research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, DFT and Hirshfeld surface analysis of 2-amino-4-(2-chloro­phen­yl)-7-hy­dr­oxy-4H-benzo[1,2-b]pyran-3-carbo­nitrile

aDepartment of Physics, Kandaswami Kandar's College, Velur, Namakkal 638 182, India, and bDepartment of Chemistry, Jamal Mohamed College, Tiruchirappalli 620 020, India
*Correspondence e-mail: kravichandran05@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 17 September 2019; accepted 3 October 2019; online 22 October 2019)

The benzo­pyran ring of the title com­pound, C16H11ClN2O2, is planar [maximum deviation = 0.079 (2) Å] and is almost perpendicular to the chloro­phenyl ring [dihedral angle = 86.85 (6)°]. In the crystal, N—H⋯O, O—H⋯N, C—H⋯O and C—H⋯Cl hydrogen bonds form inter- and intra­molecular inter­actions. The DFT/B3LYP/6-311G(d,p) method was used to determine the HOMO–LUMO energy levels. The mol­ecular electrostatic potential surfaces were investigated by Hirshfeld surface analysis and two-dimensional fingerprint plots were used to analyse the inter­molecular inter­actions in the mol­ecule.

1. Chemical context

Pyran is an oxygen-containing heterocyclic group that exhibits various pharmacological activities. The pyran ring is a core unit in benzo­pyrans, chromones, flavanoids and coumarins. Numerous naturally-occurring com­pounds containing pyrans and benzo­pyrans show fascinating therapeutic activities, which include their use as anti­microbial (Khafagy et al., 2002[Khafagy, M. M., Abd El-Wahab, A. H. F., Eid, F. A. & El-Agrody, A. M. (2002). Farmaco, 57, 715-722.]), anti­viral (Smith et al., 1998[Smith, W. P., Sollis, L. S., Howes, D. P., Cherry, C. P., Starkey, D. I., Cobley, N. K., Weston, H., Scicinski, J., Merritt, A., Whittington, A., Wyatt, P., Taylor, N., Green, D., Bethell, R., Madar, S., Fenton, R. J., Morley, P. J., Pateman, T. & Beresford, A. (1998). J. Med. Chem. 41, 787-797.]; Martínez-Grau & Marco, 1997[Martínez-Grau, A. & Marco, J. (1997). Bioorg. Med. Chem. Lett. 7, 3165-3170.]), mutagenicity (Hiramoto et al., 1997[Hiramoto, K., Nasuhara, A., Michikoshi, K., Kato, T. & Kikugawa, K. (1997). Mutat. Res. 395, 47-56.]), anti­proliferative (Dell & Smith, 1993[Dell, C. P. & Smith, C. W. (1993). Eur. Patent Appl. EP 537949; Chem. Abstr. 119, 139102.]), anti­tumour (Mohr et al., 1975[Mohr, S. J., Chirigos, M. A., Fuhrman, F. S. & Pryor, J. W. (1975). Cancer Res. 35, 3750-3754.]), anti­tuberculosis (Ferreira et al., 2010[Ferreira, S. B., da Silva, F. D. C., Bezerra, F. A. F. M., Lourenco, M. C. S., Kaiser, C. R., Pinto, A. C. & Ferreira, V. F. (2010). Arch. Pharm. 343, 81-90.]), anti-HIV (He et al., 2011[He, M. Z., Yang, N., Sun, C. L., Yao, X. J. & Yang, M. (2011). Med. Chem. Res. 20, 200-209.]), anti­fungal (Schiller et al., 2010[Schiller, R., Tichotová, L., Pavlík, J., Buchta, V., Melichar, B., Votruba, I., Kuneš, J., Špulák, M. & Pour, M. (2010). Bioorg. Med. Chem. Lett. 20, 7358-7360.]), anti­diabetic (Bisht et al., 2011[Bisht, S. S., Jaiswal, N., Sharma, A., Fatima, S., Sharma, R., Rahuja, N., Srivastava, A. K., Bajpai, V., Kumar, B. & Tripathi, R. P. (2011). Carbohydr. Res. 346, 1191-1201.]) and anti-inflammatory agents (Wang et al., 1996[Wang, S. M., Milne, G. W. A., Yan, X. J., Posey, I. J., Nicklaus, M. C., Graham, L. & Rice, W. G. (1996). J. Med. Chem. 39, 2047-2054.], 2005[Wang, Y., Mo, S. Y., Wang, S. J., Li, S., Yang, Y. C. & Shi, J. G. (2005). Org. Lett. 7, 1675-1678.]). They are also used in cancer chemotherapy (Anderson et al., 2005[Anderson, D. R., Hegde, S., Reinhard, E., Gomez, L., Vernier, W. F., Lee, L., Liu, S., Sambandam, A., Snider, P. A. & Masih, L. (2005). Bioorg. Med. Chem. Lett. 15, 1587-1590.]), in sex pheromone therapy (Bianchi & Tava, 1987[Bianchi, G. & Tava, A. (1987). Agric. Biol. Chem. 51, 2001-2002.]) to control central nervous system activities (Eiden & Denk, 1991[Eiden, F. & Denk, F. (1991). Arch. Pharm. Pharm. Med. Chem. 324, 353-354.]) and as calcium-channel antagonists (Shahrisa et al., 2011[Shahrisa, A., Zirak, M., Mehdipour, A. R. & Miri, R. (2011). Chem. Heterocycl. C, 46, 1354-1363.]),

[Scheme 1]

These attributes have prompted considerable research work in the synthetic field and inter­est in their structures, reactivities and biological properties. Against this background and to ascertain the structure of the title com­pound, namely 2-amino-4-(2-chloro­phen­yl)-7-hy­droxy-4H-benzo[1,2-b]pyran-3-carbo­nitrile, crystallographic studies have been carried out and are here reported.

2. Structural commentary

Fig. 1[link] shows the mol­ecular structure of the title mol­ecule and the intra­molecular C4—H4⋯Cl1 hydrogen bond. The chloro­phenyl-substituted benzo­pyran com­pound crystallizes in the monoclinic space group P21/c. The benzo­pyran and chloro­phenyl rings in the mol­ecule are planar, as confirmed by the puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) and asymmetry parameters Q = 0.101 (2) Å, θ = 105.6 (11)° and φ = 349.9 (14)° (Nardelli, 1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title com­pound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. The intra­molecular C4—H4⋯Cl1 hydrogen bond is drawn as a dashed line.

The bond lengths and angles are well within the expected limits and com­parable with literature values (Allen et al., 1998[Allen, F. H., Shields, G. P., Taylor, R., Allen, F. H., Raithby, P. R., Shields, G. P. & Taylor, R. (1998). Chem. Commun. pp. 1043-1044.]). The plane of the benzo­pyran ring forms a dihedral angle of 86.85 (6)° with that of the chloro­phenyl ring and confirms the fact that the two moieties are in an axial orientation. The chloro­phenyl group is also planar, with a maximum deviation for atom C12 of −0.040 (1) Å. The orientation of the benzo­pyran and chloro­phenyl rings is also confirmed by the torsion angles C3—C4—C11—C12 = 76.5 (2)° and C3—C4—C11—C16 = −100.4 (2)°.

In the benzo­pyran system, the attached carbo­nitrile, amino and hy­droxy groups lie in the same plane, with a maximum deviation for atom N2 of −0.053 (2) Å. The sum of the bond angles around atom N1 of the pyran ring is in accordance with the sp2-hybridization state (360°; Beddoes et al., 1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]).

3. Supra­molecular features

The packing of the mol­ecules in the unit cell is stabilized by strong inter­molecular C—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds (Table 1[link]). The O2—H2⋯N2ii inter­action leads to the formation of a C(10) chain running along the a axis. The mol­ecules are also linked by pairs of inter­molecular N1—H1A⋯O2i and O2—H2⋯N2ii hydrogen bonds, forming inversion dimers with R22(16) ring motifs (Fig. 2[link]) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]), and the dimers are further connected by C9—H9⋯O1i hydrogen bonds, forming R22(8) rings along the b-axis direction, as shown in Fig. 3[link]. Three C—H⋯π (Table 1[link]) inter­actions com­plete the packing, forming a three-dimensional (3D) supra­molecular structure. The overall crystal packing of the title com­pound is shown in Fig. 4[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg3 and Cg4 are the centroids of the O1/C2–C5/C10 ring, the C11–C16 ring and the benzo­pyran system, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.19 3.037 (2) 167
C9—H9⋯O1i 0.93 2.50 3.416 (2) 168
O2—H2⋯N2ii 0.82 1.99 2.773 (2) 160
C4—H4⋯Cl1 0.98 2.58 3.102 (2) 113
C12—H12⋯Cg1 0.93 2.74 3.085 (2) 103
C12—H12⋯Cg4 0.93 2.83 3.291 (2) 112
C14—H14⋯Cg3iii 0.93 2.85 3.494 (2) 127
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x-1, y, z+1; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The crystal packing of the title com­pound, showing an R22(16) motif and the C(8) chain formed via a pair of O—H⋯N and N—H⋯O hydrogen bonds.
[Figure 3]
Figure 3
Part of the crystal structure showing the R22(8) dimers. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
[Figure 4]
Figure 4
The overall crystal packing of the title com­pound, viewed along the a-axis direction.

4. Density functional theory (DFT) study

The optimized mol­ecular structure and frontier mol­ecular orbitals (FMOs) were calculated using the DFT/B3LYP/6-311G(d,p) basis set implemented in the GAUSSIAN09 program package (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]). The highest occupied mol­ecular orbital (HOMO) and the lowest unoccupied mol­ecular orbital (LUMO) are called FMOs as they lie at the outermost boundaries of the electrons of the mol­ecules. The frontier orbital gap helps to characterize the chemical reactivity and the kinetic stability of the mol­ecule. A mol­ecule with a small frontier orbital gap is generally associated with a high chemical reactivity and a low kinetic stability, and is also termed a soft mol­ecule. The electron distribution of the HOMO-1, HOMO, LUMO and LUMO+1 energy levels and the energy values are shown in Fig. 5[link]. The positive and negative phases are represented in green and red, respectively.

[Figure 5]
Figure 5
The frontier mol­ecular orbitals (FMOs) of the title com­pound.

The HOMO of the title mol­ecule is localized on the entire mol­ecule except for the chloro­benzene ring, while the LUMO is located on the whole mol­ecule. However, the HOMO-1 is localized on the entire mol­ecule, with the LUMO+1 confined to the chloro­benzene and benzo­pyran rings, except for the amino substituent. The DFT study shows that the FMO energies, i.e. EHOMO and ELUMO, are −6.354 and −2.712 eV, respectively, and the HOMO–LUMO energy gap is 3.642 eV. The title com­pound has a small frontier orbital gap, hence the mol­ecule has high chemical reactivity and low kinetic stability.

5. Hirshfeld surface analysis

Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and two-dimensional (2D) fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed and created with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer. Version 17.5. University of Western Australia.]) for the idenfication of the inter­molecular inter­actions in the title com­pound. The Hirshfeld surface diagram mapped over dnorm is shown in Fig. 6[link]. The 3D dnorm surfaces were plotted with a standard (high) surface resolution and are shown as blue and red regions around the atoms related with positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) electrostatic potentials, respectively.

[Figure 6]
Figure 6
Hirshfeld surface mapped over dnorm in the range −0.6146 to 1.6047 a.u.

The 2D fingerprint plots of the di and de points for the contacts contributing to the Hirshfeld surface analysis are shown in Fig. 7[link]. They indicate that inter­molecular H⋯H contacts provide the largest contribution (29.2%) to the Hirshfeld surface and the percentage contributions of the other inter­actions are C⋯H/H⋯C = 24.6%, N⋯H/H⋯N = 13.6%, Cl⋯H/H⋯Cl = 12.9% and O⋯H/H⋯O = 10.6%.

[Figure 7]
Figure 7
The 2D fingerprint plots for the title com­pound.

6. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, update of November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 4H-benzo­pyran fragment revealed 10 hits where the fragment adopts a planar conformation. Nearly all the bond lengths in the title structure are the same within standard uncertainties as the corresponding values in the structure of 2-amino-4-(2-chloro­phen­yl)-7,7-dimethyl-5-oxo-5,6,7,8-tetra­hy­dro-4H-chromene-3-carbo­nitrile hemihydrate (CSD refcode LAPZIN; Hu et al., 2012[Hu, X.-L., Wang, Z.-X., Wang, F.-M. & Han, G.-F. (2012). Acta Cryst. E68, o823.]).

7. Synthesis and crystallization

A mixture of 2-chloro­benzaldehyde (6.2 g, 0.05 mol), malono­nitrile (3.3 ml, 0.05 mol) and resorcinol (5.5 g, 0.05 mol) in water (150 ml) was added to a 10% aqueous K2CO3 solution (10 ml) in a 250 ml round-bottomed flask. The resulting solution was refluxed for about 2 h. The progress of the reaction was monitored by thin-layer chromatography using silica gel-G plates. After product formation, the reaction mixture was kept in a refrigerator overnight. The solid mass that settled was filtered off by suction and washed well with a mixture of methanol and water, and finally dried in air. The resulting crude solid was recrystalized from methanol giving a white solid. The purified sample was recrystallized from 1,4-dioxane using the slow-evaporation method (m.p. 250–255 °C).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned geometrically (N—H = 0.88–0.90 Å and C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) otherwise.

Table 2
Experimental details

Crystal data
Chemical formula C16H11ClN2O2
Mr 298.72
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 6.6658 (3), 30.1600 (16), 7.2193 (4)
β (°) 106.088 (2)
V3) 1394.53 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.28
Crystal size (mm) 0.15 × 0.10 × 0.10
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.959, 0.973
No. of measured, independent and observed [I > 2σ(I)] reflections 21888, 2941, 2115
Rint 0.034
(sin θ/λ)max−1) 0.632
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.103, 1.05
No. of reflections 2941
No. of parameters 191
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.29
Computer programs: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

2-Amino-4-(2-chlorophenyl)-7-hydroxy-4H-benzo[1,2-b]pyran-3-carbonitrile top
Crystal data top
C16H11ClN2O2F(000) = 616
Mr = 298.72Dx = 1.423 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.6658 (3) ÅCell parameters from 2115 reflections
b = 30.1600 (16) Åθ = 2.7–26.7°
c = 7.2193 (4) ŵ = 0.28 mm1
β = 106.088 (2)°T = 296 K
V = 1394.53 (12) Å3Block, white crystalline
Z = 40.15 × 0.10 × 0.10 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2115 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
ω and φ scansθmax = 26.7°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 68
Tmin = 0.959, Tmax = 0.973k = 3838
21888 measured reflectionsl = 98
2941 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0392P)2 + 0.5426P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.103(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.19 e Å3
2941 reflectionsΔρmin = 0.28 e Å3
191 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0061 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.9057 (3)0.54802 (6)0.1320 (2)0.0342 (4)
C31.0377 (3)0.58264 (5)0.0758 (2)0.0334 (4)
C41.0200 (3)0.61567 (5)0.0772 (2)0.0314 (4)
H41.1563300.6180940.1728720.038*
C50.8634 (3)0.59885 (5)0.1766 (2)0.0314 (4)
C60.8329 (3)0.62022 (6)0.3376 (3)0.0379 (4)
H60.9151420.6446480.3878780.045*
C70.6839 (3)0.60615 (6)0.4248 (3)0.0408 (4)
H70.6652640.6211970.5312660.049*
C80.5627 (3)0.56954 (6)0.3525 (3)0.0379 (4)
C90.5916 (3)0.54711 (6)0.1960 (3)0.0398 (4)
H90.5126260.5220760.1483220.048*
C100.7398 (3)0.56246 (6)0.1111 (2)0.0335 (4)
C110.9601 (3)0.66108 (5)0.0142 (2)0.0322 (4)
C120.7556 (3)0.66946 (6)0.1204 (3)0.0400 (4)
H120.6549790.6476680.1279660.048*
C130.6976 (4)0.70909 (7)0.2149 (3)0.0539 (5)
H130.5597270.7137380.2854810.065*
C140.8442 (4)0.74176 (7)0.2045 (4)0.0621 (6)
H140.8055630.7684660.2689050.075*
C151.0465 (4)0.73504 (7)0.0995 (4)0.0600 (6)
H151.1457140.7571640.0913650.072*
C161.1027 (3)0.69495 (6)0.0052 (3)0.0446 (5)
C171.1869 (3)0.58941 (6)0.1782 (3)0.0402 (4)
O10.7539 (2)0.53801 (4)0.04856 (18)0.0420 (3)
O20.4103 (2)0.55394 (5)0.4287 (2)0.0552 (4)
H20.4065370.5691280.5219250.083*
Cl11.36070 (9)0.68831 (2)0.12960 (12)0.0757 (2)
N10.9057 (3)0.51897 (5)0.2734 (2)0.0455 (4)
H1A0.8161660.4977350.2987130.055*
H1B0.9953430.5216340.3385160.055*
N21.3050 (3)0.59408 (7)0.2655 (3)0.0608 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0376 (10)0.0333 (9)0.0359 (9)0.0032 (7)0.0174 (8)0.0023 (7)
C30.0336 (9)0.0322 (9)0.0385 (10)0.0028 (7)0.0169 (8)0.0012 (7)
C40.0314 (9)0.0305 (9)0.0334 (9)0.0007 (7)0.0110 (7)0.0026 (7)
C50.0339 (9)0.0306 (9)0.0310 (9)0.0025 (7)0.0113 (7)0.0014 (7)
C60.0474 (11)0.0339 (9)0.0335 (9)0.0043 (8)0.0132 (8)0.0054 (7)
C70.0556 (12)0.0392 (10)0.0332 (10)0.0003 (9)0.0215 (9)0.0050 (8)
C80.0423 (10)0.0419 (10)0.0349 (10)0.0008 (8)0.0198 (8)0.0007 (8)
C90.0442 (11)0.0394 (10)0.0403 (10)0.0071 (8)0.0192 (9)0.0085 (8)
C100.0391 (10)0.0340 (9)0.0308 (9)0.0008 (7)0.0155 (8)0.0042 (7)
C110.0384 (10)0.0298 (8)0.0329 (9)0.0008 (7)0.0172 (8)0.0043 (7)
C120.0434 (11)0.0373 (10)0.0395 (10)0.0014 (8)0.0117 (9)0.0021 (8)
C130.0610 (14)0.0490 (12)0.0493 (12)0.0128 (10)0.0113 (10)0.0079 (10)
C140.0862 (18)0.0437 (12)0.0623 (15)0.0089 (12)0.0303 (13)0.0165 (11)
C150.0759 (16)0.0375 (11)0.0783 (16)0.0104 (11)0.0407 (14)0.0059 (11)
C160.0445 (11)0.0405 (10)0.0554 (12)0.0057 (8)0.0248 (10)0.0037 (9)
C170.0408 (11)0.0408 (10)0.0433 (11)0.0024 (8)0.0188 (9)0.0082 (8)
O10.0484 (8)0.0419 (7)0.0444 (7)0.0136 (6)0.0274 (6)0.0159 (6)
O20.0659 (10)0.0596 (9)0.0547 (9)0.0182 (7)0.0409 (8)0.0158 (7)
Cl10.0392 (3)0.0653 (4)0.1207 (6)0.0156 (3)0.0190 (3)0.0037 (4)
N10.0532 (10)0.0422 (9)0.0511 (10)0.0077 (8)0.0309 (8)0.0147 (7)
N20.0571 (12)0.0748 (13)0.0627 (12)0.0146 (10)0.0368 (10)0.0200 (10)
Geometric parameters (Å, º) top
C2—N11.345 (2)C9—H90.9300
C2—O11.347 (2)C10—O11.3932 (19)
C2—C31.353 (2)C11—C161.385 (2)
C3—C171.408 (2)C11—C121.389 (2)
C3—C41.516 (2)C12—C131.377 (3)
C4—C51.509 (2)C12—H120.9300
C4—C111.525 (2)C13—C141.375 (3)
C4—H40.9800C13—H130.9300
C5—C101.375 (2)C14—C151.367 (3)
C5—C61.393 (2)C14—H140.9300
C6—C71.382 (3)C15—C161.387 (3)
C6—H60.9300C15—H150.9300
C7—C81.382 (3)C16—Cl11.737 (2)
C7—H70.9300C17—N21.146 (2)
C8—O21.366 (2)O2—H20.8200
C8—C91.376 (2)N1—H1A0.8600
C9—C101.379 (2)N1—H1B0.8600
N1—C2—O1110.58 (15)C5—C10—C9123.36 (16)
N1—C2—C3126.39 (16)C5—C10—O1122.36 (15)
O1—C2—C3123.03 (15)C9—C10—O1114.28 (15)
C2—C3—C17116.70 (15)C16—C11—C12116.58 (17)
C2—C3—C4123.38 (15)C16—C11—C4123.24 (16)
C17—C3—C4119.72 (15)C12—C11—C4120.11 (15)
C5—C4—C3109.23 (13)C13—C12—C11121.94 (18)
C5—C4—C11112.01 (13)C13—C12—H12119.0
C3—C4—C11109.81 (13)C11—C12—H12119.0
C5—C4—H4108.6C14—C13—C12119.8 (2)
C3—C4—H4108.6C14—C13—H13120.1
C11—C4—H4108.6C12—C13—H13120.1
C10—C5—C6116.37 (15)C15—C14—C13120.1 (2)
C10—C5—C4122.16 (15)C15—C14—H14120.0
C6—C5—C4121.44 (15)C13—C14—H14120.0
C7—C6—C5121.86 (17)C14—C15—C16119.5 (2)
C7—C6—H6119.1C14—C15—H15120.3
C5—C6—H6119.1C16—C15—H15120.3
C6—C7—C8119.46 (16)C11—C16—C15122.1 (2)
C6—C7—H7120.3C11—C16—Cl1120.11 (15)
C8—C7—H7120.3C15—C16—Cl1117.79 (16)
O2—C8—C9116.76 (16)N2—C17—C3178.0 (2)
O2—C8—C7123.03 (16)C2—O1—C10118.87 (13)
C9—C8—C7120.21 (16)C8—O2—H2109.5
C8—C9—C10118.71 (17)C2—N1—H1A120.0
C8—C9—H9120.6C2—N1—H1B120.0
C10—C9—H9120.6H1A—N1—H1B120.0
N1—C2—C3—C171.4 (3)C4—C5—C10—O11.5 (3)
O1—C2—C3—C17179.18 (17)C8—C9—C10—C51.0 (3)
N1—C2—C3—C4176.25 (17)C8—C9—C10—O1178.75 (16)
O1—C2—C3—C44.3 (3)C5—C4—C11—C16138.04 (17)
C2—C3—C4—C510.3 (2)C3—C4—C11—C16100.42 (19)
C17—C3—C4—C5175.06 (16)C5—C4—C11—C1245.1 (2)
C2—C3—C4—C11112.94 (19)C3—C4—C11—C1276.49 (19)
C17—C3—C4—C1161.7 (2)C16—C11—C12—C131.1 (3)
C3—C4—C5—C108.7 (2)C4—C11—C12—C13176.05 (17)
C11—C4—C5—C10113.14 (18)C11—C12—C13—C140.3 (3)
C3—C4—C5—C6172.89 (16)C12—C13—C14—C150.5 (3)
C11—C4—C5—C665.2 (2)C13—C14—C15—C160.5 (3)
C10—C5—C6—C71.2 (3)C12—C11—C16—C151.0 (3)
C4—C5—C6—C7177.30 (17)C4—C11—C16—C15175.98 (18)
C5—C6—C7—C80.8 (3)C12—C11—C16—Cl1178.20 (13)
C6—C7—C8—O2179.04 (18)C4—C11—C16—Cl14.8 (2)
C6—C7—C8—C90.5 (3)C14—C15—C16—C110.3 (3)
O2—C8—C9—C10178.20 (17)C14—C15—C16—Cl1178.97 (18)
C7—C8—C9—C101.4 (3)N1—C2—O1—C10175.17 (15)
C6—C5—C10—C90.3 (3)C3—C2—O1—C104.3 (3)
C4—C5—C10—C9178.19 (17)C5—C10—O1—C25.7 (3)
C6—C5—C10—O1179.99 (16)C9—C10—O1—C2174.53 (16)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg3 and Cg4 are the centroids of the O1/C2–C5/C10 and C11–C16 rings, and the benzopyran system, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.193.037 (2)167
C9—H9···O1i0.932.503.416 (2)168
O2—H2···N2ii0.821.992.773 (2)160
C4—H4···Cl10.982.583.102 (2)113
C12—H12···Cg10.932.743.085 (2)103
C12—H12···Cg40.932.833.291 (2)112
C14—H14···Cg3iii0.932.853.494 (2)127
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z+1; (iii) x, y1/2, z1/2.
 

Acknowledgements

The authors thank SAIF, IIT Madras, India, for the data collection.

References

First citationAllen, F. H., Shields, G. P., Taylor, R., Allen, F. H., Raithby, P. R., Shields, G. P. & Taylor, R. (1998). Chem. Commun. pp. 1043–1044.  Web of Science CrossRef Google Scholar
First citationAnderson, D. R., Hegde, S., Reinhard, E., Gomez, L., Vernier, W. F., Lee, L., Liu, S., Sambandam, A., Snider, P. A. & Masih, L. (2005). Bioorg. Med. Chem. Lett. 15, 1587–1590.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBianchi, G. & Tava, A. (1987). Agric. Biol. Chem. 51, 2001–2002.  CrossRef CAS Google Scholar
First citationBisht, S. S., Jaiswal, N., Sharma, A., Fatima, S., Sharma, R., Rahuja, N., Srivastava, A. K., Bajpai, V., Kumar, B. & Tripathi, R. P. (2011). Carbohydr. Res. 346, 1191–1201.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDell, C. P. & Smith, C. W. (1993). Eur. Patent Appl. EP 537949; Chem. Abstr. 119, 139102.  Google Scholar
First citationEiden, F. & Denk, F. (1991). Arch. Pharm. Pharm. Med. Chem. 324, 353–354.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerreira, S. B., da Silva, F. D. C., Bezerra, F. A. F. M., Lourenco, M. C. S., Kaiser, C. R., Pinto, A. C. & Ferreira, V. F. (2010). Arch. Pharm. 343, 81–90.  CAS Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHe, M. Z., Yang, N., Sun, C. L., Yao, X. J. & Yang, M. (2011). Med. Chem. Res. 20, 200–209.  CrossRef CAS Google Scholar
First citationHiramoto, K., Nasuhara, A., Michikoshi, K., Kato, T. & Kikugawa, K. (1997). Mutat. Res. 395, 47–56.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHu, X.-L., Wang, Z.-X., Wang, F.-M. & Han, G.-F. (2012). Acta Cryst. E68, o823.  CSD CrossRef IUCr Journals Google Scholar
First citationKhafagy, M. M., Abd El-Wahab, A. H. F., Eid, F. A. & El-Agrody, A. M. (2002). Farmaco, 57, 715–722.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMartínez-Grau, A. & Marco, J. (1997). Bioorg. Med. Chem. Lett. 7, 3165–3170.  Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMohr, S. J., Chirigos, M. A., Fuhrman, F. S. & Pryor, J. W. (1975). Cancer Res. 35, 3750–3754.  PubMed CAS Web of Science Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSchiller, R., Tichotová, L., Pavlík, J., Buchta, V., Melichar, B., Votruba, I., Kuneš, J., Špulák, M. & Pour, M. (2010). Bioorg. Med. Chem. Lett. 20, 7358–7360.  Web of Science CrossRef CAS PubMed Google Scholar
First citationShahrisa, A., Zirak, M., Mehdipour, A. R. & Miri, R. (2011). Chem. Heterocycl. C, 46, 1354–1363.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, W. P., Sollis, L. S., Howes, D. P., Cherry, C. P., Starkey, D. I., Cobley, N. K., Weston, H., Scicinski, J., Merritt, A., Whittington, A., Wyatt, P., Taylor, N., Green, D., Bethell, R., Madar, S., Fenton, R. J., Morley, P. J., Pateman, T. & Beresford, A. (1998). J. Med. Chem. 41, 787–797.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer. Version 17.5. University of Western Australia.  Google Scholar
First citationWang, S. M., Milne, G. W. A., Yan, X. J., Posey, I. J., Nicklaus, M. C., Graham, L. & Rice, W. G. (1996). J. Med. Chem. 39, 2047–2054.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWang, Y., Mo, S. Y., Wang, S. J., Li, S., Yang, Y. C. & Shi, J. G. (2005). Org. Lett. 7, 1675–1678.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds