research communications
E,2′E)-1,1′-[selenobis(4,1-phenylene)]bis[3-(4-chlorophenyl)prop-2-en-1-one]
and Hirshfeld surface analysis of (2aLaboratoire de Cristallographie, Département de Physique, Université des Frères Mentouri-Constantine, 25000 Constantine, Algeria, bUniversité de Ouargla, Faculté des Mathématiques et Sciences de la Matiére, Route de Ghardaia, Ouargla 30000, Algeria, cLaboratoire VAREN, Département de Chimie, Faculté des Sciences Exactes, Université Mentouri-Constantine, 25000 Constantine, Algeria, dUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Faculté des Sciences Exactes, Département de Chimie, Université des Frères Mentouri Constantine, Constantine 25000, Algeria, eFaculté de Technologie, Université Mohamed Boudiaf, M'sila, Algeria, fLaboratoire de Chimie Appliquée et Environnement, LCAE-URAC18, COSTE, Faculté des Sciences, Université Mohamed Premier, BP524, 60000, Oujda, Morocco, and gFaculté Pluridisciplinaire Nador BP 300, Selouane 62702, Nador, Morocco
*Correspondence e-mail: souheilachetioui@yahoo.fr, touzanir@yahoo.fr
In the title compound, C30H20Cl2O2Se, the C—Se—C angle is 99.0 (2)°, with the dihedral angle between the planes of the attached benzene rings being 79.1 (3)°. The average endocyclic angles (Se—C—C) facing the Se atom are 122.1 (5) and 122.2 (5)°. The Se atom is essentially coplanar with the attached benzene rings, deviating by 0.075 (1) and 0.091 (1) Å. In the two phenylene(4-chlorophenyl)prop-2-en-1-one units, the benzene rings are inclined to each other by 44.6 (3) and 7.8 (3)°. In the crystal, the molecules stack up the a axis, forming layers parallel to the ac plane. There are no significant classical intermolecular interactions present. Hirshfeld surface analysis, two-dimensional fingerprint plots and the molecular electrostatic potential surface were used to analyse the crystal packing. The Hirshfeld surface analysis suggests that the most significant contributions to the crystal packing are by C⋯H/H⋯C contacts (17.7%).
Keywords: crystal structure; organoselenium; selenium; Hirshfeld surface analysis.
1. Chemical context
During the last few years, organoselenium chemistry (Procter, 2001) has been the subject of constant scientific interest and organoselenium compounds have been used intensively as important reagents and intermediates in organic synthesis (Zade et al., 2005). Recently, various organoselenium compounds have attracted growing attention in medicine. Selenoproteins are very important for neuronal survival and function. It has been found that selenoprotein P may influence Alzheimer pathology (Bellinger et al., 2008). Furthermore, the potential of selenoproteins to protect against oxidative stress led to the expectation that selenium would be protective against type 2 diabetes, and indeed in the 1990s, selenium was shown to have antidiabetic and insulin mimetic effects (Steinbrenner et al., 2011). However, more recently, findings from observational epidemiological studies and randomized clinical trials have raised concern that high selenium exposure may lead to type 2 diabetes or insulin resistance at least in well-nourished populations (Stranges et al., 2010). In addition, molecules involving selenium are still efficient and encouraged in medicinal chemistry (Zhao et al., 2012). Moreover, organoselenium compounds are of considerable interest in academia, as anticancer (Zhu & Jiang, 2008), anti-oxidant (Anderson et al., 1996), anti-inflammatory and antiallergic agents (Abdel-Hafez, 2008), and in industry because of their involvement as key intermediates in the synthesis of pharmaceuticals (Woods et al., 1993), fine chemicals and polymers (Hellberg et al., 1997). Moreover, chalcone derivatives are notable for their excellent blue-light transmittance and good crystallizability; they also show considerable promise as organic nonlinear optical materials (Uchida et al., 1998). In continuation of our work on chalcone organoselenium derivatives, we report herein on the of (2E,2′E)-1,1′-[selenobis(4,1-phenylene)]bis[3-(4-chlorophenyl)prop-2-en-1-one].
2. Structural commentary
The molecular structure of the title compound is shown in Fig. 1. The C1—Se1—C16 angle is 99.0 (2)°, which is close to the value observed in three very similar compounds, viz. 99.47 (10)° in bis(4-nitrophenyl) selenide, where the Se atom lies on a twofold rotation axis (Zuo, 2013), 99.59 (14)° in bis(4-acetylphenyl) selenide (Bouraoui et al., 2011) and 100.03 (15)° in bis(2-chloroethan-1-one-phenyl) selenide (Bouraoui et al., 2015).
In the title compound, inner benzene rings A (atoms C1–C6) and C (C16–C21) (see Scheme) are inclined to each other by 79.1 (3)°. This is similar to the same angle observed for the acetylphenyl derivative, viz. 87.08 (15)°, but considerably different to that observed for the 4-nitrophenyl derivative, viz. 63.76 (10)°.
