. Version 17. University of Western Australia. https://hirshfeldsurface.net. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.