research communications
Synthesis, H-pyrazol-5-yl]-2-methoxyphenol monohydrate
and Hirshfeld surface analysis of 4-[3-(4-hydroxyphenyl)-4,5-dihydro-1aFaculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, bInstitute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam, cGraduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam, and dDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
*Correspondence e-mail: linhddk@yahoo.com, luc.vanmeervelt@kuleuven.be
In the title pyrazoline derivative, C16H16N2O3·H2O, the pyrazoline ring has an with the substituted sp2 C atom on the flap. The pyrazoline ring makes angles of 86.73 (12) and 13.44 (12)° with the trisubstituted and disubstituted benzene rings, respectively. In the the molecules are connected into chains running in the b-axis direction by O—H⋯N hydrogen bonding. Parallel chains interact through N—H⋯O hydrogen bonds and π–π stacking of the trisubstituted phenyl rings. The major contribution to the surface contacts are H⋯H contacts (44.3%) as concluded from a Hirshfeld surface analysis.
Keywords: crystal structure; pyrazolines; hydrogen bonding; Hirshfeld analysis.
1. Chemical context
et al., 2017). including pyrazolines can be synthesized from chalcone derivatives. Many compounds containing pyrazolines show different biological activities and are known to act as anticancer (Johnson et al., 2007; Gomha et al., 2017), antimicrobial (Patel et al., 2016), antitubercular (Taj et al., 2011), anti-inflammatory (Malhotra et al., 2010), anticonvulsant (Siddiqui et al., 2009), anti-amoebic (Bhat et al., 2009), antioxidant (Srinivasan et al., 2007), antiviral (Gomha et al., 2016), antibacterial (Kumar et al., 2008) and antinociceptive (Kaplancikli et al., 2009) agents.
are one of the most important classes of Natural and synthetic chalcone derivatives have shown a variety of promising biological activities such as anti-inflammatory, anti-gout, anti-histaminic, anti-oxidant, anti-obesity, anti-protozoal, hypnotic and anti-spasmodic activities (GomesPyrazoline derivatives have been synthesized by condensation of et al., 2009; Sridhar et al., 2012) and microwave-assisted synthesis (Kumar et al., 2008; Patel et al., 2016).
with hydrazine derivatives using conventional synthesis (ShahareIn this article, we report the synthesis of a chalcone derivative by condensation of vanillin with p-hydroxyacetophenone and subsequent of this chalcone by reaction with hydrazine hydrate. Furthermore the molecular and of the title compound, 2, are presented together with a Hirshfeld surface analysis and non-covalent interaction plots.
2. Structural commentary
The title compound crystallizes in the orthorhombic Pbca with one molecule and a water molecule in the (Fig. 1). The pyrazoline ring (N1/N2/C3–C5; r.m.s. deviation = 0.078 Å) is slightly twisted on N2—C3 [puckering parameters: Q(2) = 0.175 (2) Å, Φ(2) = 60.7 (7)°]. There is a clear difference in both C—N bond distances in the pyrazoline ring: N1=C5 shows double-bond character [1.287 (3) Å] while N2—C3 [1.496 (3) Å] is a single bond. The dihedral angle between the two benzene rings is 80.66 (11)°. The planes of the C6–C11 benzene ring (r.m.s. deviation = 0.004 Å) and the pyrazoline ring make an angle of 86.73 (12)°. For the C15–C20 benzene ring (r.m.s. deviation = 0.006 Å), the dihedral angle with the pyrazoline ring is only 13.44 (12)°. Both the hydroxy and methoxy substituents of the C6–C11 phenyl group are within the phenyl plane with deviations of 0.011 (1) (O12), 0.166 (2) (C13) and −0.057 (2) Å (O14).
3. Supramolecular features and Hirshfeld surface analysis
In the crystal of 2, the O22 water molecule bridges three molecules by O—H⋯N and O—H⋯O hydrogen-bonding interactions with the N1 atom and the O21-hydroxy group (Fig. 2, Table 1). The pyrazoline N2 atom acts as a hydrogen-bond acceptor to the second O14-hydroxy group, resulting in chain formation along the b-axis direction (Fig. 3, Table 1). Parallel chains linked by inversion interact in two different ways. First, the N2 hydrogen atom acts also as hydrogen-bond donor to the O12-methoxy group. In addition, both chains interact by π–π stacking [Cg1⋯Cg1(−x + 1, −y + 1, −z + 1) = 3.6627 (11) Å; slippage 1.442 Å; Cg1 is the centroid of the C6–C11 ring]. In addition, a C—H⋯O interaction is observed in the crystal packing (Table 1). No voids are observed in the crystal packing of 2.