In each phenylene-(4-chlorophenyl)prop-2-en-1-one unit, the C=C has an E configuration. The C=C bond lengths C8=C9 and C23=C24 are 1.317 (8) and 1.325 (8) Å, respectively, which confirms their double-bond character. Benzene rings A and B (C10–C15) of one unit are inclined to one another by 44.6 (3)°, while rings C and D (C25–C30) of the other unit are almost coplanar, with a dihedral angle of 7.8 (3)°. The outer benzene rings, B and D, are almost normal to one another, with a dihedral angle of 84.4 (3)°.
3. Supramolecular features
In the crystal, molecules stack up the a axis, forming layers parallel to the ac plane (Fig. 2). There are no significant classical intermolecular interactions present (PLATON; Spek, 2009). The shortest atom–atom contacts in the crystal (Figs. 3 and 4) are given in Table 1 and are discussed in §4 (Hirshfeld surface analysis).
4. Hirshfeld surface analysis
Insight into the intermolecular interactions in the crystal were obtained from an analysis of the Hirshfeld surface (Spackman & Jayatilaka, 2009) and the two-dimensional fingerprint plots (McKinnon et al., 2007). The program CrystalExplorer (Turner et al., 2017) was used to generate both the Hirshfeld surfaces, mapped over dnorm, and the electrostatic potential for the title compound. The function dnorm is a ratio enclosing the distances of any surface point to the nearest interior (di) and exterior (de) atom and the van der Waals (vdW) radii of the atoms. The function dnorm will be equal to zero when intermolecular distances are close to the van der Waals contacts. They are indicated by a white colour on the Hirshfeld surface, while contacts longer than the sum of the vdW radii with positive dnorm values are coloured blue.
The analysis of the Hirshfeld surface (HS) mapped over dnorm is shown in Fig. 4. The H⋯O contacts between the corresponding donor and acceptor atoms are visualized as bright-red spots on the side (zone 4) of the Hirshfeld surface (Fig. 4). Three other red spots exist, corresponding to the C⋯Se, Cl⋯Cl and C⋯O contacts, viz. zones 1, 2 and 3, respectively (Fig. 4). These contacts are considered to be the strongest when comparing them to the sum of the vdW radii [Table 1; calculated using Mercury (Macrae et al., 2008)].
A view of the molecular electrostatic potential using the 6-31G(d) basis set with the density functional theory (DFT) method for the title compound is shown in Fig. 5. The H⋯O donors and acceptors are shown as blue and red areas around the atoms related with positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) electrostatic potentials, respectively.
The full two-dimensional fingerprint plot for the title compound is given in Fig. 6(a). Those for the most significant contacts contributing to the HS are given in Fig. 6(b) for H⋯H, Fig. 6(c) for C⋯H/H⋯C, Fig. 6(d) for O⋯H/H⋯O, Fig. 6(e) for Cl⋯H/H⋯Cl and Fig. 6(f) for C⋯C. A full list of the relative percentage contributions of the close contacts to the HS of the title compound are given in Table 2.
|
A contribution of 36.0% was found for the H⋯H contacts (Fig. 6b), representing the largest contribution, and is displayed on the fingerprint plots by a pair of very short spikes at de + di = 2.3 Å; the vdW radius for this interaction is 2.18 Å, which means it is a weak interaction.
The C⋯H/H⋯C (17.7%, Fig. 6c) and Cl⋯H/H⋯Cl (Fig. 6e) contacts are seen as pairs of spikes at de + di = 2.9 and 2.9 Å, respectively.
The plot of O⋯H/H⋯O contacts between H atoms located inside the Hirshfeld surface and oxygen from outside and vice versa is shown in Fig. 6(d). These contacts account for 11.5% and are characterized by two symmetrical peaks with de + di = 2.5 Å; this reveals the presence of strong O⋯H contacts.
The C⋯C contacts (Fig. 6f) give a contribution of 10.5%, while the C⋯Cl, C⋯Se, Se⋯H/H⋯Se and Cl⋯Cl contacts in the structure give weak contributions of 4.3, 3.5, 2.8 and 2.4%, respectively, to the Hirshfeld surface.
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, last update May 2019; Groom et al., 2016) for 4,4′-substituted bis(phenyl) yielded six relevant hits. These are bis(2-chloroethan-1-one-phenyl) selenide (CSD refcode HUYRUC; Bouraoui et al., 2015), bis(4-nitrophenyl) selenide (IDIOG; Zuo, 2013), bis(4-methoxyphenyl) selenide (LAFNAK; Verma et al., 2016), bis(4-acetylphenyl) selenide (UPAGAU; Bouraoui et al., 2011), bis(phenyl) selenide itself (YEWYUX; Bhandary et al., 2018) and bis(p-tolyl) selenide (TOLYSE; Blackmore & Abrahams, 1955). In IDIOG, the Se atom lies on a twofold rotation axis, and only YEWYUX and TOLYSE crystallize in chiral space groups, i.e. P21 and P212121, respectively.
In the title compound (Fig. 1), the C—Se—C angle is 99.0 (2)°, similar to the value observed in five of the compounds mentioned above, viz. 100.03 (15), 99.47 (10), 102.25 (19), 99.59 (14) and 98.31 (16)° for HUYRUQ, IDITOG, LAFNAK, UPAGAU and YEWYUX, respectively. In the sixth compound, TOLYSE, the dihedral angle is 105.65 (19)°. The two inner benzene rings, A and C, in the title compound are inclined to each other by 79.1 (3)°. This value is quite different to that observed in the five compounds mentioned above, i.e. 69.92 (17), 63.76 (10), 69.6 (2), 87.08 (15), 68.46 (18) and ca 56.99° for HUYRUQ, IDITOG, LAFNAK, UPAGAU, YEWYUX and TOLYSE, respectively.
6. Synthesis and crystallization
The title compound was prepared according to a method proposed by Mechehoud et al. (2010). 2-Chloro-1-(4-chlorophenyl)ethan-1-one (ClC8H6COCl; 36.5 mmol) and anhydrous aluminium chloride (5 g, 37.5 mmol, 3 equiv.) were taken up in dry methylene chloride (100 ml). The reaction mixture was cooled to 273–278 K, protected from atmospheric moisture and stirred continuously for 15 min. A solution of diphenyl selenide (3 g, 1.87 mmol) in CH2Cl2 was added dropwise over a period of 5 min. The reaction mixture was allowed to reach room temperature gradually and then stirred at this temperature overnight. The solution was then washed with ice water–HCl (80 ml) and extracted with CH2Cl2. The organic layer was separated and dried (Na2SO4). Removal of the solvent under reduced pressure afforded the crude product, which was recrystallized from petroleum ether to yield 4.2 g of the title compound. Yellow single crystals suitable for X-ray were obtained by recrystallization from CH2Cl2.
7. Refinement
Crystal data, data collection and structure . The H atoms could all be located in a difference Fourier map. During they were included in calculated positions and refined as riding on the parent C atom, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).
details are summarized in Table 3
|
Supporting information
Data collection: CrysAlis PRO (Agilent, 2013); cell
CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).C30H20Cl2O2Se | Z = 1 |
Mr = 562.32 | F(000) = 284 |
Triclinic, P1 | Dx = 1.522 Mg m−3 |
a = 4.9468 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 5.8712 (6) Å | Cell parameters from 1538 reflections |
c = 21.3530 (18) Å | θ = 3.9–28.9° |
α = 85.019 (8)° | µ = 1.77 mm−1 |
β = 84.094 (6)° | T = 293 K |
γ = 86.465 (7)° | Prism, yellow |
V = 613.68 (9) Å3 | 0.03 × 0.02 × 0.01 mm |
Agilent Technologies Xcalibur Eos diffractometer | Rint = 0.030 |
Graphite monochromator | θmax = 28.0°, θmin = 2.9° |
ω scans | h = −6→6 |
5341 measured reflections | k = −7→5 |
3672 independent reflections | l = −28→28 |
2465 reflections with I > 2σ(I) |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.074 | w = 1/[σ2(Fo2) + (0.0181P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.81 | (Δ/σ)max < 0.001 |
3672 reflections | Δρmax = 0.41 e Å−3 |
317 parameters | Δρmin = −0.32 e Å−3 |
3 restraints | Absolute structure: Refined as an inversion twin |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.002 (11) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | ||
Se1 | 0.41094 (7) | 0.32993 (9) | 0.51703 (4) | 0.0688 (2) | |
Cl1 | 2.5172 (3) | 0.7697 (3) | 0.08312 (8) | 0.0590 (4) | |
Cl2 | 2.0618 (3) | −0.0037 (3) | 0.97993 (8) | 0.0649 (5) | |
O1 | 1.4087 (9) | −0.1409 (9) | 0.3126 (3) | 0.0780 (15) | |
O2 | 0.9496 (10) | 0.8409 (8) | 0.7498 (2) | 0.0823 (16) | |
C1 | 0.7186 (10) | 0.2486 (11) | 0.4597 (3) | 0.0479 (15) | |
C2 | 0.8352 (11) | 0.0295 (12) | 0.4605 (3) | 0.0615 (18) | |
H1 | 0.768523 | −0.081384 | 0.490939 | 0.074* | |
C3 | 1.0483 (12) | −0.0293 (12) | 0.4171 (3) | 0.0593 (17) | |
H2 | 1.122475 | −0.178850 | 0.418221 | 0.071* | |
C4 | 1.1520 (10) | 0.1346 (11) | 0.3718 (3) | 0.0444 (14) | |
C5 | 1.0451 (11) | 0.3551 (11) | 0.3723 (3) | 0.0503 (16) | |
H3 | 1.120388 | 0.468932 | 0.343979 | 0.060* | |
C6 | 0.8227 (12) | 0.4092 (12) | 0.4153 (3) | 0.0553 (18) | |
H4 | 0.744240 | 0.557370 | 0.413526 | 0.066* | |
C7 | 1.3680 (11) | 0.0604 (11) | 0.3220 (3) | 0.0507 (15) | |
C8 | 1.5292 (10) | 0.2372 (11) | 0.2840 (3) | 0.0461 (15) | |
H5 | 1.522998 | 0.383771 | 0.297588 | 0.055* | |
C9 | 1.6809 (10) | 0.1939 (11) | 0.2315 (3) | 0.0457 (15) | |
H6 | 1.666213 | 0.051207 | 0.216721 | 0.055* | |
C10 | 1.8698 (9) | 0.3462 (10) | 0.1941 (3) | 0.0439 (14) | |
C11 | 2.0024 (10) | 0.2799 (11) | 0.1368 (3) | 0.0499 (15) | |
H7 | 1.958306 | 0.143756 | 0.122056 | 0.060* | |
C12 | 2.1960 (11) | 0.4092 (11) | 0.1015 (3) | 0.0534 (16) | |
H8 | 2.277520 | 0.364813 | 0.062900 | 0.064* | |
C13 | 2.2653 (10) | 0.6084 (11) | 0.1255 (3) | 0.0464 (15) | |
C14 | 2.1353 (11) | 0.6771 (12) | 0.1810 (3) | 0.0479 (15) | |
H9 | 2.180794 | 0.813002 | 0.195644 | 0.057* | |
C15 | 1.9411 (10) | 0.5512 (11) | 0.2153 (3) | 0.0484 (15) | |
H10 | 1.855730 | 0.601551 | 0.252860 | 0.058* | |
C16 | 0.5992 (10) | 0.4225 (11) | 0.5837 (3) | 0.0498 (16) | |
C17 | 0.7975 (12) | 0.2824 (11) | 0.6111 (3) | 0.0577 (18) | |
H11 | 0.848615 | 0.141757 | 0.595285 | 0.069* | |
C18 | 0.9211 (12) | 0.3470 (11) | 0.6615 (3) | 0.0542 (16) | |
H12 | 1.051962 | 0.248547 | 0.679406 | 0.065* | |
C19 | 0.8519 (11) | 0.5582 (11) | 0.6859 (3) | 0.0457 (14) | |
C20 | 0.6508 (12) | 0.6967 (12) | 0.6588 (3) | 0.0580 (17) | |
H13 | 0.596947 | 0.836179 | 0.675061 | 0.070* | |
C21 | 0.5295 (10) | 0.6326 (11) | 0.6087 (3) | 0.0509 (15) | |
H14 | 0.398311 | 0.731000 | 0.590920 | 0.061* | |
C22 | 0.9847 (12) | 0.6393 (11) | 0.7381 (3) | 0.0540 (16) | |
C23 | 1.1622 (12) | 0.4833 (11) | 0.7744 (3) | 0.0510 (16) | |
H15 | 1.186238 | 0.331934 | 0.764354 | 0.061* | |
C24 | 1.2909 (10) | 0.5463 (11) | 0.8210 (3) | 0.0499 (15) | |
H16 | 1.258745 | 0.697969 | 0.830360 | 0.060* | |
C25 | 1.4776 (10) | 0.4073 (10) | 0.8597 (3) | 0.0453 (14) | |
C26 | 1.5525 (11) | 0.4873 (11) | 0.9142 (3) | 0.0574 (17) | |
H17 | 1.481261 | 0.629389 | 0.925872 | 0.069* | |
C27 | 1.7295 (11) | 0.3629 (12) | 0.9516 (3) | 0.0553 (16) | |
H18 | 1.775600 | 0.419691 | 0.988224 | 0.066* | |
C28 | 1.8357 (10) | 0.1557 (11) | 0.9342 (3) | 0.0505 (16) | |
C29 | 1.7647 (11) | 0.0694 (11) | 0.8801 (3) | 0.0529 (17) | |
H19 | 1.836285 | −0.073216 | 0.868869 | 0.063* | |
C30 | 1.5893 (10) | 0.1942 (10) | 0.8431 (3) | 0.0522 (16) | |
H20 | 1.544135 | 0.136366 | 0.806609 | 0.063* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Se1 | 0.0439 (3) | 0.1060 (6) | 0.0592 (4) | −0.0158 (3) | 0.0067 (3) | −0.0279 (4) |
Cl1 | 0.0504 (8) | 0.0624 (11) | 0.0618 (11) | −0.0106 (7) | 0.0025 (7) | 0.0047 (9) |
Cl2 | 0.0606 (9) | 0.0696 (12) | 0.0622 (11) | 0.0083 (9) | −0.0051 (8) | −0.0008 (10) |
O1 | 0.101 (4) | 0.052 (3) | 0.075 (4) | −0.015 (3) | 0.031 (3) | −0.013 (3) |
O2 | 0.130 (4) | 0.054 (3) | 0.068 (3) | 0.025 (3) | −0.035 (3) | −0.024 (3) |
C1 | 0.038 (3) | 0.067 (5) | 0.042 (4) | −0.014 (3) | −0.004 (2) | −0.013 (3) |
C2 | 0.061 (4) | 0.075 (5) | 0.047 (4) | −0.024 (4) | 0.017 (3) | −0.010 (4) |
C3 | 0.066 (4) | 0.053 (4) | 0.057 (5) | −0.020 (3) | 0.011 (3) | −0.004 (4) |
C4 | 0.040 (3) | 0.060 (4) | 0.036 (3) | −0.012 (3) | −0.003 (2) | −0.014 (3) |
C5 | 0.057 (4) | 0.059 (4) | 0.033 (4) | −0.009 (3) | 0.004 (3) | −0.002 (3) |
C6 | 0.051 (4) | 0.061 (5) | 0.057 (5) | −0.010 (3) | −0.004 (3) | −0.019 (4) |
C7 | 0.056 (3) | 0.054 (4) | 0.043 (4) | −0.016 (3) | 0.007 (3) | −0.013 (3) |
C8 | 0.046 (3) | 0.053 (4) | 0.039 (4) | −0.007 (3) | 0.006 (3) | −0.016 (3) |
C9 | 0.041 (3) | 0.050 (4) | 0.046 (4) | 0.002 (3) | −0.004 (3) | −0.002 (3) |
C10 | 0.039 (3) | 0.048 (4) | 0.045 (3) | 0.003 (3) | 0.000 (2) | −0.010 (3) |
C11 | 0.060 (4) | 0.046 (4) | 0.045 (4) | −0.002 (3) | 0.002 (3) | −0.017 (3) |
C12 | 0.056 (4) | 0.063 (5) | 0.040 (4) | −0.012 (3) | 0.012 (3) | −0.011 (3) |
C13 | 0.037 (3) | 0.056 (4) | 0.042 (3) | 0.007 (3) | −0.003 (2) | 0.012 (3) |
C14 | 0.053 (3) | 0.050 (4) | 0.040 (4) | −0.003 (3) | −0.001 (3) | −0.004 (3) |
C15 | 0.048 (3) | 0.059 (4) | 0.038 (3) | 0.002 (3) | 0.002 (3) | −0.013 (3) |
C16 | 0.036 (3) | 0.062 (4) | 0.050 (4) | −0.019 (3) | 0.013 (3) | −0.010 (3) |
C17 | 0.061 (4) | 0.047 (4) | 0.065 (5) | −0.003 (3) | 0.007 (3) | −0.016 (4) |
C18 | 0.064 (4) | 0.053 (4) | 0.045 (4) | −0.008 (3) | 0.006 (3) | −0.012 (3) |
C19 | 0.049 (3) | 0.050 (4) | 0.036 (3) | −0.003 (3) | 0.006 (3) | −0.005 (3) |
C20 | 0.064 (4) | 0.059 (4) | 0.049 (4) | 0.002 (3) | 0.009 (3) | −0.014 (3) |
C21 | 0.045 (3) | 0.060 (4) | 0.047 (4) | 0.000 (3) | 0.003 (3) | −0.009 (3) |
C22 | 0.066 (4) | 0.054 (4) | 0.037 (3) | 0.016 (3) | 0.004 (3) | −0.003 (3) |
C23 | 0.075 (4) | 0.038 (4) | 0.039 (4) | −0.003 (3) | 0.004 (3) | −0.002 (3) |
C24 | 0.056 (3) | 0.049 (4) | 0.042 (3) | 0.002 (3) | 0.006 (3) | −0.004 (3) |
C25 | 0.045 (3) | 0.046 (4) | 0.044 (4) | −0.005 (3) | 0.006 (3) | −0.009 (3) |
C26 | 0.059 (4) | 0.052 (4) | 0.061 (5) | 0.000 (3) | 0.006 (3) | −0.015 (4) |
C27 | 0.050 (3) | 0.069 (5) | 0.047 (4) | 0.008 (3) | −0.002 (3) | −0.019 (3) |
C28 | 0.040 (3) | 0.059 (4) | 0.049 (4) | −0.002 (3) | 0.006 (3) | 0.001 (3) |
C29 | 0.060 (4) | 0.042 (4) | 0.057 (4) | 0.016 (3) | −0.012 (3) | −0.012 (3) |
C30 | 0.056 (3) | 0.052 (4) | 0.050 (4) | −0.004 (3) | −0.002 (3) | −0.020 (3) |
Se1—C1 | 1.916 (5) | C14—C15 | 1.362 (8) |
Se1—C16 | 1.913 (6) | C14—H9 | 0.9300 |
Cl1—C13 | 1.741 (6) | C15—H10 | 0.9300 |
Cl2—C28 | 1.737 (6) | C16—C17 | 1.385 (8) |
O1—C7 | 1.217 (7) | C16—C21 | 1.396 (8) |
O2—C22 | 1.229 (7) | C17—C18 | 1.383 (9) |
C1—C2 | 1.376 (8) | C17—H11 | 0.9300 |
C1—C6 | 1.364 (8) | C18—C19 | 1.396 (8) |
C2—C3 | 1.377 (8) | C18—H12 | 0.9300 |
C2—H1 | 0.9300 | C19—C20 | 1.387 (7) |
C3—C4 | 1.386 (8) | C19—C22 | 1.477 (8) |
C3—H2 | 0.9300 | C20—C21 | 1.371 (8) |
C4—C5 | 1.368 (8) | C20—H13 | 0.9300 |
C4—C7 | 1.500 (7) | C21—H14 | 0.9300 |
C5—C6 | 1.398 (8) | C22—C23 | 1.459 (7) |
C5—H3 | 0.9300 | C23—C24 | 1.325 (8) |
C6—H4 | 0.9300 | C23—H15 | 0.9300 |
C7—C8 | 1.482 (8) | C24—C25 | 1.466 (7) |
C8—C9 | 1.317 (8) | C24—H16 | 0.9300 |
C8—H5 | 0.9300 | C25—C26 | 1.383 (8) |
C9—C10 | 1.462 (8) | C25—C30 | 1.395 (7) |
C9—H6 | 0.9300 | C26—C27 | 1.380 (8) |
C10—C11 | 1.401 (7) | C26—H17 | 0.9300 |
C10—C15 | 1.400 (8) | C27—C28 | 1.361 (8) |
C11—C12 | 1.380 (7) | C27—H18 | 0.9300 |
C11—H7 | 0.9300 | C28—C29 | 1.387 (8) |
C12—C13 | 1.392 (8) | C29—C30 | 1.369 (7) |
C12—H8 | 0.9300 | C29—H19 | 0.9300 |
C13—C14 | 1.369 (8) | C30—H20 | 0.9300 |
C1—Se1—C16 | 99.0 (2) | C17—C16—C21 | 117.4 (6) |
C2—C1—C6 | 118.2 (5) | C17—C16—Se1 | 122.2 (5) |
C2—C1—Se1 | 122.1 (5) | C21—C16—Se1 | 120.3 (5) |
C6—C1—Se1 | 119.7 (5) | C18—C17—C16 | 121.4 (6) |
C1—C2—C3 | 121.5 (6) | C18—C17—H11 | 119.3 |
C1—C2—H1 | 119.2 | C16—C17—H11 | 119.3 |
C3—C2—H1 | 119.2 | C17—C18—C19 | 120.8 (6) |
C2—C3—C4 | 120.0 (6) | C17—C18—H12 | 119.6 |
C2—C3—H2 | 120.0 | C19—C18—H12 | 119.6 |
C4—C3—H2 | 120.0 | C20—C19—C18 | 117.6 (6) |
C5—C4—C3 | 119.0 (5) | C20—C19—C22 | 119.4 (6) |
C5—C4—C7 | 122.4 (5) | C18—C19—C22 | 123.0 (6) |
C3—C4—C7 | 118.5 (6) | C21—C20—C19 | 121.5 (6) |
C4—C5—C6 | 120.0 (6) | C21—C20—H13 | 119.3 |
C4—C5—H3 | 120.0 | C19—C20—H13 | 119.3 |
C6—C5—H3 | 120.0 | C20—C21—C16 | 121.3 (6) |
C1—C6—C5 | 121.2 (6) | C20—C21—H14 | 119.4 |
C1—C6—H4 | 119.4 | C16—C21—H14 | 119.4 |
C5—C6—H4 | 119.4 | O2—C22—C19 | 119.4 (6) |
O1—C7—C8 | 120.5 (6) | O2—C22—C23 | 120.2 (6) |
O1—C7—C4 | 120.7 (6) | C19—C22—C23 | 120.4 (6) |
C8—C7—C4 | 118.7 (6) | C24—C23—C22 | 123.3 (6) |
C9—C8—C7 | 122.3 (6) | C24—C23—H15 | 118.3 |
C9—C8—H5 | 118.9 | C22—C23—H15 | 118.3 |
C7—C8—H5 | 118.9 | C23—C24—C25 | 128.2 (6) |
C8—C9—C10 | 127.0 (6) | C23—C24—H16 | 115.9 |
C8—C9—H6 | 116.5 | C25—C24—H16 | 115.9 |
C10—C9—H6 | 116.5 | C26—C25—C30 | 117.6 (5) |
C11—C10—C15 | 117.6 (6) | C26—C25—C24 | 120.2 (6) |
C11—C10—C9 | 119.8 (6) | C30—C25—C24 | 122.2 (6) |
C15—C10—C9 | 122.5 (6) | C27—C26—C25 | 122.1 (6) |
C12—C11—C10 | 122.4 (6) | C27—C26—H17 | 118.9 |
C12—C11—H7 | 118.8 | C25—C26—H17 | 118.9 |
C10—C11—H7 | 118.8 | C28—C27—C26 | 119.0 (6) |
C13—C12—C11 | 117.8 (6) | C28—C27—H18 | 120.5 |
C13—C12—H8 | 121.1 | C26—C27—H18 | 120.5 |
C11—C12—H8 | 121.1 | C27—C28—C29 | 120.6 (5) |
C12—C13—C14 | 120.5 (6) | C27—C28—Cl2 | 120.1 (5) |
C12—C13—Cl1 | 118.7 (5) | C29—C28—Cl2 | 119.3 (5) |
C14—C13—Cl1 | 120.8 (6) | C30—C29—C28 | 120.0 (6) |
C15—C14—C13 | 121.6 (7) | C30—C29—H19 | 120.0 |
C15—C14—H9 | 119.2 | C28—C29—H19 | 120.0 |
C13—C14—H9 | 119.2 | C29—C30—C25 | 120.7 (6) |
C14—C15—C10 | 120.1 (6) | C29—C30—H20 | 119.7 |
C14—C15—H10 | 120.0 | C25—C30—H20 | 119.7 |
C10—C15—H10 | 120.0 | ||
C6—C1—C2—C3 | −1.1 (9) | C21—C16—C17—C18 | 0.4 (9) |
Se1—C1—C2—C3 | 176.9 (5) | Se1—C16—C17—C18 | −176.5 (5) |
C1—C2—C3—C4 | 0.7 (10) | C16—C17—C18—C19 | −0.9 (10) |
C2—C3—C4—C5 | 2.0 (9) | C17—C18—C19—C20 | 1.6 (9) |
C2—C3—C4—C7 | −174.9 (6) | C17—C18—C19—C22 | −177.7 (6) |
C3—C4—C5—C6 | −4.2 (9) | C18—C19—C20—C21 | −2.0 (9) |
C7—C4—C5—C6 | 172.5 (6) | C22—C19—C20—C21 | 177.4 (5) |
C2—C1—C6—C5 | −1.3 (9) | C19—C20—C21—C16 | 1.5 (9) |
Se1—C1—C6—C5 | −179.3 (5) | C17—C16—C21—C20 | −0.7 (8) |
C4—C5—C6—C1 | 4.0 (10) | Se1—C16—C21—C20 | 176.2 (4) |
C5—C4—C7—O1 | −160.6 (6) | C20—C19—C22—O2 | −12.2 (9) |
C3—C4—C7—O1 | 16.1 (9) | C18—C19—C22—O2 | 167.1 (6) |
C5—C4—C7—C8 | 18.7 (8) | C20—C19—C22—C23 | 169.6 (6) |
C3—C4—C7—C8 | −164.5 (5) | C18—C19—C22—C23 | −11.1 (9) |
O1—C7—C8—C9 | 13.7 (10) | O2—C22—C23—C24 | 0.5 (10) |
C4—C7—C8—C9 | −165.7 (5) | C19—C22—C23—C24 | 178.8 (5) |
C7—C8—C9—C10 | −172.9 (5) | C22—C23—C24—C25 | −178.6 (5) |
C8—C9—C10—C11 | −175.5 (6) | C23—C24—C25—C26 | −167.4 (6) |
C8—C9—C10—C15 | 9.4 (8) | C23—C24—C25—C30 | 13.7 (9) |
C15—C10—C11—C12 | −0.3 (8) | C30—C25—C26—C27 | −0.5 (9) |
C9—C10—C11—C12 | −175.6 (5) | C24—C25—C26—C27 | −179.4 (5) |
C10—C11—C12—C13 | 2.1 (8) | C25—C26—C27—C28 | 0.6 (10) |
C11—C12—C13—C14 | −2.9 (8) | C26—C27—C28—C29 | −0.8 (9) |
C11—C12—C13—Cl1 | 177.9 (4) | C26—C27—C28—Cl2 | 179.3 (5) |
C12—C13—C14—C15 | 1.9 (9) | C27—C28—C29—C30 | 0.9 (9) |
Cl1—C13—C14—C15 | −178.9 (4) | Cl2—C28—C29—C30 | −179.2 (5) |
C13—C14—C15—C10 | 0.0 (8) | C28—C29—C30—C25 | −0.8 (9) |
C11—C10—C15—C14 | −0.8 (8) | C26—C25—C30—C29 | 0.6 (9) |
C9—C10—C15—C14 | 174.4 (5) | C24—C25—C30—C29 | 179.5 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C29—H19···O2i | 0.93 | 2.63 | 3.218 (8) | 122 |
Symmetry code: (i) x+1, y−1, z. |
Contact | Percentage contribution |
H···H | 36.0 |
C···H/H···C | 17.7 |
O···H/H···O | 11.5 |
Cl···H/H···Cl | 11.0 |
C···C | 10.5 |
C···Cl | 4.3 |
C···Se | 3.5 |
Se···H/H···Se | 2.8 |
Cl···Cl | 2.4 |
C···O | 0.3 |
Atom 1 | Atom 2 | Length (Å) | Length-VdW (Å) |
H3 | H10i | 2.498 | 0.098 |
O2 | H19ii | 2.632 | -0.088 |
H12 | O2iii | 2.759 | 0.039 |
O1 | H3iii | 2.770 | 0.050 |
O2 | H20ii | 2.818 | 0.098 |
H2 | C6iii | 2.922 | 0.022 |
C3 | H4ii | 2.943 | 0.043 |
H3 | C15i | 2.964 | 0.064 |
O2 | C29ii | 3.217 | -0.003 |
O2 | C30ii | 3.314 | 0.094 |
C5 | C8i | 3.461 | 0.061 |
Se1 | C17i | 3.475 | -0.125 |
C20 | C23i | 3.480 | 0.080 |
Cl2 | Cl1iv | 3.549 | 0.049 |
Symmetry codes: (i) x-1, y, z; (ii) x - 1, y + 1, z; (iii) x, y - 1, z; (iv) x - 1, y - 1, z + 1. |
Acknowledgements
This work was supported by the Laboratoire de Cristallographie, Departement de Physique, Universite Constantine 1, Algeria. We also thank Mr F. Saidi, Engineer at the Laboratory of Crystallography, University Constantine 1, for assistance in collecting data on the Xcalibur X-ray diffractometer.
References
Abdel-Hafez, H. (2008). Eur. J. Med. Chem. 43, 1971–1977. Web of Science PubMed CAS Google Scholar
Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Google Scholar
Anderson, C. M., Hallberg, A. & Haegberg, T. (1996). Adv. Drug Res. 28, 65–180. CAS Google Scholar
Bellinger, F. P., He, Q. P., Bellinger, M. T., Lin, Y., Raman, A. V., White, L. R. & Berry, M. J. (2008). J. Alzheimers Dis. 15, 465–472. CrossRef PubMed CAS Google Scholar
Bhandary, S., Sirohiwal, A., Kadu, R., Kumar, S. & Chopra, D. (2018). Cryst. Growth Des. 18, 3734–3739. CSD CrossRef CAS Google Scholar
Blackmore, W. R. & Abrahams, S. C. (1955). Acta Cryst. 8, 323–328. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Bouraoui, H., Boudjada, A., Bouacida, S., Mechehoud, Y. & Meinnel, J. (2011). Acta Cryst. E67, o941. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bouraoui, H., Boudjada, A., Hamdouni, N., Mechehoud, Y. & Meinnel, J. (2015). Acta Cryst. E71, o935–o936. CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hellberg, J., Remonen, T., Johansson, M., Inganäs, O., Theander, M., Engman, L. & Eriksson, P. (1997). Synth. Met. 84, 251–252. CrossRef CAS Web of Science Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Mechehoud, Y., Benayache, F., Benayache, S. & Mosset, P. (2010). Eur. J. Chem. 7(S1), S143–S150. Google Scholar
Procter, D. J. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 335–354. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steinbrenner, H., Speckmann, B., Pinto, A. & Sies, H. (2011). J. Clin. Biochem. Nutr. 48, 40–45. CrossRef CAS PubMed Google Scholar
Stranges, S., Navas-Acien, A., Rayman, M. P. & Guallar, E. (2010). Nutr. Metab. Cardiovasc. Dis. 20, 754–760. CrossRef CAS PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net. Google Scholar
Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abdureyim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liq. Cryst. 315, 135–140. Web of Science CSD CrossRef Google Scholar
Verma, A., JANA, S., Durga Prasad, Ch., Yadav, A. & Kumar, S. (2016). Chem. Commun. 52, 4179–4182. CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Woods, J. A., Hadfield, J. A., McGown, A. T. & Fox, B. W. (1993). Bioorg. Med. Chem. 1, 333–340. CrossRef CAS PubMed Google Scholar
Zade, S. S., Panda, S., Singh, H. B. & Wolmershäuser, G. (2005). Tetrahedron Lett. 46, 665–669. Web of Science CSD CrossRef CAS Google Scholar
Zhao, L., Li, J., Li, Y., Liu, J., Wirth, T. & Li, Z. (2012). Bioorg. Med. Chem. 20, 2558–2563. Web of Science CrossRef CAS PubMed Google Scholar
Zhu, Z. & Jiang, W. (2008). Biomed. Res. Trace Elem. 19, 282–289. CAS Google Scholar
Zuo, Z.-L. (2013). Acta Cryst. E69, o636. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.