research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of the two isomeric hydrogen-bonded cocrystals 2-chloro-4-nitro­benzoic acid–5-nitro­quinoline (1/1) and 5-chloro-2-nitro­benzoic acid–5-nitro­quinoline (1/1)

aDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

Edited by A. J. Lough, University of Toronto, Canada (Received 8 October 2019; accepted 11 October 2019; online 22 October 2019)

The structures of two isomeric com­pounds of 5-nitro­quinoline with chloro- and nitro-substituted benzoic acid, namely, 2-chloro-4-nitro­benzoic acid–5-nitro­quinoline (1/1), (I), and 5-chloro-2-nitro­benzoic acid–5-nitro­quinoline (1/1), (II), both C7H4ClNO4·C9H6N2O2, have been determined at 190 K. In each com­pound, the acid and base mol­ecules are held together by an O—H⋯N hydrogen bond. In the crystal of (I), the hydrogen-bonded acid–base units are linked by a C—H⋯O hydrogen bond, forming a tape structure along [1[\overline{2}]0]. The tapes are stacked into a layer parallel to the ab plane via N—O⋯π inter­actions between the nitro group of the base mol­ecule and the quinoline ring system. The layers are further linked by other C—H⋯O hydrogen bonds, forming a three-dimensional network. In the crystal of (II), the hydrogen-bonded acid–base units are linked into a wide ribbon structure running along [1[\overline{1}]0] via C—H⋯O hydrogen bonds. The ribbons are further linked via another C—H⋯O hydrogen bond, forming a layer parallel to (110). Weak ππ inter­actions [centroid–centroid distances of 3.7080 (10) and 3.7543 (9) Å] are observed between the quinoline ring systems of adjacent layers. Hirshfeld surfaces for the 5-nitro­quinoline mol­ecules of the two com­pounds mapped over shape index and dnorm were generated to visualize the weak inter­molecular inter­actions.

1. Chemical context

The properties of hydrogen bonds formed between organic acids and organic bases depend on the pKa values of the acids and bases, as well as the inter­molecular inter­actions in the crystals. For the system of quinoline and chloro- and nitro-substituted benzoic acids, we have shown that three com­pounds of quinoline with 3-chloro-2-nitro­benzoic acid, 4-chloro-2-nitro­benzoic acid and 5-chloro-2-nitorbenzoic acid, the ΔpKa [pKa(base) – pKa(acid)] values of which are 3.08, 2.93 and 3.04, respectively, have a short double-well O⋯H⋯N hydrogen bond between the carb­oxy O atom and the aromatic N atom (Gotoh & Ishida, 2009[Gotoh, K. & Ishida, H. (2009). Acta Cryst. C65, o534-o538.]). Similar O⋯H⋯N hydrogen bonds have also been observed in com­pounds of phthalazine with 3-chloro-2-nitro­benzoic acid and 4-chloro-2-nitrobenzoic acid with ΔpKa values of 1.65 and 1.50, respectively (Gotoh & Ishida, 2011a[Gotoh, K. & Ishida, H. (2011a). Acta Cryst. C67, o473-o478.]), and of iso­quinoline with 3-chloro-2-nitro­benzoic acid with ΔpKa = 3.58 (Gotoh & Ishida, 2015[Gotoh, K. & Ishida, H. (2015). Acta Cryst. E71, 31-34.]). On the other hand, in 2-chloro-4-nitro­benzoic acid–quinoline (1/1) with ΔpKa = 2.86 (Gotoh & Ishida, 2011b[Gotoh, K. & Ishida, H. (2011b). Acta Cryst. E67, o2883.]), 3-chloro-2-nitro­benzoic acid–5-nitro­quinoline (1/1) with ΔpKa = 0.98, 3-chloro-2-nitro­benzoic acid–6-nitro­quinolune (1/1) with ΔpKa = 1.42 and 8-hy­droxy­quinolinium 3-chloro-2-nitro­benzoate with ΔpKa = 3.02 (Gotoh & Ishida, 2019[Gotoh, K. & Ishida, H. (2019). Acta Cryst. E75, 1552-1557.]), such a short disordered hydrogen bond was not observed, suggesting that the strength of the hydrogen bond between the acid O atom and the base N atom is strongly influenced by other weak inter­molecular inter­actions.

[Scheme 1]

We report here the crystal structures of the isomeric com­pounds 2-chloro-4-nitro­benzoic acid–5-nitro­quinoline (1/1) (ΔpKa = 0.76) and 5-chloro-2-nitro­benzoic acid–5-nitro­quinoline (1/1) (ΔpKa = 0.94), in order to extend our studies of short hydrogen bonding and weak inter­molecular inter­actions in the quinoline derivative–chloro- and nitro-substituted benzoic acid system.