The Hirshfeld surface (calculated using CrystalExplorer; Turner et al., 2017) mapped over dnorm in Fig. 4 also gives the usual indications of these intermolecular interactions through the appearance of bright-red spots near participating atoms (Spackman & Jayatilaka, 2009). In addition to the interactions already discussed, faint-red spots near atoms C8, C11, H3 and H4A illustrate short C⋯H contacts (H4A⋯C11 = 2.83 Å, H3⋯C8 = 2.80 Å). The associated two-dimensional fingerprint plots (McKinnon et al., 2007) were used to further explore the intermolecular contacts (Fig. 5) and indicate that the major contribution is from H⋯H contacts, corresponding to 44.3% of the fingerprint plot (Fig. 5b) followed by reciprocal C⋯H/H⋯C contacts (25.1%, Fig. 5c). Significant contributions come from reciprocal O⋯H/H⋯O (20.7%) and N⋯H/H⋯N (7.0%) contacts, which appear as two symmetrical spikes at de + di = 1.65 and 1.80 Å, respectively (Fig. 5d,e). A further small contribution is from C⋯C contacts (2.3%, Fig. 5f).
Based on the Hirshfeld surface analysis, enrichment ratios (ER, Table 2) were calculated by comparing the contacts in the crystal with those computed as if all types of contact have the same probability of forming (Jelsch et al., 2014). A ratio greater than unity for a pair of elements indicates a high likelihood of forming contacts in the crystal. This is the case for N⋯H and O⋯H contacts, which is consistent with the high propensity for the formation of O—H⋯N and O/N/C—H⋯O hydrogen bonds. C⋯H contacts are enriched because of the presence of aromatic rings, H⋯H contacts are found to have the usual enrichment ratios slightly lower than unity.
|
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, update of May 2019; Groom et al., 2016) for 2-pyrazoline derivatives gave 134 hits, of which 37 are 3,5-disubstituted (only organic molecules were considered). Where both substituents on the pyrazoline ring are aromatic rings, three 2-pyrazoline derivatives were found with substituted benzene rings at position 3 and a 2-naphthyl ring system at position 5. In addition, two structures have substituted benzene rings as both substituents and are very similar to 2. The first one, 2-methoxy-4-[3-(3-nitrophenyl)-4,5-dihydro-1H-pyrazol-5-yl]phenol (refcode UJUDOU; Inturi et al., 2016), crystallizes in P21/c with one molecule in the The pyrazoline ring has an with the substituted sp2 C atom on the flap. The dihedral angle between the phenyl rings is 49.37 (8)°, that between the pyrazoline ring and the nitrophenyl ring is 9.7 (1)° and that between the pyrazoline ring and the methoxyphenol ring is 56. 78 (9)°. The second structure, 3-(2′-hydroxy-5′-methoxy-phenyl)-5-(3-methoxy-4-hydroxyphenyl)-4,5-dihydro-1H-pyrazole (RESJUV; Gupta et al., 2006), crystallizes in Pbca with one molecule in the The conformation of the pyrazoline ring is the same as that in UJUDOU. The phenyl rings make an angle of 56.0 (1)°, while the dihedral angles between the pyrazoline ring and the phenyl rings at atom C3 and C5 are 12.1 (1) and 68.2 (1)°, respectively.
5. Synthesis and crystallization
The reaction scheme for the synthesis of 2 starting from vanillin is given in Fig. 6. (E)-3-(4-Hydroxy-3-methoxyphenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one, 1, was synthesized as described in a previous study (Duong Khanh et al., 2018).
Synthesis of 4-(3-(4-hydroxyphenyl)-4,5-dihydro-1H-pyrazol-5-yl)-2-methoxyphenol (2):
A mixture of chalcone 1 (0.01 mol), 2.5 mL of hydrazine hydrate and 25 mL of ethanol was refluxed at 353 K for 2 h. After pouring the reaction mixture into 200 mL of ice–water, the crude solid product was isolated by vacuum filtration, washed several times with cold water and recrystallized from ethanol:water (1:2) to give yellow crystals (2.24 g, yield 79%), m.p. 465 K. 1H NMR [Bruker XL-500, 500 MHz, d6-DMSO, δ (ppm), J (Hz), see Fig. 6 for numbering scheme]: 6.71 (d, 1H, J = 8.0, H2); 3.75 (s, 3H, H2a); 6.74 (d, 1H, J = 1.5, H3); 6.95 (d, 1H, J = 1.5, H5), 4.67 (t, 1H, H7); 3.30 (dd, 1H, J = 11.0; 16.0, H8a); 2.76 (dd, 1H, J = 11.0, 16.0, H8b), 7.45 (d, 2H, J = 8.5, H11 and H15); 6.76 (d, 2H, J = 8.5, H12 and H14).
6. Refinement
Crystal data, data collection and structure . The O- and N-bound H atoms H2, H14, H21, H22A and H22B were found in difference electron density maps and refined freely. The other H atoms were placed in idealized positions and included as riding contributions with Uiso(H) values of 1.2Ueq or 1.5Ueq of the parent atoms, with C—H distances of 0.93 (aromatic), 0.98 (CH), 0.97 (CH2) and 0.96 Å (CH3). In the final cycles of eight outliers were omitted.
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989019013379/sj5579sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019013379/sj5579Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019013379/sj5579Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C16H16N2O3·H2O | Dx = 1.293 Mg m−3 |
Mr = 302.32 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 4406 reflections |
a = 12.1452 (5) Å | θ = 3.1–24.8° |
b = 8.1784 (3) Å | µ = 0.09 mm−1 |
c = 31.2738 (12) Å | T = 293 K |
V = 3106.4 (2) Å3 | Plate, yellow |
Z = 8 | 0.5 × 0.2 × 0.05 mm |
F(000) = 1280 |
Rigaku Oxford Diffraction SuperNova, Single source at offset/far, Eos diffractometer | 3172 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source | 2241 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.039 |
Detector resolution: 15.9631 pixels mm-1 | θmax = 26.4°, θmin = 2.6° |
ω scans | h = −15→15 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2018) | k = −10→9 |
Tmin = 0.697, Tmax = 1.000 | l = −38→39 |
16817 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.050 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.115 | w = 1/[σ2(Fo2) + (0.0321P)2 + 1.8202P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
3172 reflections | Δρmax = 0.18 e Å−3 |
220 parameters | Δρmin = −0.19 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O12 | 0.67375 (11) | 0.32986 (16) | 0.53007 (4) | 0.0374 (4) | |
O14 | 0.56063 (13) | 0.13497 (17) | 0.48138 (5) | 0.0433 (4) | |
N2 | 0.51402 (15) | 0.8855 (2) | 0.42476 (5) | 0.0347 (4) | |
N1 | 0.49999 (14) | 0.9151 (2) | 0.38046 (5) | 0.0384 (4) | |
O22 | 0.29208 (18) | 0.8202 (3) | 0.35137 (6) | 0.0677 (5) | |
O21 | 0.64259 (19) | 1.0090 (3) | 0.18438 (6) | 0.0803 (7) | |
C8 | 0.63357 (15) | 0.3973 (2) | 0.49290 (6) | 0.0287 (4) | |
C9 | 0.57465 (16) | 0.2905 (2) | 0.46661 (6) | 0.0306 (4) | |
C7 | 0.64750 (15) | 0.5586 (2) | 0.48084 (6) | 0.0298 (4) | |
H7 | 0.686502 | 0.629245 | 0.498546 | 0.036* | |
C6 | 0.60392 (16) | 0.6168 (2) | 0.44254 (6) | 0.0312 (4) | |
C11 | 0.54679 (16) | 0.5094 (2) | 0.41631 (6) | 0.0346 (5) | |
H11 | 0.517910 | 0.546425 | 0.390526 | 0.042* | |
C3 | 0.61976 (16) | 0.7953 (2) | 0.43154 (7) | 0.0348 (5) | |
H3 | 0.660239 | 0.848056 | 0.454879 | 0.042* | |
C10 | 0.53234 (17) | 0.3472 (2) | 0.42823 (6) | 0.0354 (5) | |
H10 | 0.494061 | 0.276326 | 0.410349 | 0.042* | |
C5 | 0.59163 (17) | 0.8914 (2) | 0.36073 (7) | 0.0376 (5) | |
C15 | 0.60588 (19) | 0.9252 (3) | 0.31515 (7) | 0.0431 (5) | |
C4 | 0.68056 (18) | 0.8284 (3) | 0.38953 (7) | 0.0450 (6) | |
H4A | 0.738080 | 0.909351 | 0.393418 | 0.054* | |
H4B | 0.712858 | 0.728975 | 0.378196 | 0.054* | |
C13 | 0.7444 (2) | 0.4300 (3) | 0.55573 (7) | 0.0482 (6) | |
H13A | 0.803642 | 0.471013 | 0.538454 | 0.072* | |
H13B | 0.773932 | 0.366112 | 0.578791 | 0.072* | |
H13C | 0.703076 | 0.520021 | 0.567146 | 0.072* | |
C16 | 0.6949 (2) | 0.8613 (3) | 0.29308 (8) | 0.0574 (7) | |
H16 | 0.746563 | 0.798987 | 0.307775 | 0.069* | |
C18 | 0.6333 (2) | 0.9799 (3) | 0.22753 (8) | 0.0597 (7) | |
C20 | 0.5313 (2) | 1.0207 (3) | 0.29215 (8) | 0.0615 (7) | |
H20 | 0.471444 | 1.067128 | 0.306189 | 0.074* | |
C17 | 0.7088 (2) | 0.8877 (3) | 0.24971 (8) | 0.0654 (8) | |
H17 | 0.769099 | 0.843147 | 0.235584 | 0.079* | |
C19 | 0.5450 (2) | 1.0475 (4) | 0.24884 (8) | 0.0723 (9) | |
H19 | 0.494359 | 1.111272 | 0.234017 | 0.087* | |
H2 | 0.4564 (18) | 0.832 (3) | 0.4332 (7) | 0.042 (6)* | |
H22A | 0.317 (3) | 0.729 (5) | 0.3380 (11) | 0.109 (14)* | |
H22B | 0.364 (3) | 0.867 (4) | 0.3581 (10) | 0.106 (12)* | |
H14 | 0.533 (2) | 0.072 (4) | 0.4599 (9) | 0.082 (10)* | |
H21 | 0.705 (3) | 0.949 (5) | 0.1719 (12) | 0.130 (14)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O12 | 0.0429 (8) | 0.0318 (7) | 0.0375 (8) | −0.0015 (6) | −0.0074 (6) | 0.0036 (6) |
O14 | 0.0619 (10) | 0.0250 (8) | 0.0429 (9) | −0.0082 (7) | −0.0049 (8) | 0.0019 (7) |
N2 | 0.0417 (10) | 0.0297 (9) | 0.0329 (9) | 0.0003 (8) | −0.0026 (8) | 0.0031 (8) |
N1 | 0.0431 (10) | 0.0380 (10) | 0.0340 (9) | 0.0041 (8) | −0.0045 (8) | 0.0021 (8) |
O22 | 0.0638 (13) | 0.0794 (14) | 0.0599 (12) | 0.0010 (11) | −0.0157 (10) | −0.0056 (11) |
O21 | 0.0997 (17) | 0.0965 (16) | 0.0446 (11) | 0.0282 (13) | 0.0183 (11) | 0.0222 (11) |
C8 | 0.0293 (10) | 0.0280 (10) | 0.0289 (10) | 0.0025 (8) | 0.0020 (8) | 0.0011 (8) |
C9 | 0.0316 (10) | 0.0238 (9) | 0.0365 (11) | 0.0002 (8) | 0.0038 (9) | 0.0004 (8) |
C7 | 0.0300 (10) | 0.0264 (10) | 0.0331 (11) | −0.0013 (8) | −0.0015 (8) | −0.0024 (8) |
C6 | 0.0329 (10) | 0.0271 (10) | 0.0336 (11) | −0.0006 (8) | 0.0003 (8) | 0.0001 (9) |
C11 | 0.0368 (11) | 0.0342 (11) | 0.0329 (11) | 0.0002 (9) | −0.0044 (9) | 0.0028 (9) |
C3 | 0.0360 (11) | 0.0297 (10) | 0.0387 (12) | −0.0042 (8) | −0.0078 (9) | 0.0049 (9) |
C10 | 0.0400 (11) | 0.0308 (11) | 0.0353 (11) | −0.0049 (9) | −0.0016 (9) | −0.0054 (9) |
C5 | 0.0411 (12) | 0.0316 (11) | 0.0402 (12) | −0.0015 (9) | −0.0009 (10) | 0.0040 (9) |
C15 | 0.0464 (13) | 0.0430 (12) | 0.0400 (12) | 0.0030 (10) | 0.0018 (10) | 0.0069 (10) |
C4 | 0.0384 (12) | 0.0435 (12) | 0.0531 (14) | −0.0057 (9) | −0.0008 (10) | 0.0162 (11) |
C13 | 0.0535 (14) | 0.0481 (13) | 0.0430 (13) | −0.0083 (11) | −0.0160 (11) | 0.0040 (11) |
C16 | 0.0575 (16) | 0.0672 (17) | 0.0476 (14) | 0.0172 (13) | 0.0071 (12) | 0.0136 (13) |
C18 | 0.0713 (18) | 0.0653 (17) | 0.0426 (14) | 0.0109 (14) | 0.0114 (13) | 0.0133 (13) |
C20 | 0.0671 (17) | 0.0702 (18) | 0.0473 (14) | 0.0255 (14) | 0.0129 (13) | 0.0154 (13) |
C17 | 0.0643 (17) | 0.0809 (19) | 0.0511 (15) | 0.0235 (15) | 0.0170 (13) | 0.0109 (15) |
C19 | 0.079 (2) | 0.089 (2) | 0.0490 (15) | 0.0365 (17) | 0.0091 (14) | 0.0240 (15) |
O12—C8 | 1.376 (2) | C3—H3 | 0.9800 |
O12—C13 | 1.432 (2) | C3—C4 | 1.531 (3) |
O14—C9 | 1.364 (2) | C10—H10 | 0.9300 |
O14—H14 | 0.91 (3) | C5—C15 | 1.462 (3) |
N2—N1 | 1.417 (2) | C5—C4 | 1.498 (3) |
N2—C3 | 1.496 (3) | C15—C16 | 1.385 (3) |
N2—H2 | 0.87 (2) | C15—C20 | 1.396 (3) |
N1—C5 | 1.287 (3) | C4—H4A | 0.9700 |
O22—H22A | 0.91 (4) | C4—H4B | 0.9700 |
O22—H22B | 0.98 (4) | C13—H13A | 0.9600 |
O21—C18 | 1.375 (3) | C13—H13B | 0.9600 |
O21—H21 | 0.98 (4) | C13—H13C | 0.9600 |
C8—C9 | 1.397 (3) | C16—H16 | 0.9300 |
C8—C7 | 1.383 (3) | C16—C17 | 1.384 (3) |
C9—C10 | 1.386 (3) | C18—C17 | 1.375 (3) |
C7—H7 | 0.9300 | C18—C19 | 1.379 (3) |
C7—C6 | 1.393 (3) | C20—H20 | 0.9300 |
C6—C11 | 1.387 (3) | C20—C19 | 1.382 (3) |
C6—C3 | 1.513 (3) | C17—H17 | 0.9300 |
C11—H11 | 0.9300 | C19—H19 | 0.9300 |
C11—C10 | 1.389 (3) | ||
C8—O12—C13 | 117.18 (15) | N1—C5—C4 | 112.78 (18) |
C9—O14—H14 | 108.7 (18) | C15—C5—C4 | 124.46 (19) |
N1—N2—C3 | 109.04 (16) | C16—C15—C5 | 120.5 (2) |
N1—N2—H2 | 106.6 (14) | C16—C15—C20 | 117.4 (2) |
C3—N2—H2 | 113.6 (14) | C20—C15—C5 | 122.1 (2) |
C5—N1—N2 | 109.81 (17) | C3—C4—H4A | 111.1 |
H22A—O22—H22B | 97 (3) | C3—C4—H4B | 111.1 |
C18—O21—H21 | 112 (2) | C5—C4—C3 | 103.23 (17) |
O12—C8—C9 | 115.37 (16) | C5—C4—H4A | 111.1 |
O12—C8—C7 | 124.70 (17) | C5—C4—H4B | 111.1 |
C7—C8—C9 | 119.93 (17) | H4A—C4—H4B | 109.1 |
O14—C9—C8 | 116.60 (17) | O12—C13—H13A | 109.5 |
O14—C9—C10 | 124.02 (18) | O12—C13—H13B | 109.5 |
C10—C9—C8 | 119.36 (17) | O12—C13—H13C | 109.5 |
C8—C7—H7 | 119.5 | H13A—C13—H13B | 109.5 |
C8—C7—C6 | 120.92 (18) | H13A—C13—H13C | 109.5 |
C6—C7—H7 | 119.5 | H13B—C13—H13C | 109.5 |
C7—C6—C3 | 118.49 (17) | C15—C16—H16 | 119.2 |
C11—C6—C7 | 118.83 (17) | C17—C16—C15 | 121.7 (2) |
C11—C6—C3 | 122.68 (17) | C17—C16—H16 | 119.2 |
C6—C11—H11 | 119.7 | O21—C18—C17 | 122.4 (2) |
C6—C11—C10 | 120.59 (18) | O21—C18—C19 | 118.0 (2) |
C10—C11—H11 | 119.7 | C17—C18—C19 | 119.7 (2) |
N2—C3—C6 | 113.52 (16) | C15—C20—H20 | 119.5 |
N2—C3—H3 | 108.6 | C19—C20—C15 | 121.0 (2) |
N2—C3—C4 | 101.83 (15) | C19—C20—H20 | 119.5 |
C6—C3—H3 | 108.6 | C16—C17—H17 | 120.0 |
C6—C3—C4 | 115.28 (17) | C18—C17—C16 | 119.9 (2) |
C4—C3—H3 | 108.6 | C18—C17—H17 | 120.0 |
C9—C10—C11 | 120.36 (18) | C18—C19—C20 | 120.3 (2) |
C9—C10—H10 | 119.8 | C18—C19—H19 | 119.9 |
C11—C10—H10 | 119.8 | C20—C19—H19 | 119.9 |
N1—C5—C15 | 122.76 (19) | ||
O12—C8—C9—O14 | 2.2 (2) | C7—C6—C3—N2 | −121.91 (19) |
O12—C8—C9—C10 | −179.16 (17) | C7—C6—C3—C4 | 121.2 (2) |
O12—C8—C7—C6 | 180.00 (17) | C6—C11—C10—C9 | 0.2 (3) |
O14—C9—C10—C11 | 177.47 (18) | C6—C3—C4—C5 | 108.50 (19) |
N2—N1—C5—C15 | −174.82 (18) | C11—C6—C3—N2 | 57.3 (3) |
N2—N1—C5—C4 | 4.4 (2) | C11—C6—C3—C4 | −59.6 (3) |
N2—C3—C4—C5 | −14.9 (2) | C3—N2—N1—C5 | −15.0 (2) |
N1—N2—C3—C6 | −106.21 (19) | C3—C6—C11—C10 | −178.59 (18) |
N1—N2—C3—C4 | 18.3 (2) | C5—C15—C16—C17 | 178.3 (2) |
N1—C5—C15—C16 | −163.9 (2) | C5—C15—C20—C19 | −178.3 (3) |
N1—C5—C15—C20 | 15.7 (3) | C15—C5—C4—C3 | −173.42 (19) |
N1—C5—C4—C3 | 7.3 (2) | C15—C16—C17—C18 | 0.2 (4) |
O21—C18—C17—C16 | −179.5 (3) | C15—C20—C19—C18 | −0.1 (5) |
O21—C18—C19—C20 | 179.4 (3) | C4—C5—C15—C16 | 17.0 (3) |
C8—C9—C10—C11 | −1.1 (3) | C4—C5—C15—C20 | −163.5 (2) |
C8—C7—C6—C11 | −0.6 (3) | C13—O12—C8—C9 | 173.54 (18) |
C8—C7—C6—C3 | 178.69 (17) | C13—O12—C8—C7 | −6.8 (3) |
C9—C8—C7—C6 | −0.3 (3) | C16—C15—C20—C19 | 1.2 (4) |
C7—C8—C9—O14 | −177.51 (17) | C20—C15—C16—C17 | −1.3 (4) |
C7—C8—C9—C10 | 1.1 (3) | C17—C18—C19—C20 | −1.0 (5) |
C7—C6—C11—C10 | 0.6 (3) | C19—C18—C17—C16 | 0.9 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O12i | 0.87 (2) | 2.36 (2) | 3.209 (2) | 167 (2) |
O14—H14···N2ii | 0.91 (3) | 1.89 (3) | 2.760 (2) | 158 (3) |
O21—H21···O22iii | 0.98 (4) | 1.66 (4) | 2.633 (3) | 169 (4) |
O22—H22A···O21iv | 0.91 (4) | 1.99 (4) | 2.891 (3) | 171 (3) |
O22—H22B···N1 | 0.98 (4) | 1.84 (4) | 2.794 (3) | 166 (3) |
C7—H7···O12v | 0.93 | 2.56 | 3.465 (2) | 165 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y−1, z; (iii) x+1/2, y, −z+1/2; (iv) −x+1, y−1/2, −z+1/2; (v) −x+3/2, y+1/2, z. |
Acknowledgements
LVM thanks the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/ 0035.
References
Bhat, A. R., Athar, F. & Azam, A. (2009). Eur. J. Med. Chem. 44, 426–431. Web of Science CrossRef PubMed CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Duong Khanh, L., Do Ba, D., Do Truc, V., Nguyen Thuy, C. & Vu Quoc, T. (2018). Vietnam J. Chem. 56, 606–611. Google Scholar
Gomes, M. N., Muratov, E. N., Pereira, M., Peixoto, J. C., Rosseto, L. P., Cravo, P. V. L., Andrade, C. H. & Neves, B. J. (2017). Molecules, 22, 1210. Web of Science CrossRef Google Scholar
Gomha, S. M., Abdallah, M., Abd El-Aziz, M. & Serag, N. (2016). Turk. J. Chem. 40, 484–498. Web of Science CrossRef CAS Google Scholar
Gomha, S. M., Abdallah, M. A., Al-Showiman, S. S., Morad, M. A. & Mabkhot, Y. N. (2017). Biomed. Res. 28, 9903–9909. CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gupta, V. K., Kalyan, M., Amina, M., Satti, N. K., Dutt, P. & Suri, K. A. (2006). Anal. Sci. X, 22, x261–x262. CSD CrossRef CAS Google Scholar
Inturi, B., Roopashree, K. R., Pujar, G. V., Mohammed, I. A. & Devarajegowda, H. C. (2016). IUCrData, 1, x160466. Google Scholar
Jelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119–128. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Johnson, M., Younglove, B., Lee, L., LeBlanc, R., Holt, H. Jr, Hills, P., Mackay, H., Brown, T., Mooberry, S. L. & Lee, M. (2007). Bioorg. Med. Chem. Lett. 17, 5897–5901. Web of Science CrossRef PubMed CAS Google Scholar
Kaplancikli, Z. A., Turan-Zitouni, G., Ozdemir, A., Can, O. D. & Chevallet, P. (2009). Eur. J. Med. Chem. 44, 2606–2610. Web of Science CrossRef PubMed CAS Google Scholar
Kumar, R., Bajia, B. & Srivastava, Y. K. (2008). Biomed. Pharmacol. J. 1, 173–176. CAS Google Scholar
Malhotra, P., Pattan, S. & Nikalje, A. P. (2010). Int. J. Pharm. Pharm. Sci. 2, 21–26. CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816. Google Scholar
Patel, N. B., Shaikh, F. M., Patel, H. R. & Rajani, D. (2016). J. Saudi Chem. Soc. 20, S451–S456. Web of Science CrossRef CAS Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, UK. Google Scholar
Shahare, H. V., Gedam, S. S., Ahmed, R., Chavan, S. B. & Bhoyar, P. K. (2009). J. Pharm. Res. 8, 146–148. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siddiqui, N., Alam, P. & Ahsan, W. (2009). Arch. Pharm. Chem. Life Sci. 342, 173–181. Web of Science CrossRef CAS Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Sridhar, S. & Rajendraprasad, Y. (2012). E-J. Chem. 9, 1810–1815. Web of Science CrossRef CAS Google Scholar
Srinivasan, K., Babu, V., Sridevi, C. & Joseph, A. (2007). Indian J. Pharm. Sci. 69, 470–473. CrossRef Google Scholar
Taj, T., Kamble, R. R., Gireesh, T. M., Hunnur, R. K. & Margankop, S. B. (2011). Eur. J. Med. Chem. 46, 4366–4373. Web of Science CrossRef CAS PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.