research communications
H-benzo[1,2-b]pyran-3-carbonitrile
DFT and Hirshfeld surface analysis of 2-amino-4-(2-chlorophenyl)-7-hydroxy-4aDepartment of Physics, Kandaswami Kandar's College, Velur, Namakkal 638 182, India, and bDepartment of Chemistry, Jamal Mohamed College, Tiruchirappalli 620 020, India
*Correspondence e-mail: kravichandran05@gmail.com
The benzopyran ring of the title compound, C16H11ClN2O2, is planar [maximum deviation = 0.079 (2) Å] and is almost perpendicular to the chlorophenyl ring [dihedral angle = 86.85 (6)°]. In the crystal, N—H⋯O, O—H⋯N, C—H⋯O and C—H⋯Cl hydrogen bonds form inter- and intramolecular interactions. The DFT/B3LYP/6-311G(d,p) method was used to determine the HOMO–LUMO energy levels. The molecular electrostatic potential surfaces were investigated by Hirshfeld surface analysis and two-dimensional fingerprint plots were used to analyse the intermolecular interactions in the molecule.
1. Chemical context
Pyran is an oxygen-containing heterocyclic group that exhibits various pharmacological activities. The pyran ring is a core unit in benzopyrans, chromones, flavanoids and et al., 2002), antiviral (Smith et al., 1998; Martínez-Grau & Marco, 1997), mutagenicity (Hiramoto et al., 1997), antiproliferative (Dell & Smith, 1993), antitumour (Mohr et al., 1975), antituberculosis (Ferreira et al., 2010), anti-HIV (He et al., 2011), antifungal (Schiller et al., 2010), antidiabetic (Bisht et al., 2011) and anti-inflammatory agents (Wang et al., 1996, 2005). They are also used in cancer chemotherapy (Anderson et al., 2005), in sex pheromone therapy (Bianchi & Tava, 1987) to control central nervous system activities (Eiden & Denk, 1991) and as calcium-channel antagonists (Shahrisa et al., 2011),
Numerous naturally-occurring compounds containing pyrans and benzopyrans show fascinating therapeutic activities, which include their use as antimicrobial (KhafagyThese attributes have prompted considerable research work in the synthetic field and interest in their structures, reactivities and biological properties. Against this background and to ascertain the structure of the title compound, namely 2-amino-4-(2-chlorophenyl)-7-hydroxy-4H-benzo[1,2-b]pyran-3-carbonitrile, crystallographic studies have been carried out and are here reported.
2. Structural commentary
Fig. 1 shows the molecular structure of the title molecule and the intramolecular C4—H4⋯Cl1 hydrogen bond. The chlorophenyl-substituted benzopyran compound crystallizes in the monoclinic P21/c. The benzopyran and chlorophenyl rings in the molecule are planar, as confirmed by the puckering parameters (Cremer & Pople, 1975) and asymmetry parameters Q = 0.101 (2) Å, θ = 105.6 (11)° and φ = 349.9 (14)° (Nardelli, 1983).
The bond lengths and angles are well within the expected limits and comparable with literature values (Allen et al., 1998). The plane of the benzopyran ring forms a dihedral angle of 86.85 (6)° with that of the chlorophenyl ring and confirms the fact that the two moieties are in an axial orientation. The chlorophenyl group is also planar, with a maximum deviation for atom C12 of −0.040 (1) Å. The orientation of the benzopyran and chlorophenyl rings is also confirmed by the torsion angles C3—C4—C11—C12 = 76.5 (2)° and C3—C4—C11—C16 = −100.4 (2)°.
In the benzopyran system, the attached carbonitrile, amino and hydroxy groups lie in the same plane, with a maximum deviation for atom N2 of −0.053 (2) Å. The sum of the bond angles around atom N1 of the pyran ring is in accordance with the sp2-hybridization state (360°; Beddoes et al., 1986).
3. Supramolecular features
The packing of the molecules in the ). The O2—H2⋯N2ii interaction leads to the formation of a C(10) chain running along the a axis. The molecules are also linked by pairs of intermolecular N1—H1A⋯O2i and O2—H2⋯N2ii hydrogen bonds, forming inversion dimers with R22(16) ring motifs (Fig. 2) (Bernstein et al., 1995), and the dimers are further connected by C9—H9⋯O1i hydrogen bonds, forming R22(8) rings along the b-axis direction, as shown in Fig. 3. Three C—H⋯π (Table 1) interactions complete the packing, forming a three-dimensional (3D) supramolecular structure. The overall crystal packing of the title compound is shown in Fig. 4.
is stabilized by strong intermolecular C—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds (Table 14. Density functional theory (DFT) study
The optimized molecular structure and frontier molecular orbitals (FMOs) were calculated using the DFT/B3LYP/6-311G(d,p) basis set implemented in the GAUSSIAN09 program package (Frisch et al., 2009). The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) are called FMOs as they lie at the outermost boundaries of the electrons of the molecules. The frontier orbital gap helps to characterize the chemical reactivity and the kinetic stability of the molecule. A molecule with a small frontier orbital gap is generally associated with a high chemical reactivity and a low kinetic stability, and is also termed a soft molecule. The electron distribution of the HOMO-1, HOMO, LUMO and LUMO+1 energy levels and the energy values are shown in Fig. 5. The positive and negative phases are represented in green and red, respectively.
The HOMO of the title molecule is localized on the entire molecule except for the chlorobenzene ring, while the LUMO is located on the whole molecule. However, the HOMO-1 is localized on the entire molecule, with the LUMO+1 confined to the chlorobenzene and benzopyran rings, except for the amino substituent. The DFT study shows that the FMO energies, i.e. EHOMO and ELUMO, are −6.354 and −2.712 eV, respectively, and the HOMO–LUMO energy gap is 3.642 eV. The title compound has a small frontier orbital gap, hence the molecule has high chemical reactivity and low kinetic stability.
5. Hirshfeld surface analysis
Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and two-dimensional (2D) fingerprint plots (McKinnon et al., 2007) were performed and created with CrystalExplorer17 (Turner et al., 2017) for the idenfication of the intermolecular interactions in the title compound. The Hirshfeld surface diagram mapped over dnorm is shown in Fig. 6. The 3D dnorm surfaces were plotted with a standard (high) surface resolution and are shown as blue and red regions around the atoms related with positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) electrostatic potentials, respectively.
The 2D fingerprint plots of the di and de points for the contacts contributing to the Hirshfeld surface analysis are shown in Fig. 7. They indicate that intermolecular H⋯H contacts provide the largest contribution (29.2%) to the Hirshfeld surface and the percentage contributions of the other interactions are C⋯H/H⋯C = 24.6%, N⋯H/H⋯N = 13.6%, Cl⋯H/H⋯Cl = 12.9% and O⋯H/H⋯O = 10.6%.
6. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, update of November 2018; Groom et al., 2016) for the 4H-benzopyran fragment revealed 10 hits where the fragment adopts a planar conformation. Nearly all the bond lengths in the title structure are the same within standard uncertainties as the corresponding values in the structure of 2-amino-4-(2-chlorophenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile hemihydrate (CSD refcode LAPZIN; Hu et al., 2012).
7. Synthesis and crystallization
A mixture of 2-chlorobenzaldehyde (6.2 g, 0.05 mol), malononitrile (3.3 ml, 0.05 mol) and resorcinol (5.5 g, 0.05 mol) in water (150 ml) was added to a 10% aqueous K2CO3 solution (10 ml) in a 250 ml round-bottomed flask. The resulting solution was refluxed for about 2 h. The progress of the reaction was monitored by using silica gel-G plates. After product formation, the reaction mixture was kept in a refrigerator overnight. The solid mass that settled was filtered off by suction and washed well with a mixture of methanol and water, and finally dried in air. The resulting crude solid was recrystalized from methanol giving a white solid. The purified sample was recrystallized from 1,4-dioxane using the slow-evaporation method (m.p. 250–255 °C).
8. Refinement
Crystal data, data collection and structure . H atoms were positioned geometrically (N—H = 0.88–0.90 Å and C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) otherwise.
details are summarized in Table 2
|
Supporting information
https://doi.org/10.1107/S2056989019013537/sj5577sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019013537/sj5577Isup2.hkl
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C16H11ClN2O2 | F(000) = 616 |
Mr = 298.72 | Dx = 1.423 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 6.6658 (3) Å | Cell parameters from 2115 reflections |
b = 30.1600 (16) Å | θ = 2.7–26.7° |
c = 7.2193 (4) Å | µ = 0.28 mm−1 |
β = 106.088 (2)° | T = 296 K |
V = 1394.53 (12) Å3 | Block, white crystalline |
Z = 4 | 0.15 × 0.10 × 0.10 mm |
Bruker SMART APEXII CCD diffractometer | 2115 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.034 |
ω and φ scans | θmax = 26.7°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −6→8 |
Tmin = 0.959, Tmax = 0.973 | k = −38→38 |
21888 measured reflections | l = −9→8 |
2941 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.037 | w = 1/[σ2(Fo2) + (0.0392P)2 + 0.5426P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.103 | (Δ/σ)max = 0.001 |
S = 1.05 | Δρmax = 0.19 e Å−3 |
2941 reflections | Δρmin = −0.28 e Å−3 |
191 parameters | Extinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0061 (13) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C2 | 0.9057 (3) | 0.54802 (6) | −0.1320 (2) | 0.0342 (4) | |
C3 | 1.0377 (3) | 0.58264 (5) | −0.0758 (2) | 0.0334 (4) | |
C4 | 1.0200 (3) | 0.61567 (5) | 0.0772 (2) | 0.0314 (4) | |
H4 | 1.156330 | 0.618094 | 0.172872 | 0.038* | |
C5 | 0.8634 (3) | 0.59885 (5) | 0.1766 (2) | 0.0314 (4) | |
C6 | 0.8329 (3) | 0.62022 (6) | 0.3376 (3) | 0.0379 (4) | |
H6 | 0.915142 | 0.644648 | 0.387878 | 0.045* | |
C7 | 0.6839 (3) | 0.60615 (6) | 0.4248 (3) | 0.0408 (4) | |
H7 | 0.665264 | 0.621197 | 0.531266 | 0.049* | |
C8 | 0.5627 (3) | 0.56954 (6) | 0.3525 (3) | 0.0379 (4) | |
C9 | 0.5916 (3) | 0.54711 (6) | 0.1960 (3) | 0.0398 (4) | |
H9 | 0.512626 | 0.522076 | 0.148322 | 0.048* | |
C10 | 0.7398 (3) | 0.56246 (6) | 0.1111 (2) | 0.0335 (4) | |
C11 | 0.9601 (3) | 0.66108 (5) | −0.0142 (2) | 0.0322 (4) | |
C12 | 0.7556 (3) | 0.66946 (6) | −0.1204 (3) | 0.0400 (4) | |
H12 | 0.654979 | 0.647668 | −0.127966 | 0.048* | |
C13 | 0.6976 (4) | 0.70909 (7) | −0.2149 (3) | 0.0539 (5) | |
H13 | 0.559727 | 0.713738 | −0.285481 | 0.065* | |
C14 | 0.8442 (4) | 0.74176 (7) | −0.2045 (4) | 0.0621 (6) | |
H14 | 0.805563 | 0.768466 | −0.268905 | 0.075* | |
C15 | 1.0465 (4) | 0.73504 (7) | −0.0995 (4) | 0.0600 (6) | |
H15 | 1.145714 | 0.757164 | −0.091365 | 0.072* | |
C16 | 1.1027 (3) | 0.69495 (6) | −0.0052 (3) | 0.0446 (5) | |
C17 | 1.1869 (3) | 0.58941 (6) | −0.1782 (3) | 0.0402 (4) | |
O1 | 0.7539 (2) | 0.53801 (4) | −0.04856 (18) | 0.0420 (3) | |
O2 | 0.4103 (2) | 0.55394 (5) | 0.4287 (2) | 0.0552 (4) | |
H2 | 0.406537 | 0.569128 | 0.521925 | 0.083* | |
Cl1 | 1.36070 (9) | 0.68831 (2) | 0.12960 (12) | 0.0757 (2) | |
N1 | 0.9057 (3) | 0.51897 (5) | −0.2734 (2) | 0.0455 (4) | |
H1A | 0.816166 | 0.497735 | −0.298713 | 0.055* | |
H1B | 0.995343 | 0.521634 | −0.338516 | 0.055* | |
N2 | 1.3050 (3) | 0.59408 (7) | −0.2655 (3) | 0.0608 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C2 | 0.0376 (10) | 0.0333 (9) | 0.0359 (9) | 0.0032 (7) | 0.0174 (8) | −0.0023 (7) |
C3 | 0.0336 (9) | 0.0322 (9) | 0.0385 (10) | 0.0028 (7) | 0.0169 (8) | −0.0012 (7) |
C4 | 0.0314 (9) | 0.0305 (9) | 0.0334 (9) | −0.0007 (7) | 0.0110 (7) | −0.0026 (7) |
C5 | 0.0339 (9) | 0.0306 (9) | 0.0310 (9) | 0.0025 (7) | 0.0113 (7) | 0.0014 (7) |
C6 | 0.0474 (11) | 0.0339 (9) | 0.0335 (9) | −0.0043 (8) | 0.0132 (8) | −0.0054 (7) |
C7 | 0.0556 (12) | 0.0392 (10) | 0.0332 (10) | 0.0003 (9) | 0.0215 (9) | −0.0050 (8) |
C8 | 0.0423 (10) | 0.0419 (10) | 0.0349 (10) | −0.0008 (8) | 0.0198 (8) | 0.0007 (8) |
C9 | 0.0442 (11) | 0.0394 (10) | 0.0403 (10) | −0.0071 (8) | 0.0192 (9) | −0.0085 (8) |
C10 | 0.0391 (10) | 0.0340 (9) | 0.0308 (9) | 0.0008 (7) | 0.0155 (8) | −0.0042 (7) |
C11 | 0.0384 (10) | 0.0298 (8) | 0.0329 (9) | −0.0008 (7) | 0.0172 (8) | −0.0043 (7) |
C12 | 0.0434 (11) | 0.0373 (10) | 0.0395 (10) | −0.0014 (8) | 0.0117 (9) | −0.0021 (8) |
C13 | 0.0610 (14) | 0.0490 (12) | 0.0493 (12) | 0.0128 (10) | 0.0113 (10) | 0.0079 (10) |
C14 | 0.0862 (18) | 0.0437 (12) | 0.0623 (15) | 0.0089 (12) | 0.0303 (13) | 0.0165 (11) |
C15 | 0.0759 (16) | 0.0375 (11) | 0.0783 (16) | −0.0104 (11) | 0.0407 (14) | 0.0059 (11) |
C16 | 0.0445 (11) | 0.0405 (10) | 0.0554 (12) | −0.0057 (8) | 0.0248 (10) | −0.0037 (9) |
C17 | 0.0408 (11) | 0.0408 (10) | 0.0433 (11) | −0.0024 (8) | 0.0188 (9) | −0.0082 (8) |
O1 | 0.0484 (8) | 0.0419 (7) | 0.0444 (7) | −0.0136 (6) | 0.0274 (6) | −0.0159 (6) |
O2 | 0.0659 (10) | 0.0596 (9) | 0.0547 (9) | −0.0182 (7) | 0.0409 (8) | −0.0158 (7) |
Cl1 | 0.0392 (3) | 0.0653 (4) | 0.1207 (6) | −0.0156 (3) | 0.0190 (3) | −0.0037 (4) |
N1 | 0.0532 (10) | 0.0422 (9) | 0.0511 (10) | −0.0077 (8) | 0.0309 (8) | −0.0147 (7) |
N2 | 0.0571 (12) | 0.0748 (13) | 0.0627 (12) | −0.0146 (10) | 0.0368 (10) | −0.0200 (10) |
C2—N1 | 1.345 (2) | C9—H9 | 0.9300 |
C2—O1 | 1.347 (2) | C10—O1 | 1.3932 (19) |
C2—C3 | 1.353 (2) | C11—C16 | 1.385 (2) |
C3—C17 | 1.408 (2) | C11—C12 | 1.389 (2) |
C3—C4 | 1.516 (2) | C12—C13 | 1.377 (3) |
C4—C5 | 1.509 (2) | C12—H12 | 0.9300 |
C4—C11 | 1.525 (2) | C13—C14 | 1.375 (3) |
C4—H4 | 0.9800 | C13—H13 | 0.9300 |
C5—C10 | 1.375 (2) | C14—C15 | 1.367 (3) |
C5—C6 | 1.393 (2) | C14—H14 | 0.9300 |
C6—C7 | 1.382 (3) | C15—C16 | 1.387 (3) |
C6—H6 | 0.9300 | C15—H15 | 0.9300 |
C7—C8 | 1.382 (3) | C16—Cl1 | 1.737 (2) |
C7—H7 | 0.9300 | C17—N2 | 1.146 (2) |
C8—O2 | 1.366 (2) | O2—H2 | 0.8200 |
C8—C9 | 1.376 (2) | N1—H1A | 0.8600 |
C9—C10 | 1.379 (2) | N1—H1B | 0.8600 |
N1—C2—O1 | 110.58 (15) | C5—C10—C9 | 123.36 (16) |
N1—C2—C3 | 126.39 (16) | C5—C10—O1 | 122.36 (15) |
O1—C2—C3 | 123.03 (15) | C9—C10—O1 | 114.28 (15) |
C2—C3—C17 | 116.70 (15) | C16—C11—C12 | 116.58 (17) |
C2—C3—C4 | 123.38 (15) | C16—C11—C4 | 123.24 (16) |
C17—C3—C4 | 119.72 (15) | C12—C11—C4 | 120.11 (15) |
C5—C4—C3 | 109.23 (13) | C13—C12—C11 | 121.94 (18) |
C5—C4—C11 | 112.01 (13) | C13—C12—H12 | 119.0 |
C3—C4—C11 | 109.81 (13) | C11—C12—H12 | 119.0 |
C5—C4—H4 | 108.6 | C14—C13—C12 | 119.8 (2) |
C3—C4—H4 | 108.6 | C14—C13—H13 | 120.1 |
C11—C4—H4 | 108.6 | C12—C13—H13 | 120.1 |
C10—C5—C6 | 116.37 (15) | C15—C14—C13 | 120.1 (2) |
C10—C5—C4 | 122.16 (15) | C15—C14—H14 | 120.0 |
C6—C5—C4 | 121.44 (15) | C13—C14—H14 | 120.0 |
C7—C6—C5 | 121.86 (17) | C14—C15—C16 | 119.5 (2) |
C7—C6—H6 | 119.1 | C14—C15—H15 | 120.3 |
C5—C6—H6 | 119.1 | C16—C15—H15 | 120.3 |
C6—C7—C8 | 119.46 (16) | C11—C16—C15 | 122.1 (2) |
C6—C7—H7 | 120.3 | C11—C16—Cl1 | 120.11 (15) |
C8—C7—H7 | 120.3 | C15—C16—Cl1 | 117.79 (16) |
O2—C8—C9 | 116.76 (16) | N2—C17—C3 | 178.0 (2) |
O2—C8—C7 | 123.03 (16) | C2—O1—C10 | 118.87 (13) |
C9—C8—C7 | 120.21 (16) | C8—O2—H2 | 109.5 |
C8—C9—C10 | 118.71 (17) | C2—N1—H1A | 120.0 |
C8—C9—H9 | 120.6 | C2—N1—H1B | 120.0 |
C10—C9—H9 | 120.6 | H1A—N1—H1B | 120.0 |
N1—C2—C3—C17 | 1.4 (3) | C4—C5—C10—O1 | 1.5 (3) |
O1—C2—C3—C17 | −179.18 (17) | C8—C9—C10—C5 | 1.0 (3) |
N1—C2—C3—C4 | 176.25 (17) | C8—C9—C10—O1 | −178.75 (16) |
O1—C2—C3—C4 | −4.3 (3) | C5—C4—C11—C16 | 138.04 (17) |
C2—C3—C4—C5 | 10.3 (2) | C3—C4—C11—C16 | −100.42 (19) |
C17—C3—C4—C5 | −175.06 (16) | C5—C4—C11—C12 | −45.1 (2) |
C2—C3—C4—C11 | −112.94 (19) | C3—C4—C11—C12 | 76.49 (19) |
C17—C3—C4—C11 | 61.7 (2) | C16—C11—C12—C13 | 1.1 (3) |
C3—C4—C5—C10 | −8.7 (2) | C4—C11—C12—C13 | −176.05 (17) |
C11—C4—C5—C10 | 113.14 (18) | C11—C12—C13—C14 | −0.3 (3) |
C3—C4—C5—C6 | 172.89 (16) | C12—C13—C14—C15 | −0.5 (3) |
C11—C4—C5—C6 | −65.2 (2) | C13—C14—C15—C16 | 0.5 (3) |
C10—C5—C6—C7 | −1.2 (3) | C12—C11—C16—C15 | −1.0 (3) |
C4—C5—C6—C7 | 177.30 (17) | C4—C11—C16—C15 | 175.98 (18) |
C5—C6—C7—C8 | 0.8 (3) | C12—C11—C16—Cl1 | 178.20 (13) |
C6—C7—C8—O2 | −179.04 (18) | C4—C11—C16—Cl1 | −4.8 (2) |
C6—C7—C8—C9 | 0.5 (3) | C14—C15—C16—C11 | 0.3 (3) |
O2—C8—C9—C10 | 178.20 (17) | C14—C15—C16—Cl1 | −178.97 (18) |
C7—C8—C9—C10 | −1.4 (3) | N1—C2—O1—C10 | 175.17 (15) |
C6—C5—C10—C9 | 0.3 (3) | C3—C2—O1—C10 | −4.3 (3) |
C4—C5—C10—C9 | −178.19 (17) | C5—C10—O1—C2 | 5.7 (3) |
C6—C5—C10—O1 | 179.99 (16) | C9—C10—O1—C2 | −174.53 (16) |
Cg1, Cg3 and Cg4 are the centroids of the O1/C2–C5/C10 and C11–C16 rings, and the benzopyran system, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2i | 0.86 | 2.19 | 3.037 (2) | 167 |
C9—H9···O1i | 0.93 | 2.50 | 3.416 (2) | 168 |
O2—H2···N2ii | 0.82 | 1.99 | 2.773 (2) | 160 |
C4—H4···Cl1 | 0.98 | 2.58 | 3.102 (2) | 113 |
C12—H12···Cg1 | 0.93 | 2.74 | 3.085 (2) | 103 |
C12—H12···Cg4 | 0.93 | 2.83 | 3.291 (2) | 112 |
C14—H14···Cg3iii | 0.93 | 2.85 | 3.494 (2) | 127 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x−1, y, z+1; (iii) x, −y−1/2, z−1/2. |
Acknowledgements
The authors thank SAIF, IIT Madras, India, for the data collection.
References
Allen, F. H., Shields, G. P., Taylor, R., Allen, F. H., Raithby, P. R., Shields, G. P. & Taylor, R. (1998). Chem. Commun. pp. 1043–1044. Web of Science CrossRef Google Scholar
Anderson, D. R., Hegde, S., Reinhard, E., Gomez, L., Vernier, W. F., Lee, L., Liu, S., Sambandam, A., Snider, P. A. & Masih, L. (2005). Bioorg. Med. Chem. Lett. 15, 1587–1590. Web of Science CrossRef PubMed CAS Google Scholar
Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797. CSD CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bianchi, G. & Tava, A. (1987). Agric. Biol. Chem. 51, 2001–2002. CrossRef CAS Google Scholar
Bisht, S. S., Jaiswal, N., Sharma, A., Fatima, S., Sharma, R., Rahuja, N., Srivastava, A. K., Bajpai, V., Kumar, B. & Tripathi, R. P. (2011). Carbohydr. Res. 346, 1191–1201. Web of Science CrossRef CAS PubMed Google Scholar
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dell, C. P. & Smith, C. W. (1993). Eur. Patent Appl. EP 537949; Chem. Abstr. 119, 139102. Google Scholar
Eiden, F. & Denk, F. (1991). Arch. Pharm. Pharm. Med. Chem. 324, 353–354. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ferreira, S. B., da Silva, F. D. C., Bezerra, F. A. F. M., Lourenco, M. C. S., Kaiser, C. R., Pinto, A. C. & Ferreira, V. F. (2010). Arch. Pharm. 343, 81–90. CAS Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
He, M. Z., Yang, N., Sun, C. L., Yao, X. J. & Yang, M. (2011). Med. Chem. Res. 20, 200–209. CrossRef CAS Google Scholar
Hiramoto, K., Nasuhara, A., Michikoshi, K., Kato, T. & Kikugawa, K. (1997). Mutat. Res. 395, 47–56. Web of Science CrossRef CAS PubMed Google Scholar
Hu, X.-L., Wang, Z.-X., Wang, F.-M. & Han, G.-F. (2012). Acta Cryst. E68, o823. CSD CrossRef IUCr Journals Google Scholar
Khafagy, M. M., Abd El-Wahab, A. H. F., Eid, F. A. & El-Agrody, A. M. (2002). Farmaco, 57, 715–722. Web of Science CrossRef PubMed CAS Google Scholar
Martínez-Grau, A. & Marco, J. (1997). Bioorg. Med. Chem. Lett. 7, 3165–3170. Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Mohr, S. J., Chirigos, M. A., Fuhrman, F. S. & Pryor, J. W. (1975). Cancer Res. 35, 3750–3754. PubMed CAS Web of Science Google Scholar
Nardelli, M. (1983). Acta Cryst. C39, 1141–1142. CrossRef CAS Web of Science IUCr Journals Google Scholar
Schiller, R., Tichotová, L., Pavlík, J., Buchta, V., Melichar, B., Votruba, I., Kuneš, J., Špulák, M. & Pour, M. (2010). Bioorg. Med. Chem. Lett. 20, 7358–7360. Web of Science CrossRef CAS PubMed Google Scholar
Shahrisa, A., Zirak, M., Mehdipour, A. R. & Miri, R. (2011). Chem. Heterocycl. C, 46, 1354–1363. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smith, W. P., Sollis, L. S., Howes, D. P., Cherry, C. P., Starkey, D. I., Cobley, N. K., Weston, H., Scicinski, J., Merritt, A., Whittington, A., Wyatt, P., Taylor, N., Green, D., Bethell, R., Madar, S., Fenton, R. J., Morley, P. J., Pateman, T. & Beresford, A. (1998). J. Med. Chem. 41, 787–797. Web of Science CrossRef CAS PubMed Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer. Version 17.5. University of Western Australia. Google Scholar
Wang, S. M., Milne, G. W. A., Yan, X. J., Posey, I. J., Nicklaus, M. C., Graham, L. & Rice, W. G. (1996). J. Med. Chem. 39, 2047–2054. CrossRef CAS PubMed Web of Science Google Scholar
Wang, Y., Mo, S. Y., Wang, S. J., Li, S., Yang, Y. C. & Shi, J. G. (2005). Org. Lett. 7, 1675–1678. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.