2. Structural commentary

Compound (I)[link] crystallizes in the noncentrosymmetric space group P21, where the acid and base mol­ecules are held together by an O—H⋯N hydrogen bond between the carb­oxy group and the N atom of the base (Fig. 1[link] and Table 1[link]). The hydrogen-bonded acid–base unit is approximately planar; the quinoline ring system (N2/C8–C16) makes dihedral angles of 3.94 (17) and 7.5 (5)°, respectively, with the benzene ring (C1–C6) and the carb­oxy group (O1/C7/O2). In the acid mol­ecule, the benzene ring makes dihedral angles of 4.3 (5) and 2.5 (5)°, respectively, with the carb­oxy group and the nitro group (O3/N1/O4), while in the base mol­ecule, the quinoline ring system and the attached nitro group (O5/N3/O6) are somewhat twisted with a dihedral angle of 36.2 (5)°.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg3 and Cg4 are the centroids of the C11–C16 ring and the N2/C8–C16 ring system, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 1.02 (8) 1.58 (7) 2.585 (5) 168 (7)
C8—H8⋯O2i 0.95 2.59 3.174 (6) 120
C9—H9⋯O2i 0.95 2.56 3.152 (6) 120
C13—H13⋯O4ii 0.95 2.52 3.289 (6) 138
N3—O5⋯Cg3iii 1.23 (1) 3.06 (1) 3.724 (4) 113 (1)
N3—O5⋯Cg4iii 1.23 (1) 3.25 (1) 4.118 (4) 128 (1)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z]; (ii) x-1, y+2, z; (iii) x, y+1, z.
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The O—H⋯N hydrogen bond is indicated by a dashed line.

The mol­ecular structure of (II)[link] is shown in Fig. 2[link]. Similar to (I)[link], the acid and base mol­ecules are held together by an O—H⋯N hydrogen bond (Table 2[link]). In the acid–base unit, the quinoline ring system and the hydrogen-bonded carb­oxy group are almost coplanar, with a dihedral angle of 2.9 (2)°, while the quinoline ring system and the benzene ring of the acid are twisted with respect to each other by a dihedral angle of 37.37 (6)°. In the acid mol­ecule, the benzene ring makes dihedral angles of 40.3 (2) and 47.12 (19)°, respectively, with the carb­oxy and nitro groups. In the base mol­ecule, the dihedral angle between the quinoline ring system and the attached nitro group is 11.3 (2)°.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.99 (4) 1.66 (4) 2.6405 (17) 169 (3)
C3—H3⋯O4i 0.95 2.49 3.408 (3) 162
C10—H10⋯O3ii 0.95 2.54 3.254 (2) 132
C13—H13⋯O2iii 0.95 2.59 3.190 (2) 121
C14—H14⋯O2iii 0.95 2.56 3.173 (2) 122
Symmetry codes: (i) -x+2, -y, -z; (ii) -x+1, -y+1, -z+1; (iii) x-1, y+1, z.
[Figure 2]
Figure 2
The mol­ecular structure of (II)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The O—H⋯N hydrogen bond is indicated by a dashed line.

3. Supra­molecular features

In the crystal of (I)[link], the hydrogen-bonded acid–base units are linked by a C—H⋯O hydrogen bond (C13—H13⋯O4ii; symmetry code as in Table 1[link]), forming a tape structure along [1[\overline{2}]0]. The tapes are stacked into a layer parallel to the ab plane (Fig. 3[link]) via N—O⋯π contacts (N3—O5⋯Cg3iii and N3—O5⋯Cg4iii; Table 1[link]) between the nitro group of the base and the quinoline ring system; Cg3 and Cg4 are the centroids of the C11–C16 ring and the N2/C8–C16 ring system of the base mol­ecule, respectively. The layers are further linked by other C—H⋯O hydrogen bonds (C8—H8⋯O2i and C9—H9⋯O2i; Table 1[link]), forming a three-dimensional network.

[Figure 3]
Figure 3
A packing diagram of (I)[link], showing the hydrogen-bonded tape structure formed via O—H⋯N and C—H⋯O hydrogen bonds (green dashed lines), and N—O⋯π inter­actions (magenta dashed lines) between the tapes. The N—O⋯π inter­actions including the centroid of the ten-membered quinoline ring system (Cg4) have been omitted for clarity. [Symmetry codes: (ii) x − 1, y + 2, z; (iii) x, y + 1, −z + 1.]

In the crystal of (II)[link], the hydrogen-bonded acid–base units are linked into a wide ribbon structure running along [1[\overline{1}]0] (Fig. 4[link]) via C—H⋯O hydrogen bonds (C3—H3⋯O4i, C13—H13⋯O2iii and C14—H14⋯O2iii; symmetry codes as in Table 2[link]); the mean plane of the non-H atoms in the ribbon is parallel to (773). The ribbons are further linked via another C—H⋯O hydrogen bond (C10—H10⋯O3ii; Table 2[link]), forming a layer parallel to (110). Between the layers, weak ππ inter­actions are observed; the centroid–centroid distances are 3.7080 (10) and 3.7543 (9) Å, respectively, for Cg2⋯Cg2iv and Cg2⋯Cg4vi, where Cg2 and Cg4 are the centroids of the N2/C8–C11/C16 ring and the N2/C8–C16 ring system of the base mol­ecule, respectively [symmetry code: (iv) −x, −y + 1, −z + 1].

[Figure 4]
Figure 4
A packing diagram of (II)[link], showing the wide ribbon structure running along [1[\overline{1}]0] formed by O—H⋯N and C—H⋯O hydrogen bonds (green dashed lines). [Symmetry codes: (i) −x + 2, −y, −z; (iii) x − 1, y + 1, z.]

Hirshfeld surfaces for the 5-nitro­quinoline mol­ecules of (I)[link] and (II)[link], mapped over shape index and dnorm (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer. Version 17. University of Western Australia. http://hirshfeldsurface.net.]; McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.], 2007[McKinnon, J. J., Jayatilaja, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]), are shown in Figs. 5[link] and 6[link]. The three C—H⋯O inter­actions in (I)[link] (C8—H8⋯O2i, C9—H9⋯O2i and C13—H13⋯O4ii; Table 1[link]) are viewed as faint-red spots on the dnorm surfaces [arrows (1)–(3); Fig. 5[link]]. In addition to these inter­actions, the N—O⋯π contacts (N3—O5⋯Cg3iii and N3—O5⋯Cg4iii; Table 1[link]) are shown as broad blue and red regions, respectively, in the front and back views of shape-index surfaces [arrows (4)]. The three C—H⋯O inter­actions in (II)[link] (C10—H10⋯O3ii, C13—H13⋯O2iii and C14—H14⋯O2iii; Table 2[link]) are also represented as faint-red spots on the dnorm surfaces [arrows (1)–(3); Fig. 6[link]]. By contrast with the shape-index surfaces of (I)[link], ππ inter­actions between the quinoline ring systems of inversion-related mol­ecules [Cg2⋯Cg2iv and Cg2⋯Cg4vi; symmetry code: (iv) −x, −y + 1, −z + 1] are indicated by blue and red triangles on the shape-index surface [arrow (4) in the front view of (II)].

[Figure 5]
Figure 5
Hirshfeld surfaces [front (top) and back (bottom) views] for the 5-nitro­quinoline mol­ecule of (I)[link] mapped over shape index and dnorm, indicating the C—H⋯O [arrows (1)–(3)] and N—O⋯π [arrows (4)] inter­actions.
[Figure 6]
Figure 6
Hirshfeld surfaces [front (top) and back (bottom) views] for the 5-nitro­quinoline mol­ecule of (II)[link] mapped over shape index and dnorm, indicating the C—H⋯O [arrows (1)–(3)] and ππ [arrow (4)] inter­actions.

4. Database survey

A search of the Cambridge Structural Database (Version 5.40, last update August 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for organic cocrystals/salts of 5-nitro­quinoline with carb­oxy­lic acid derivatives gave five structures, namely, 3-amino­benzoic acid–5-nitro­quinoline (1/1) (refcode PANYIM; Lynch et al., 1997[Lynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1997). Aust. J. Chem. 50, 977-986.]), 4-animo­benzoic acid–5-nitro­quinoline (1/2) (PANZEJ; Lynch et al., 1997[Lynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1997). Aust. J. Chem. 50, 977-986.]), indole-2-carb­oxy­lic acid–5-nitro­quinoline (1/2) (GISGUK; Lynch et al., 1998[Lynch, D. E., Mistry, N., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1998). Aust. J. Chem. 51, 813-818.]), indole-3-acetic acid–5-nitro­quinoline (1/2) (GISHAR: Lynch et al., 1998[Lynch, D. E., Mistry, N., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1998). Aust. J. Chem. 51, 813-818.]) and (2,4,5-tri­chloro­phen­oxy)acetic acid–5-nitro­quinoline (1/1) (XAP­WOA; Lynch et al., 1999[Lynch, D. E., Cooper, C. J., Chauhan, V., Smith, G., Healy, P. & Parsons, S. (1999). Aust. J. Chem. 52, 695-704.]). In these com­pounds, the dihedral angles between the quinoline ring system and the attached nitro group vary in the wide range 2.2 (4)–32.9 (4)°, which implies that the orientation of the nitro group is mainly affected by inter­molecular inter­actions.

A search for organic cocrystals/salts of 2-chloro-4-nitro­benzoic acid with base mol­ecules gave 60 structures, while for organic cocrystals/salts of 5-chloro-2-nitro­benzoic acid with base mol­ecules, five com­pounds were reported. Limiting the search to quinoline derivatives of these com­pounds gave three com­pounds, namely, 2-chloro-4-nitro­benzoic acid–quinoline (1/1) (YAGFAP; Gotoh & Ishida, 2011b[Gotoh, K. & Ishida, H. (2011b). Acta Cryst. E67, o2883.]), 8-hy­droxy­quinolinium 2-chloro-4-nitro­benzoate (WOPDEM; Babu & Chandrasekaran, 2014[Babu, B. & Chandrasekaran, J. (2014). Private Communication (refcode WOPDEM). CCDC, Cambridge, England.]) and 5-chloro-2-nitro­benzoic acid–quinoline (1/1) (AJIXAT; Gotoh & Ishida, 2009[Gotoh, K. & Ishida, H. (2009). Acta Cryst. C65, o534-o538.]).

5. Synthesis and crystallization

Crystals of com­pounds (I)[link] and (II)[link] were obtained by slow evaporation from aceto­nitrile solutions of 5-nitro­quinoline with chloro­nitro­benzoic acids in a 1:1 molar ratio at room temperature [80 ml aceto­nitrile solution of 5-nitro­quinoline (0.117 g) and 2-chloro-4-nitro­benzoic acid (0.135 g) for (I)[link], and 50 ml aceto­nitrile solution of 5-nitro­quinoline (0.099 g) and 5-chloro-2-nitro­benzoic acid (0.112 g) for (II)].

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 3[link]. All H atoms in com­pounds (I)[link] and (II)[link] were found in difference Fourier maps. H atoms on O atoms in (I)[link] and (II)[link] were refined freely, with distances of O1—H1 = 1.02 (8) Å in (I)[link] and O1—H1 = 0.99 (4) Å in (II)[link]. Other H atoms were positioned geometrically (C—H = 0.95 Å) and treated as riding, with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C7H4ClNO4·C9H6N2O2 C7H4ClNO4·C9H6N2O2
Mr 375.72 375.72
Crystal system, space group Monoclinic, P21 Triclinic, P[\overline{1}]
Temperature (K) 190 190
a, b, c (Å) 12.8265 (13), 4.7699 (5), 13.5033 (16) 7.6682 (6), 8.6515 (8), 12.8609 (10)
α, β, γ (°) 90, 109.713 (3), 90 79.170 (3), 78.968 (2), 70.394 (3)
V3) 777.73 (15) 781.80 (11)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.29 0.29
Crystal size (mm) 0.37 × 0.18 × 0.10 0.26 × 0.20 × 0.18
 
Data collection
Diffractometer Rigaku R-AXIS RAPID Rigaku R-AXIS RAPID
Absorption correction Numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.913, 0.972 0.933, 0.950
No. of measured, independent and observed [I > 2σ(I)] reflections 14435, 4168, 2859 9772, 4502, 3075
Rint 0.058 0.055
(sin θ/λ)max−1) 0.703 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.169, 1.05 0.052, 0.148, 1.09
No. of reflections 4168 4502
No. of parameters 239 239
No. of restraints 1 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.34, −0.65 0.42, −0.39
Absolute structure Flack x determined using 898 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.01 (6)
Computer programs: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), CrystalStructure (Rigaku, 2018[Rigaku (2018). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) and PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]).

Supporting information


Computing details top

For both structures, data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: PROCESS-AUTO (Rigaku, 2006); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: CrystalStructure (Rigaku, 2018) and PLATON (Spek, 2015).

2-Chloro-4-nitrobenzoic acid–5-nitroquinoline (I) top
Crystal data top
C7H4ClNO4·C9H6N2O2F(000) = 384.00
Mr = 375.72Dx = 1.604 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71075 Å
a = 12.8265 (13) ÅCell parameters from 11483 reflections
b = 4.7699 (5) Åθ = 3.1–30.0°
c = 13.5033 (16) ŵ = 0.29 mm1
β = 109.713 (3)°T = 190 K
V = 777.73 (15) Å3Block, colorless
Z = 20.37 × 0.18 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2859 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.058
ω scansθmax = 30.0°, θmin = 3.1°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 1718
Tmin = 0.913, Tmax = 0.972k = 66
14435 measured reflectionsl = 1818
4168 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.169 w = 1/[σ2(Fo2) + (0.0939P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4168 reflectionsΔρmax = 0.34 e Å3
239 parametersΔρmin = 0.64 e Å3
1 restraintAbsolute structure: Flack x determined using 898 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.57519 (8)0.0684 (3)0.43612 (8)0.0493 (3)
O10.5077 (3)0.4634 (8)0.2687 (3)0.0477 (8)
O20.5751 (3)0.4867 (9)0.1386 (3)0.0558 (10)
O30.9097 (3)0.5701 (8)0.4815 (3)0.0521 (8)
O40.9774 (2)0.4811 (7)0.3586 (3)0.0484 (8)
O50.0470 (2)1.5716 (7)0.0857 (3)0.0485 (7)
O60.0635 (2)1.3007 (9)0.1321 (3)0.0555 (9)
N10.9100 (3)0.4421 (8)0.4027 (3)0.0383 (7)
N20.3733 (3)0.8494 (8)0.1655 (3)0.0372 (8)
N30.0279 (3)1.3624 (8)0.1297 (3)0.0410 (8)
C10.6593 (3)0.1676 (9)0.2761 (3)0.0338 (8)
C20.6664 (3)0.0245 (9)0.3678 (3)0.0369 (9)
C30.7492 (3)0.1771 (10)0.4099 (3)0.0381 (9)
H30.7537530.2761000.4723050.046*
C40.8238 (3)0.2282 (9)0.3586 (3)0.0365 (8)
C50.8196 (3)0.0934 (10)0.2676 (3)0.0381 (9)
H50.8711900.1355330.2331500.046*
C60.7376 (3)0.1061 (9)0.2273 (3)0.0371 (9)
H60.7342100.2040310.1650710.045*
C70.5754 (3)0.3898 (9)0.2214 (3)0.0364 (9)
C80.3804 (3)0.9609 (11)0.0786 (3)0.0411 (10)
H80.4386540.9031160.0546100.049*
C90.3047 (4)1.1621 (10)0.0206 (3)0.0424 (10)
H90.3139621.2430520.0401740.051*
C100.2177 (3)1.2428 (10)0.0506 (3)0.0389 (9)
H100.1650821.3751200.0102830.047*
C110.2075 (3)1.1243 (8)0.1438 (3)0.0341 (9)
C120.1202 (3)1.1733 (9)0.1847 (3)0.0371 (9)
C130.1160 (3)1.0509 (11)0.2741 (3)0.0402 (9)
H130.0571881.0937750.2994800.048*
C140.1991 (4)0.8605 (10)0.3290 (3)0.0435 (10)
H140.1963260.7744600.3915160.052*
C150.2838 (3)0.7987 (10)0.2925 (3)0.0411 (10)
H150.3397010.6693930.3296160.049*
C160.2884 (3)0.9272 (9)0.1997 (3)0.0343 (8)
H10.463 (5)0.632 (17)0.231 (5)0.09 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0495 (5)0.0641 (7)0.0462 (5)0.0116 (6)0.0317 (4)0.0062 (5)
O10.0504 (17)0.0543 (19)0.0481 (18)0.0154 (16)0.0296 (14)0.0074 (15)
O20.0569 (18)0.072 (3)0.0509 (18)0.0215 (19)0.0349 (16)0.0194 (17)
O30.0518 (17)0.053 (2)0.058 (2)0.0071 (17)0.0268 (15)0.0135 (17)
O40.0453 (15)0.051 (2)0.0562 (18)0.0121 (16)0.0265 (14)0.0026 (15)
O50.0488 (16)0.0386 (16)0.0605 (18)0.0045 (17)0.0214 (14)0.0071 (17)
O60.0395 (16)0.075 (3)0.059 (2)0.0106 (18)0.0262 (14)0.0093 (19)
N10.0357 (15)0.0351 (17)0.0474 (18)0.0017 (17)0.0183 (13)0.0015 (17)
N20.0367 (16)0.0413 (19)0.0407 (18)0.0012 (16)0.0221 (14)0.0009 (15)
N30.0418 (18)0.044 (2)0.0441 (19)0.0080 (17)0.0230 (16)0.0009 (16)
C10.0354 (19)0.0340 (19)0.0375 (19)0.0036 (17)0.0196 (16)0.0050 (16)
C20.0375 (17)0.042 (2)0.0383 (19)0.0025 (19)0.0218 (15)0.0042 (18)
C30.040 (2)0.040 (2)0.039 (2)0.0023 (19)0.0194 (16)0.0000 (18)
C40.0366 (19)0.033 (2)0.043 (2)0.0024 (18)0.0178 (16)0.0027 (17)
C50.0365 (19)0.042 (2)0.043 (2)0.0039 (18)0.0229 (17)0.0003 (18)
C60.0378 (19)0.043 (2)0.0368 (18)0.0002 (19)0.0206 (16)0.0005 (18)
C70.0346 (18)0.039 (2)0.041 (2)0.0002 (18)0.0197 (16)0.0029 (17)
C80.0389 (19)0.050 (2)0.042 (2)0.001 (2)0.0235 (18)0.0018 (19)
C90.045 (2)0.051 (3)0.039 (2)0.000 (2)0.0238 (18)0.0054 (18)
C100.041 (2)0.042 (2)0.037 (2)0.0007 (19)0.0179 (16)0.0021 (18)
C110.0347 (18)0.036 (2)0.0365 (18)0.0015 (17)0.0181 (15)0.0025 (16)
C120.036 (2)0.037 (2)0.043 (2)0.0049 (17)0.0197 (17)0.0022 (17)
C130.0387 (18)0.046 (2)0.044 (2)0.002 (2)0.0254 (16)0.004 (2)
C140.045 (2)0.053 (3)0.041 (2)0.003 (2)0.0243 (17)0.002 (2)
C150.041 (2)0.047 (2)0.042 (2)0.009 (2)0.0223 (17)0.007 (2)
C160.0344 (17)0.036 (2)0.0374 (19)0.0017 (17)0.0187 (15)0.0009 (16)
Geometric parameters (Å, º) top
Cl1—C21.729 (4)C5—C61.386 (6)
O1—C71.288 (5)C5—H50.9500
O1—H11.02 (8)C6—H60.9500
O2—C71.209 (5)C8—C91.402 (7)
O3—N11.228 (5)C8—H80.9500
O4—N11.218 (4)C9—C101.365 (5)
O5—N31.228 (5)C9—H90.9500
O6—N31.220 (4)C10—C111.425 (5)
N1—C41.474 (5)C10—H100.9500
N2—C81.320 (5)C11—C161.415 (6)
N2—C161.370 (4)C11—C121.425 (5)
N3—C121.474 (5)C12—C131.359 (6)
C1—C21.390 (6)C13—C141.406 (6)
C1—C61.405 (5)C13—H130.9500
C1—C71.514 (6)C14—C151.369 (5)
C2—C31.403 (6)C14—H140.9500
C3—C41.380 (5)C15—C161.413 (5)
C3—H30.9500C15—H150.9500
C4—C51.372 (6)
C7—O1—H1109 (4)O1—C7—C1115.9 (4)
O4—N1—O3123.9 (4)N2—C8—C9122.0 (4)
O4—N1—C4117.9 (4)N2—C8—H8119.0
O3—N1—C4118.2 (3)C9—C8—H8119.0
C8—N2—C16119.5 (4)C10—C9—C8120.6 (4)
O6—N3—O5124.0 (4)C10—C9—H9119.7
O6—N3—C12117.1 (4)C8—C9—H9119.7
O5—N3—C12118.9 (3)C9—C10—C11118.6 (4)
C2—C1—C6118.2 (4)C9—C10—H10120.7
C2—C1—C7126.9 (3)C11—C10—H10120.7
C6—C1—C7114.8 (3)C16—C11—C12115.6 (3)
C1—C2—C3120.7 (3)C16—C11—C10117.8 (3)
C1—C2—Cl1124.3 (3)C12—C11—C10126.5 (4)
C3—C2—Cl1115.0 (3)C13—C12—C11123.1 (4)
C4—C3—C2118.4 (4)C13—C12—N3116.4 (3)
C4—C3—H3120.8C11—C12—N3120.5 (4)
C2—C3—H3120.8C12—C13—C14119.7 (3)
C5—C4—C3122.9 (4)C12—C13—H13120.1
C5—C4—N1118.9 (3)C14—C13—H13120.1
C3—C4—N1118.2 (4)C15—C14—C13120.2 (4)
C4—C5—C6117.9 (3)C15—C14—H14119.9
C4—C5—H5121.0C13—C14—H14119.9
C6—C5—H5121.0C14—C15—C16120.0 (4)
C5—C6—C1121.8 (4)C14—C15—H15120.0
C5—C6—H6119.1C16—C15—H15120.0
C1—C6—H6119.1N2—C16—C15117.2 (4)
O2—C7—O1124.2 (4)N2—C16—C11121.5 (4)
O2—C7—C1119.9 (4)C15—C16—C11121.3 (3)
C6—C1—C2—C30.4 (6)C8—C9—C10—C111.8 (7)
C7—C1—C2—C3179.9 (4)C9—C10—C11—C160.4 (6)
C6—C1—C2—Cl1178.5 (3)C9—C10—C11—C12177.1 (4)
C7—C1—C2—Cl12.1 (6)C16—C11—C12—C132.9 (6)
C1—C2—C3—C40.5 (6)C10—C11—C12—C13179.7 (4)
Cl1—C2—C3—C4178.7 (3)C16—C11—C12—N3176.6 (4)
C2—C3—C4—C51.0 (7)C10—C11—C12—N30.2 (6)
C2—C3—C4—N1179.4 (4)O6—N3—C12—C1334.6 (6)
O4—N1—C4—C53.3 (6)O5—N3—C12—C13144.6 (4)
O3—N1—C4—C5176.7 (4)O6—N3—C12—C11144.9 (4)
O4—N1—C4—C3178.1 (4)O5—N3—C12—C1135.9 (6)
O3—N1—C4—C31.8 (6)C11—C12—C13—C141.7 (7)
C3—C4—C5—C61.3 (7)N3—C12—C13—C14177.8 (4)
N1—C4—C5—C6179.7 (4)C12—C13—C14—C150.0 (7)
C4—C5—C6—C11.2 (6)C13—C14—C15—C160.2 (7)
C2—C1—C6—C50.8 (6)C8—N2—C16—C15179.2 (4)
C7—C1—C6—C5179.7 (4)C8—N2—C16—C110.2 (6)
C2—C1—C7—O2176.0 (4)C14—C15—C16—N2177.9 (4)
C6—C1—C7—O24.5 (6)C14—C15—C16—C111.1 (7)
C2—C1—C7—O14.2 (6)C12—C11—C16—N2176.4 (4)
C6—C1—C7—O1175.3 (4)C10—C11—C16—N20.7 (6)
C16—N2—C8—C91.3 (7)C12—C11—C16—C152.6 (6)
N2—C8—C9—C102.4 (7)C10—C11—C16—C15179.6 (4)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the C11–C16 ring and the N2/C8–C16 ring system, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···N21.02 (8)1.58 (7)2.585 (5)168 (7)
C8—H8···O2i0.952.593.174 (6)120
C9—H9···O2i0.952.563.152 (6)120
C13—H13···O4ii0.952.523.289 (6)138
N3—O5···Cg3iii1.23 (1)3.06 (1)3.724 (4)113 (1)
N3—O5···Cg4iii1.23 (1)3.25 (1)4.118 (4)128 (1)
Symmetry codes: (i) x+1, y+1/2, z; (ii) x1, y+2, z; (iii) x, y+1, z.
5-Chloro-2-nitrobenzoic acid–5-nitroquinoline (1/1) (II) top
Crystal data top
C7H4ClNO4·C9H6N2O2Z = 2
Mr = 375.72F(000) = 384.00
Triclinic, P1Dx = 1.596 Mg m3
a = 7.6682 (6) ÅMo Kα radiation, λ = 0.71075 Å
b = 8.6515 (8) ÅCell parameters from 7062 reflections
c = 12.8609 (10) Åθ = 3.1–30.1°
α = 79.170 (3)°µ = 0.29 mm1
β = 78.968 (2)°T = 190 K
γ = 70.394 (3)°Block, colorless
V = 781.80 (11) Å30.26 × 0.20 × 0.18 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3075 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.055
ω scansθmax = 30.0°, θmin = 3.1°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 1010
Tmin = 0.933, Tmax = 0.950k = 1212
9772 measured reflectionsl = 1816
4502 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: mixed
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.077P)2]
where P = (Fo2 + 2Fc2)/3
4502 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

_reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.14420 (7)0.28783 (7)0.10243 (4)0.05199 (18)
O10.27021 (17)0.49296 (15)0.23397 (9)0.0398 (3)
O20.49601 (18)0.27221 (17)0.29240 (9)0.0464 (3)
O30.7904 (2)0.35306 (18)0.13902 (11)0.0517 (4)
O40.91612 (19)0.09724 (19)0.11445 (12)0.0560 (4)
O50.2211 (2)0.9235 (2)0.73000 (11)0.0588 (4)
O60.3859 (2)1.13276 (19)0.63614 (12)0.0585 (4)
N10.78959 (19)0.22747 (19)0.10917 (11)0.0375 (3)
N20.18718 (18)0.57290 (17)0.42980 (10)0.0304 (3)
N30.2703 (2)0.99626 (19)0.64474 (12)0.0363 (3)
C10.4473 (2)0.31055 (18)0.11065 (11)0.0280 (3)
C20.6260 (2)0.2358 (2)0.06195 (12)0.0311 (3)
C30.6607 (3)0.1738 (2)0.03429 (13)0.0394 (4)
H30.7850390.1210410.0646310.047*
C40.5112 (3)0.1900 (2)0.08550 (13)0.0405 (4)
H40.5312670.1494240.1519120.049*
C50.3327 (2)0.2660 (2)0.03861 (12)0.0347 (4)
C60.2973 (2)0.3264 (2)0.05903 (12)0.0322 (3)
H60.1726920.3775590.0898010.039*
C70.4089 (2)0.3576 (2)0.22188 (12)0.0289 (3)
C80.2766 (2)0.4942 (2)0.51114 (13)0.0338 (4)
H80.3798510.3973420.5011630.041*
C90.2254 (2)0.5479 (2)0.61268 (13)0.0360 (4)
H90.2954940.4889360.6691320.043*
C100.0752 (2)0.6842 (2)0.62990 (12)0.0329 (4)
H100.0396590.7201380.6984590.039*
C110.0277 (2)0.77237 (19)0.54485 (11)0.0262 (3)
C120.1866 (2)0.9174 (2)0.54633 (12)0.0287 (3)
C130.2716 (2)0.9935 (2)0.45823 (13)0.0335 (3)
H130.3769551.0901400.4629330.040*
C140.2037 (2)0.9294 (2)0.36000 (13)0.0364 (4)
H140.2642130.9819480.2989180.044*
C150.0520 (2)0.7928 (2)0.35311 (12)0.0335 (4)
H150.0052890.7510290.2866010.040*
C160.0378 (2)0.71153 (19)0.44377 (11)0.0269 (3)
H10.249 (4)0.510 (4)0.310 (3)0.097 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0591 (3)0.0735 (4)0.0357 (3)0.0300 (3)0.0154 (2)0.0106 (2)
O10.0383 (7)0.0413 (7)0.0295 (6)0.0079 (5)0.0075 (5)0.0150 (5)
O20.0500 (8)0.0468 (8)0.0289 (6)0.0086 (6)0.0146 (5)0.0075 (5)
O30.0544 (8)0.0521 (9)0.0544 (8)0.0177 (7)0.0210 (7)0.0056 (7)
O40.0337 (7)0.0574 (10)0.0559 (8)0.0116 (6)0.0050 (6)0.0061 (7)
O50.0689 (10)0.0644 (10)0.0325 (7)0.0043 (8)0.0003 (7)0.0192 (7)
O60.0579 (9)0.0479 (9)0.0567 (9)0.0053 (7)0.0009 (7)0.0234 (7)
N10.0296 (7)0.0450 (9)0.0289 (7)0.0034 (6)0.0018 (5)0.0007 (6)
N20.0294 (6)0.0313 (7)0.0293 (6)0.0064 (5)0.0030 (5)0.0079 (5)
N30.0347 (8)0.0400 (8)0.0355 (7)0.0129 (6)0.0037 (6)0.0147 (6)
C10.0310 (8)0.0252 (7)0.0227 (7)0.0023 (6)0.0029 (6)0.0038 (6)
C20.0302 (8)0.0287 (8)0.0288 (7)0.0030 (6)0.0037 (6)0.0022 (6)
C30.0409 (9)0.0378 (9)0.0310 (8)0.0029 (7)0.0048 (7)0.0111 (7)
C40.0538 (11)0.0396 (10)0.0275 (8)0.0120 (8)0.0001 (7)0.0130 (7)
C50.0455 (10)0.0364 (9)0.0252 (7)0.0145 (7)0.0090 (7)0.0040 (7)
C60.0324 (8)0.0343 (8)0.0262 (7)0.0045 (7)0.0042 (6)0.0057 (6)
C70.0285 (7)0.0313 (8)0.0244 (7)0.0035 (6)0.0052 (6)0.0067 (6)
C80.0298 (8)0.0339 (9)0.0371 (8)0.0069 (7)0.0079 (6)0.0054 (7)
C90.0365 (9)0.0405 (9)0.0321 (8)0.0107 (7)0.0129 (7)0.0016 (7)
C100.0356 (8)0.0410 (9)0.0251 (7)0.0134 (7)0.0057 (6)0.0078 (7)
C110.0276 (7)0.0294 (8)0.0242 (7)0.0121 (6)0.0023 (5)0.0051 (6)
C120.0279 (7)0.0305 (8)0.0283 (7)0.0109 (6)0.0021 (6)0.0080 (6)
C130.0286 (8)0.0301 (8)0.0387 (9)0.0072 (6)0.0023 (6)0.0033 (7)
C140.0355 (9)0.0393 (9)0.0305 (8)0.0070 (7)0.0089 (7)0.0007 (7)
C150.0368 (9)0.0382 (9)0.0237 (7)0.0081 (7)0.0054 (6)0.0052 (6)
C160.0268 (7)0.0298 (8)0.0245 (7)0.0093 (6)0.0027 (6)0.0045 (6)
Geometric parameters (Å, º) top
Cl1—C51.7351 (17)C4—H40.9500
O1—C71.3022 (18)C5—C61.395 (2)
O1—H11.00 (3)C6—H60.9500
O2—C71.2098 (19)C8—C91.409 (2)
O3—N11.2207 (19)C8—H80.9500
O4—N11.2158 (19)C9—C101.362 (2)
O5—N31.217 (2)C9—H90.9500
O6—N31.216 (2)C10—C111.419 (2)
N1—C21.470 (2)C10—H100.9500
N2—C81.312 (2)C11—C121.426 (2)
N2—C161.365 (2)C11—C161.431 (2)
N3—C121.4829 (19)C12—C131.362 (2)
C1—C21.385 (2)C13—C141.411 (2)
C1—C61.391 (2)C13—H130.9500
C1—C71.5085 (19)C14—C151.355 (2)
C2—C31.385 (2)C14—H140.9500
C3—C41.384 (3)C15—C161.415 (2)
C3—H30.9500C15—H150.9500
C4—C51.378 (2)
C7—O1—H1107.9 (18)O1—C7—C1113.35 (13)
O4—N1—O3124.32 (16)N2—C8—C9122.56 (15)
O4—N1—C2118.09 (15)N2—C8—H8118.7
O3—N1—C2117.58 (14)C9—C8—H8118.7
C8—N2—C16119.04 (13)C10—C9—C8119.96 (15)
O6—N3—O5122.72 (14)C10—C9—H9120.0
O6—N3—C12117.87 (15)C8—C9—H9120.0
O5—N3—C12119.41 (15)C9—C10—C11119.64 (14)
C2—C1—C6118.14 (13)C9—C10—H10120.2
C2—C1—C7122.53 (13)C11—C10—H10120.2
C6—C1—C7118.97 (13)C10—C11—C12128.17 (13)
C1—C2—C3122.79 (15)C10—C11—C16116.46 (14)
C1—C2—N1120.19 (13)C12—C11—C16115.35 (14)
C3—C2—N1116.94 (14)C13—C12—C11122.78 (13)
C4—C3—C2118.91 (16)C13—C12—N3115.36 (14)
C4—C3—H3120.5C11—C12—N3121.86 (14)
C2—C3—H3120.5C12—C13—C14120.30 (15)
C5—C4—C3118.91 (14)C12—C13—H13119.9
C5—C4—H4120.5C14—C13—H13119.9
C3—C4—H4120.5C15—C14—C13119.77 (15)
C4—C5—C6122.30 (15)C15—C14—H14120.1
C4—C5—Cl1119.31 (12)C13—C14—H14120.1
C6—C5—Cl1118.40 (13)C14—C15—C16120.81 (14)
C1—C6—C5118.93 (15)C14—C15—H15119.6
C1—C6—H6120.5C16—C15—H15119.6
C5—C6—H6120.5N2—C16—C15116.71 (13)
O2—C7—O1124.62 (13)N2—C16—C11122.30 (14)
O2—C7—C1121.98 (14)C15—C16—C11120.99 (14)
C6—C1—C2—C31.3 (3)C8—C9—C10—C110.6 (2)
C7—C1—C2—C3171.77 (16)C9—C10—C11—C12179.44 (15)
C6—C1—C2—N1175.37 (14)C9—C10—C11—C161.2 (2)
C7—C1—C2—N111.5 (2)C10—C11—C12—C13178.45 (16)
O4—N1—C2—C1135.40 (16)C16—C11—C12—C130.2 (2)
O3—N1—C2—C145.7 (2)C10—C11—C12—N31.3 (2)
O4—N1—C2—C347.7 (2)C16—C11—C12—N3179.55 (13)
O3—N1—C2—C3131.17 (17)O6—N3—C12—C1311.0 (2)
C1—C2—C3—C41.4 (3)O5—N3—C12—C13169.25 (16)
N1—C2—C3—C4175.35 (16)O6—N3—C12—C11168.68 (15)
C2—C3—C4—C50.6 (3)O5—N3—C12—C1111.0 (2)
C3—C4—C5—C60.3 (3)C11—C12—C13—C140.2 (2)
C3—C4—C5—Cl1179.69 (14)N3—C12—C13—C14179.91 (14)
C2—C1—C6—C50.4 (2)C12—C13—C14—C150.8 (3)
C7—C1—C6—C5172.98 (15)C13—C14—C15—C161.1 (3)
C4—C5—C6—C10.4 (3)C8—N2—C16—C15179.18 (15)
Cl1—C5—C6—C1179.59 (12)C8—N2—C16—C111.4 (2)
C2—C1—C7—O237.4 (2)C14—C15—C16—N2178.69 (15)
C6—C1—C7—O2135.67 (18)C14—C15—C16—C110.7 (2)
C2—C1—C7—O1145.23 (15)C10—C11—C16—N22.2 (2)
C6—C1—C7—O141.7 (2)C12—C11—C16—N2179.29 (13)
C16—N2—C8—C90.5 (2)C10—C11—C16—C15178.39 (14)
N2—C8—C9—C101.5 (3)C12—C11—C16—C150.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.99 (4)1.66 (4)2.6405 (17)169 (3)
C3—H3···O4i0.952.493.408 (3)162
C10—H10···O3ii0.952.543.254 (2)132
C13—H13···O2iii0.952.593.190 (2)121
C14—H14···O2iii0.952.563.173 (2)122
Symmetry codes: (i) x+2, y, z; (ii) x+1, y+1, z+1; (iii) x1, y+1, z.
 

References

First citationBabu, B. & Chandrasekaran, J. (2014). Private Communication (refcode WOPDEM). CCDC, Cambridge, England.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGotoh, K. & Ishida, H. (2009). Acta Cryst. C65, o534–o538.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, K. & Ishida, H. (2011a). Acta Cryst. C67, o473–o478.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, K. & Ishida, H. (2011b). Acta Cryst. E67, o2883.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, K. & Ishida, H. (2015). Acta Cryst. E71, 31–34.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, K. & Ishida, H. (2019). Acta Cryst. E75, 1552–1557.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLynch, D. E., Cooper, C. J., Chauhan, V., Smith, G., Healy, P. & Parsons, S. (1999). Aust. J. Chem. 52, 695–704.  CAS Google Scholar
First citationLynch, D. E., Mistry, N., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1998). Aust. J. Chem. 51, 813–818.  Web of Science CSD CrossRef CAS Google Scholar
First citationLynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1997). Aust. J. Chem. 50, 977–986.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaja, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  CrossRef Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2018). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer. Version 17. University of Western Australia. http://hirshfeldsurface.netGoogle Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds