research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (2E,2′E)-1,1′-[seleno­bis­­(4,1-phenyl­ene)]bis­­[3-(4-chloro­phen­yl)prop-2-en-1-one]

aLaboratoire de Cristallographie, Département de Physique, Université des Frères Mentouri-Constantine, 25000 Constantine, Algeria, bUniversité de Ouargla, Faculté des Mathématiques et Sciences de la Matiére, Route de Ghardaia, Ouargla 30000, Algeria, cLaboratoire VAREN, Département de Chimie, Faculté des Sciences Exactes, Université Mentouri-Constantine, 25000 Constantine, Algeria, dUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Faculté des Sciences Exactes, Département de Chimie, Université des Frères Mentouri Constantine, Constantine 25000, Algeria, eFaculté de Technologie, Université Mohamed Boudiaf, M'sila, Algeria, fLaboratoire de Chimie Appliquée et Environnement, LCAE-URAC18, COSTE, Faculté des Sciences, Université Mohamed Premier, BP524, 60000, Oujda, Morocco, and gFaculté Pluridisciplinaire Nador BP 300, Selouane 62702, Nador, Morocco
*Correspondence e-mail: souheilachetioui@yahoo.fr, touzanir@yahoo.fr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 9 September 2019; accepted 15 October 2019; online 22 October 2019)

In the title com­pound, C30H20Cl2O2Se, the C—Se—C angle is 99.0 (2)°, with the dihedral angle between the planes of the attached benzene rings being 79.1 (3)°. The average endocyclic angles (Se—C—C) facing the Se atom are 122.1 (5) and 122.2 (5)°. The Se atom is essentially coplanar with the attached benzene rings, deviating by 0.075 (1) and 0.091 (1) Å. In the two phenyl­ene(4-chloro­phen­yl)prop-2-en-1-one units, the benzene rings are inclined to each other by 44.6 (3) and 7.8 (3)°. In the crystal, the mol­ecules stack up the a axis, forming layers parallel to the ac plane. There are no significant classical inter­molecular inter­actions present. Hirshfeld surface analysis, two-dimensional fingerprint plots and the mol­ecular electrostatic potential surface were used to analyse the crystal packing. The Hirshfeld surface analysis suggests that the most significant contributions to the crystal packing are by C⋯H/H⋯C contacts (17.7%).

1. Chemical context

During the last few years, organoselenium chemistry (Procter, 2001[Procter, D. J. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 335-354.]) has been the subject of constant scientific inter­est and organoselenium com­pounds have been used intensively as important reagents and inter­mediates in organic synthesis (Zade et al., 2005[Zade, S. S., Panda, S., Singh, H. B. & Wolmershäuser, G. (2005). Tetrahedron Lett. 46, 665-669.]). Recently, various organoselenium com­pounds have attracted growing attention in medicine. Seleno­proteins are very important for neuronal survival and function. It has been found that seleno­protein P may influence Alzheimer pathology (Bellinger et al., 2008[Bellinger, F. P., He, Q. P., Bellinger, M. T., Lin, Y., Raman, A. V., White, L. R. & Berry, M. J. (2008). J. Alzheimers Dis. 15, 465-472.]). Furthermore, the potential of seleno­proteins to protect against oxidative stress led to the expectation that selenium would be protective against type 2 diabetes, and indeed in the 1990s, selenium was shown to have anti­diabetic and insulin mimetic effects (Steinbrenner et al., 2011[Steinbrenner, H., Speckmann, B., Pinto, A. & Sies, H. (2011). J. Clin. Biochem. Nutr. 48, 40-45.]). However, more recently, findings from observational epidemiological studies and randomized clinical trials have raised concern that high selenium exposure may lead to type 2 diabetes or insulin resistance at least in well-nourished populations (Stranges et al., 2010[Stranges, S., Navas-Acien, A., Rayman, M. P. & Guallar, E. (2010). Nutr. Metab. Cardiovasc. Dis. 20, 754-760.]). In addition, mol­ecules involving selenium are still efficient and encouraged in medicinal chemistry (Zhao et al., 2012[Zhao, L., Li, J., Li, Y., Liu, J., Wirth, T. & Li, Z. (2012). Bioorg. Med. Chem. 20, 2558-2563.]). Moreover, organoselenium com­pounds are of considerable inter­est in academia, as anti­cancer (Zhu & Jiang, 2008[Zhu, Z. & Jiang, W. (2008). Biomed. Res. Trace Elem. 19, 282-289.]), anti-oxidant (Anderson et al., 1996[Anderson, C. M., Hallberg, A. & Haegberg, T. (1996). Adv. Drug Res. 28, 65-180.]), anti-inflammatory and anti­allergic agents (Abdel-Hafez, 2008[Abdel-Hafez, H. (2008). Eur. J. Med. Chem. 43, 1971-1977.]), and in industry because of their involvement as key inter­mediates in the synthesis of pharmaceuticals (Woods et al., 1993[Woods, J. A., Hadfield, J. A., McGown, A. T. & Fox, B. W. (1993). Bioorg. Med. Chem. 1, 333-340.]), fine chemicals and polymers (Hellberg et al., 1997[Hellberg, J., Remonen, T., Johansson, M., Inganäs, O., Theander, M., Engman, L. & Eriksson, P. (1997). Synth. Met. 84, 251-252.]). Moreover, chalcone derivatives are notable for their excellent blue-light transmittance and good crystallizability; they also show considerable promise as organic nonlinear optical materials (Uchida et al., 1998[Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abdureyim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liq. Cryst. 315, 135-140.]). In continuation of our work on chalcone organoselenium derivatives, we report herein on the crystal structure of (2E,2′E)-1,1′-[seleno­bis­(4,1-phenyl­ene)]bis­[3-(4-chloro­phen­yl)prop-2-en-1-one].

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title com­pound is shown in Fig. 1[link]. The C1—Se1—C16 angle is 99.0 (2)°, which is close to the value observed in three very similar com­pounds, viz. 99.47 (10)° in bis­(4-nitro­phen­yl) selenide, where the Se atom lies on a twofold rotation axis (Zuo, 2013[Zuo, Z.-L. (2013). Acta Cryst. E69, o636.]), 99.59 (14)° in bis­(4-acetyl­phen­yl) selenide (Bouraoui et al., 2011[Bouraoui, H., Boudjada, A., Bouacida, S., Mechehoud, Y. & Meinnel, J. (2011). Acta Cryst. E67, o941.]) and 100.03 (15)° in bis­(2-chloro­ethan-1-one-phen­yl) selenide (Bouraoui et al., 2015[Bouraoui, H., Boudjada, A., Hamdouni, N., Mechehoud, Y. & Meinnel, J. (2015). Acta Cryst. E71, o935-o936.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title com­pound, with the atom labelling and displacement ellipsoids drawn at the 50% probability level.

In the title com­pound, inner benzene rings A (atoms C1–C6) and C (C16–C21) (see Scheme) are inclined to each other by 79.1 (3)°. This is similar to the same angle observed for the acetyl­phenyl derivative, viz. 87.08 (15)°, but considerably different to that observed for the 4-nitro­phenyl derivative, viz. 63.76 (10)°.

In each phenyl­ene-(4-chloro­phen­yl)prop-2-en-1-one unit, the C=C has an E configuration. The C=C bond lengths C8=C9 and C23=C24 are 1.317 (8) and 1.325 (8) Å, respectively, which confirms their double-bond character. Benzene rings A and B (C10–C15) of one unit are inclined to one another by 44.6 (3)°, while rings C and D (C25–C30) of the other unit are almost coplanar, with a dihedral angle of 7.8 (3)°. The outer benzene rings, B and D, are almost normal to one another, with a dihedral angle of 84.4 (3)°.

3. Supra­molecular features

In the crystal, mol­ecules stack up the a axis, forming layers parallel to the ac plane (Fig. 2[link]). There are no significant classical inter­molecular inter­actions present (PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). The shortest atom–atom contacts in the crystal (Figs. 3[link] and 4[link]) are given in Table 1[link] and are discussed in §4[link] (Hirshfeld surface analysis).

Table 1
Short contacts (Å) in the crystal of the title com­pound

Atom 1 Atom 2 Length (Å) vdW length (Å)
H3 H10i 2.498 0.098
O2 H19ii 2.632 −0.088
H12 O2iii 2.759 0.039
O1 H3iii 2.770 0.050
O2 H20ii 2.818 0.098
H2 C6iii 2.922 0.022
C3 H4ii 2.943 0.043
H3 C15i 2.964 0.064
O2 C29ii 3.217 −0.003
O2 C30ii 3.314 0.094
C5 C8i 3.461 0.061
Se1 C17i 3.475 −0.125
C20 C23i 3.480 0.080
Cl2 Cl1iv 3.549 0.049
Symmetry codes: (i) x − 1, y, z; (ii) x − 1, y + 1, z; (iii) x, y − 1, z; (iv) x − 1, y − 1, z + 1.
[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title com­pound, showing the layer-like structure.
[Figure 3]
Figure 3
A view of the Hirshfeld surface mapped over dnorm in the colour range −0.0711 to 1.3645 a.u.
[Figure 4]
Figure 4
A view of the Hirshfeld surface plotted over the calculated electrostatic potential energy in the range −0.0489 to 0.0448 a.u.

4. Hirshfeld surface analysis

Insight into the inter­molecular inter­actions in the crystal were obtained from an analysis of the Hirshfeld surface (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). The program CrystalExplorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net.]) was used to generate both the Hirshfeld surfaces, mapped over dnorm, and the electrostatic potential for the title com­pound. The function dnorm is a ratio enclosing the distances of any surface point to the nearest inter­ior (di) and exterior (de) atom and the van der Waals (vdW) radii of the atoms. The function dnorm will be equal to zero when inter­molecular distances are close to the van der Waals contacts. They are indicated by a white colour on the Hirshfeld surface, while contacts longer than the sum of the vdW radii with positive dnorm values are coloured blue.

The analysis of the Hirshfeld surface (HS) mapped over dnorm is shown in Fig. 4[link]. The H⋯O contacts between the corresponding donor and acceptor atoms are visualized as bright-red spots on the side (zone 4) of the Hirshfeld surface (Fig. 4[link]). Three other red spots exist, corresponding to the C⋯Se, Cl⋯Cl and C⋯O contacts, viz. zones 1, 2 and 3, respectively (Fig. 4[link]). These contacts are considered to be the strongest when com­paring them to the sum of the vdW radii [Table 1[link]; calculated using Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.])].

A view of the mol­ecular electrostatic potential using the 6-31G(d) basis set with the density functional theory (DFT) method for the title com­pound is shown in Fig. 5[link]. The H⋯O donors and acceptors are shown as blue and red areas around the atoms related with positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) electrostatic potentials, respectively.

[Figure 5]
Figure 5
Hirshfeld surface mapped over dnorm to visualize some of the short inter­molecular contacts in the crystal (see Table 1[link]).

The full two-dimensional fingerprint plot for the title com­pound is given in Fig. 6[link](a). Those for the most significant contacts contributing to the HS are given in Fig. 6[link](b) for H⋯H, Fig. 6[link](c) for C⋯H/H⋯C, Fig. 6[link](d) for O⋯H/H⋯O, Fig. 6[link](e) for Cl⋯H/H⋯Cl and Fig. 6[link](f) for C⋯C. A full list of the relative percentage contributions of the close contacts to the HS of the title com­pound are given in Table 2[link].

Table 2
Relative percentage contributions of the close contacts to the Hirshfeld surface of the title com­pound

Contact Percentage contribution
H⋯H 36.0
C⋯H/H⋯C 17.7
O⋯H/H⋯O 11.5
Cl⋯H/H⋯Cl 11.0
C⋯C 10.5
C⋯Cl 4.3
C⋯Se 3.5
Se⋯H/H⋯Se 2.8
Cl⋯Cl 2.4
C⋯O 0.3
[Figure 6]
Figure 6
(a) The full two-dimensional fingerprint plot for the title com­pound and those delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O, (e) Cl⋯H/H⋯Cl and (f) C⋯C contacts.

A contribution of 36.0% was found for the H⋯H contacts (Fig. 6[link]b), representing the largest contribution, and is displayed on the fingerprint plots by a pair of very short spikes at de + di = 2.3 Å; the vdW radius for this inter­action is 2.18 Å, which means it is a weak inter­action.

The C⋯H/H⋯C (17.7%, Fig. 6[link]c) and Cl⋯H/H⋯Cl (Fig. 6[link]e) contacts are seen as pairs of spikes at de + di = 2.9 and 2.9 Å, respectively.

The plot of O⋯H/H⋯O contacts between H atoms located inside the Hirshfeld surface and oxygen from outside and vice versa is shown in Fig. 6[link](d). These contacts account for 11.5% and are characterized by two symmetrical peaks with de + di = 2.5 Å; this reveals the presence of strong O⋯H contacts.

The C⋯C contacts (Fig. 6[link]f) give a contribution of 10.5%, while the C⋯Cl, C⋯Se, Se⋯H/H⋯Se and Cl⋯Cl contacts in the structure give weak contributions of 4.3, 3.5, 2.8 and 2.4%, respectively, to the Hirshfeld surface.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, last update May 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 4,4′-substituted bis­(phen­yl) selenides yielded six relevant hits. These are bis­(2-chloro­ethan-1-one-phen­yl) selenide (CSD refcode HUYRUC; Bouraoui et al., 2015[Bouraoui, H., Boudjada, A., Hamdouni, N., Mechehoud, Y. & Meinnel, J. (2015). Acta Cryst. E71, o935-o936.]), bis­(4-nitro­phen­yl) selenide (IDIOG; Zuo, 2013[Zuo, Z.-L. (2013). Acta Cryst. E69, o636.]), bis­(4-meth­oxy­phen­yl) selenide (LAFNAK; Verma et al., 2016[Verma, A., JANA, S., Durga Prasad, Ch., Yadav, A. & Kumar, S. (2016). Chem. Commun. 52, 4179-4182.]), bis­(4-acetyl­phen­yl) selenide (UPAGAU; Bouraoui et al., 2011[Bouraoui, H., Boudjada, A., Bouacida, S., Mechehoud, Y. & Meinnel, J. (2011). Acta Cryst. E67, o941.]), bis­(phen­yl) selenide itself (YEWYUX; Bhandary et al., 2018[Bhandary, S., Sirohiwal, A., Kadu, R., Kumar, S. & Chopra, D. (2018). Cryst. Growth Des. 18, 3734-3739.]) and bis­(p-tol­yl) selenide (TOLYSE; Blackmore & Abrahams, 1955[Blackmore, W. R. & Abrahams, S. C. (1955). Acta Cryst. 8, 323-328.]). In IDIOG, the Se atom lies on a twofold rotation axis, and only YEWYUX and TOLYSE crystallize in chiral space groups, i.e. P21 and P212121, respectively.

In the title com­pound (Fig. 1[link]), the C—Se—C angle is 99.0 (2)°, similar to the value observed in five of the com­pounds mentioned above, viz. 100.03 (15), 99.47 (10), 102.25 (19), 99.59 (14) and 98.31 (16)° for HUYRUQ, IDITOG, LAFNAK, UPAGAU and YEWYUX, respectively. In the sixth com­pound, TOLYSE, the dihedral angle is 105.65 (19)°. The two inner benzene rings, A and C, in the title com­pound are inclined to each other by 79.1 (3)°. This value is quite different to that observed in the five com­pounds mentioned above, i.e. 69.92 (17), 63.76 (10), 69.6 (2), 87.08 (15), 68.46 (18) and ca 56.99° for HUYRUQ, IDITOG, LAFNAK, UPAGAU, YEWYUX and TOLYSE, respectively.

6. Synthesis and crystallization

The title com­pound was prepared according to a method proposed by Mechehoud et al. (2010[Mechehoud, Y., Benayache, F., Benayache, S. & Mosset, P. (2010). Eur. J. Chem. 7(S1), S143-S150.]). 2-Chloro-1-(4-chloro­phen­yl)ethan-1-one (ClC8H6COCl; 36.5 mmol) and anhydrous aluminium chloride (5 g, 37.5 mmol, 3 equiv.) were taken up in dry methyl­ene chloride (100 ml). The reaction mixture was cooled to 273–278 K, protected from atmospheric moisture and stirred continuously for 15 min. A solution of diphenyl selenide (3 g, 1.87 mmol) in CH2Cl2 was added dropwise over a period of 5 min. The reaction mixture was allowed to reach room temperature gradually and then stirred at this temperature overnight. The solution was then washed with ice water–HCl (80 ml) and extracted with CH2Cl2. The organic layer was separated and dried (Na2SO4). Removal of the solvent under reduced pressure afforded the crude product, which was recrystallized from petroleum ether to yield 4.2 g of the title com­pound. Yellow single crystals suitable for X-ray diffraction analysis were obtained by recrystallization from CH2Cl2.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atoms could all be located in a difference Fourier map. During refinement, they were included in calculated positions and refined as riding on the parent C atom, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C30H20Cl2O2Se
Mr 562.32
Crystal system, space group Triclinic, P1
Temperature (K) 293
a, b, c (Å) 4.9468 (3), 5.8712 (6), 21.3530 (18)
α, β, γ (°) 85.019 (8), 84.094 (6), 86.465 (7)
V3) 613.68 (9)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.77
Crystal size (mm) 0.03 × 0.02 × 0.01
 
Data collection
Diffractometer Agilent Technologies Xcalibur Eos
No. of measured, independent and observed [I > 2σ(I)] reflections 5341, 3672, 2465
Rint 0.030
(sin θ/λ)max−1) 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.074, 0.81
No. of reflections 3672
No. of parameters 317
No. of restraints 3
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.41, −0.32
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.002 (11)
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(2E,2'E)-1,1'-[Selenobis(4,1-phenylene)]bis[3-(4-chlorophenyl)prop-2-en-1-one] top
Crystal data top
C30H20Cl2O2SeZ = 1
Mr = 562.32F(000) = 284
Triclinic, P1Dx = 1.522 Mg m3
a = 4.9468 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 5.8712 (6) ÅCell parameters from 1538 reflections
c = 21.3530 (18) Åθ = 3.9–28.9°
α = 85.019 (8)°µ = 1.77 mm1
β = 84.094 (6)°T = 293 K
γ = 86.465 (7)°Prism, yellow
V = 613.68 (9) Å30.03 × 0.02 × 0.01 mm
Data collection top
Agilent Technologies Xcalibur Eos
diffractometer
Rint = 0.030
Graphite monochromatorθmax = 28.0°, θmin = 2.9°
ω scansh = 66
5341 measured reflectionsk = 75
3672 independent reflectionsl = 2828
2465 reflections with I > 2σ(I)
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0181P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.81(Δ/σ)max < 0.001
3672 reflectionsΔρmax = 0.41 e Å3
317 parametersΔρmin = 0.32 e Å3
3 restraintsAbsolute structure: Refined as an inversion twin
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.002 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.41094 (7)0.32993 (9)0.51703 (4)0.0688 (2)
Cl12.5172 (3)0.7697 (3)0.08312 (8)0.0590 (4)
Cl22.0618 (3)0.0037 (3)0.97993 (8)0.0649 (5)
O11.4087 (9)0.1409 (9)0.3126 (3)0.0780 (15)
O20.9496 (10)0.8409 (8)0.7498 (2)0.0823 (16)
C10.7186 (10)0.2486 (11)0.4597 (3)0.0479 (15)
C20.8352 (11)0.0295 (12)0.4605 (3)0.0615 (18)
H10.7685230.0813840.4909390.074*
C31.0483 (12)0.0293 (12)0.4171 (3)0.0593 (17)
H21.1224750.1788500.4182210.071*
C41.1520 (10)0.1346 (11)0.3718 (3)0.0444 (14)
C51.0451 (11)0.3551 (11)0.3723 (3)0.0503 (16)
H31.1203880.4689320.3439790.060*
C60.8227 (12)0.4092 (12)0.4153 (3)0.0553 (18)
H40.7442400.5573700.4135260.066*
C71.3680 (11)0.0604 (11)0.3220 (3)0.0507 (15)
C81.5292 (10)0.2372 (11)0.2840 (3)0.0461 (15)
H51.5229980.3837710.2975880.055*
C91.6809 (10)0.1939 (11)0.2315 (3)0.0457 (15)
H61.6662130.0512070.2167210.055*
C101.8698 (9)0.3462 (10)0.1941 (3)0.0439 (14)
C112.0024 (10)0.2799 (11)0.1368 (3)0.0499 (15)
H71.9583060.1437560.1220560.060*
C122.1960 (11)0.4092 (11)0.1015 (3)0.0534 (16)
H82.2775200.3648130.0629000.064*
C132.2653 (10)0.6084 (11)0.1255 (3)0.0464 (15)
C142.1353 (11)0.6771 (12)0.1810 (3)0.0479 (15)
H92.1807940.8130020.1956440.057*
C151.9411 (10)0.5512 (11)0.2153 (3)0.0484 (15)
H101.8557300.6015510.2528600.058*
C160.5992 (10)0.4225 (11)0.5837 (3)0.0498 (16)
C170.7975 (12)0.2824 (11)0.6111 (3)0.0577 (18)
H110.8486150.1417570.5952850.069*
C180.9211 (12)0.3470 (11)0.6615 (3)0.0542 (16)
H121.0519620.2485470.6794060.065*
C190.8519 (11)0.5582 (11)0.6859 (3)0.0457 (14)
C200.6508 (12)0.6967 (12)0.6588 (3)0.0580 (17)
H130.5969470.8361790.6750610.070*
C210.5295 (10)0.6326 (11)0.6087 (3)0.0509 (15)
H140.3983110.7310000.5909200.061*
C220.9847 (12)0.6393 (11)0.7381 (3)0.0540 (16)
C231.1622 (12)0.4833 (11)0.7744 (3)0.0510 (16)
H151.1862380.3319340.7643540.061*
C241.2909 (10)0.5463 (11)0.8210 (3)0.0499 (15)
H161.2587450.6979690.8303600.060*
C251.4776 (10)0.4073 (10)0.8597 (3)0.0453 (14)
C261.5525 (11)0.4873 (11)0.9142 (3)0.0574 (17)
H171.4812610.6293890.9258720.069*
C271.7295 (11)0.3629 (12)0.9516 (3)0.0553 (16)
H181.7756000.4196910.9882240.066*
C281.8357 (10)0.1557 (11)0.9342 (3)0.0505 (16)
C291.7647 (11)0.0694 (11)0.8801 (3)0.0529 (17)
H191.8362850.0732160.8688690.063*
C301.5893 (10)0.1942 (10)0.8431 (3)0.0522 (16)
H201.5441350.1363660.8066090.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.0439 (3)0.1060 (6)0.0592 (4)0.0158 (3)0.0067 (3)0.0279 (4)
Cl10.0504 (8)0.0624 (11)0.0618 (11)0.0106 (7)0.0025 (7)0.0047 (9)
Cl20.0606 (9)0.0696 (12)0.0622 (11)0.0083 (9)0.0051 (8)0.0008 (10)
O10.101 (4)0.052 (3)0.075 (4)0.015 (3)0.031 (3)0.013 (3)
O20.130 (4)0.054 (3)0.068 (3)0.025 (3)0.035 (3)0.024 (3)
C10.038 (3)0.067 (5)0.042 (4)0.014 (3)0.004 (2)0.013 (3)
C20.061 (4)0.075 (5)0.047 (4)0.024 (4)0.017 (3)0.010 (4)
C30.066 (4)0.053 (4)0.057 (5)0.020 (3)0.011 (3)0.004 (4)
C40.040 (3)0.060 (4)0.036 (3)0.012 (3)0.003 (2)0.014 (3)
C50.057 (4)0.059 (4)0.033 (4)0.009 (3)0.004 (3)0.002 (3)
C60.051 (4)0.061 (5)0.057 (5)0.010 (3)0.004 (3)0.019 (4)
C70.056 (3)0.054 (4)0.043 (4)0.016 (3)0.007 (3)0.013 (3)
C80.046 (3)0.053 (4)0.039 (4)0.007 (3)0.006 (3)0.016 (3)
C90.041 (3)0.050 (4)0.046 (4)0.002 (3)0.004 (3)0.002 (3)
C100.039 (3)0.048 (4)0.045 (3)0.003 (3)0.000 (2)0.010 (3)
C110.060 (4)0.046 (4)0.045 (4)0.002 (3)0.002 (3)0.017 (3)
C120.056 (4)0.063 (5)0.040 (4)0.012 (3)0.012 (3)0.011 (3)
C130.037 (3)0.056 (4)0.042 (3)0.007 (3)0.003 (2)0.012 (3)
C140.053 (3)0.050 (4)0.040 (4)0.003 (3)0.001 (3)0.004 (3)
C150.048 (3)0.059 (4)0.038 (3)0.002 (3)0.002 (3)0.013 (3)
C160.036 (3)0.062 (4)0.050 (4)0.019 (3)0.013 (3)0.010 (3)
C170.061 (4)0.047 (4)0.065 (5)0.003 (3)0.007 (3)0.016 (4)
C180.064 (4)0.053 (4)0.045 (4)0.008 (3)0.006 (3)0.012 (3)
C190.049 (3)0.050 (4)0.036 (3)0.003 (3)0.006 (3)0.005 (3)
C200.064 (4)0.059 (4)0.049 (4)0.002 (3)0.009 (3)0.014 (3)
C210.045 (3)0.060 (4)0.047 (4)0.000 (3)0.003 (3)0.009 (3)
C220.066 (4)0.054 (4)0.037 (3)0.016 (3)0.004 (3)0.003 (3)
C230.075 (4)0.038 (4)0.039 (4)0.003 (3)0.004 (3)0.002 (3)
C240.056 (3)0.049 (4)0.042 (3)0.002 (3)0.006 (3)0.004 (3)
C250.045 (3)0.046 (4)0.044 (4)0.005 (3)0.006 (3)0.009 (3)
C260.059 (4)0.052 (4)0.061 (5)0.000 (3)0.006 (3)0.015 (4)
C270.050 (3)0.069 (5)0.047 (4)0.008 (3)0.002 (3)0.019 (3)
C280.040 (3)0.059 (4)0.049 (4)0.002 (3)0.006 (3)0.001 (3)
C290.060 (4)0.042 (4)0.057 (4)0.016 (3)0.012 (3)0.012 (3)
C300.056 (3)0.052 (4)0.050 (4)0.004 (3)0.002 (3)0.020 (3)
Geometric parameters (Å, º) top
Se1—C11.916 (5)C14—C151.362 (8)
Se1—C161.913 (6)C14—H90.9300
Cl1—C131.741 (6)C15—H100.9300
Cl2—C281.737 (6)C16—C171.385 (8)
O1—C71.217 (7)C16—C211.396 (8)
O2—C221.229 (7)C17—C181.383 (9)
C1—C21.376 (8)C17—H110.9300
C1—C61.364 (8)C18—C191.396 (8)
C2—C31.377 (8)C18—H120.9300
C2—H10.9300C19—C201.387 (7)
C3—C41.386 (8)C19—C221.477 (8)
C3—H20.9300C20—C211.371 (8)
C4—C51.368 (8)C20—H130.9300
C4—C71.500 (7)C21—H140.9300
C5—C61.398 (8)C22—C231.459 (7)
C5—H30.9300C23—C241.325 (8)
C6—H40.9300C23—H150.9300
C7—C81.482 (8)C24—C251.466 (7)
C8—C91.317 (8)C24—H160.9300
C8—H50.9300C25—C261.383 (8)
C9—C101.462 (8)C25—C301.395 (7)
C9—H60.9300C26—C271.380 (8)
C10—C111.401 (7)C26—H170.9300
C10—C151.400 (8)C27—C281.361 (8)
C11—C121.380 (7)C27—H180.9300
C11—H70.9300C28—C291.387 (8)
C12—C131.392 (8)C29—C301.369 (7)
C12—H80.9300C29—H190.9300
C13—C141.369 (8)C30—H200.9300
C1—Se1—C1699.0 (2)C17—C16—C21117.4 (6)
C2—C1—C6118.2 (5)C17—C16—Se1122.2 (5)
C2—C1—Se1122.1 (5)C21—C16—Se1120.3 (5)
C6—C1—Se1119.7 (5)C18—C17—C16121.4 (6)
C1—C2—C3121.5 (6)C18—C17—H11119.3
C1—C2—H1119.2C16—C17—H11119.3
C3—C2—H1119.2C17—C18—C19120.8 (6)
C2—C3—C4120.0 (6)C17—C18—H12119.6
C2—C3—H2120.0C19—C18—H12119.6
C4—C3—H2120.0C20—C19—C18117.6 (6)
C5—C4—C3119.0 (5)C20—C19—C22119.4 (6)
C5—C4—C7122.4 (5)C18—C19—C22123.0 (6)
C3—C4—C7118.5 (6)C21—C20—C19121.5 (6)
C4—C5—C6120.0 (6)C21—C20—H13119.3
C4—C5—H3120.0C19—C20—H13119.3
C6—C5—H3120.0C20—C21—C16121.3 (6)
C1—C6—C5121.2 (6)C20—C21—H14119.4
C1—C6—H4119.4C16—C21—H14119.4
C5—C6—H4119.4O2—C22—C19119.4 (6)
O1—C7—C8120.5 (6)O2—C22—C23120.2 (6)
O1—C7—C4120.7 (6)C19—C22—C23120.4 (6)
C8—C7—C4118.7 (6)C24—C23—C22123.3 (6)
C9—C8—C7122.3 (6)C24—C23—H15118.3
C9—C8—H5118.9C22—C23—H15118.3
C7—C8—H5118.9C23—C24—C25128.2 (6)
C8—C9—C10127.0 (6)C23—C24—H16115.9
C8—C9—H6116.5C25—C24—H16115.9
C10—C9—H6116.5C26—C25—C30117.6 (5)
C11—C10—C15117.6 (6)C26—C25—C24120.2 (6)
C11—C10—C9119.8 (6)C30—C25—C24122.2 (6)
C15—C10—C9122.5 (6)C27—C26—C25122.1 (6)
C12—C11—C10122.4 (6)C27—C26—H17118.9
C12—C11—H7118.8C25—C26—H17118.9
C10—C11—H7118.8C28—C27—C26119.0 (6)
C13—C12—C11117.8 (6)C28—C27—H18120.5
C13—C12—H8121.1C26—C27—H18120.5
C11—C12—H8121.1C27—C28—C29120.6 (5)
C12—C13—C14120.5 (6)C27—C28—Cl2120.1 (5)
C12—C13—Cl1118.7 (5)C29—C28—Cl2119.3 (5)
C14—C13—Cl1120.8 (6)C30—C29—C28120.0 (6)
C15—C14—C13121.6 (7)C30—C29—H19120.0
C15—C14—H9119.2C28—C29—H19120.0
C13—C14—H9119.2C29—C30—C25120.7 (6)
C14—C15—C10120.1 (6)C29—C30—H20119.7
C14—C15—H10120.0C25—C30—H20119.7
C10—C15—H10120.0
C6—C1—C2—C31.1 (9)C21—C16—C17—C180.4 (9)
Se1—C1—C2—C3176.9 (5)Se1—C16—C17—C18176.5 (5)
C1—C2—C3—C40.7 (10)C16—C17—C18—C190.9 (10)
C2—C3—C4—C52.0 (9)C17—C18—C19—C201.6 (9)
C2—C3—C4—C7174.9 (6)C17—C18—C19—C22177.7 (6)
C3—C4—C5—C64.2 (9)C18—C19—C20—C212.0 (9)
C7—C4—C5—C6172.5 (6)C22—C19—C20—C21177.4 (5)
C2—C1—C6—C51.3 (9)C19—C20—C21—C161.5 (9)
Se1—C1—C6—C5179.3 (5)C17—C16—C21—C200.7 (8)
C4—C5—C6—C14.0 (10)Se1—C16—C21—C20176.2 (4)
C5—C4—C7—O1160.6 (6)C20—C19—C22—O212.2 (9)
C3—C4—C7—O116.1 (9)C18—C19—C22—O2167.1 (6)
C5—C4—C7—C818.7 (8)C20—C19—C22—C23169.6 (6)
C3—C4—C7—C8164.5 (5)C18—C19—C22—C2311.1 (9)
O1—C7—C8—C913.7 (10)O2—C22—C23—C240.5 (10)
C4—C7—C8—C9165.7 (5)C19—C22—C23—C24178.8 (5)
C7—C8—C9—C10172.9 (5)C22—C23—C24—C25178.6 (5)
C8—C9—C10—C11175.5 (6)C23—C24—C25—C26167.4 (6)
C8—C9—C10—C159.4 (8)C23—C24—C25—C3013.7 (9)
C15—C10—C11—C120.3 (8)C30—C25—C26—C270.5 (9)
C9—C10—C11—C12175.6 (5)C24—C25—C26—C27179.4 (5)
C10—C11—C12—C132.1 (8)C25—C26—C27—C280.6 (10)
C11—C12—C13—C142.9 (8)C26—C27—C28—C290.8 (9)
C11—C12—C13—Cl1177.9 (4)C26—C27—C28—Cl2179.3 (5)
C12—C13—C14—C151.9 (9)C27—C28—C29—C300.9 (9)
Cl1—C13—C14—C15178.9 (4)Cl2—C28—C29—C30179.2 (5)
C13—C14—C15—C100.0 (8)C28—C29—C30—C250.8 (9)
C11—C10—C15—C140.8 (8)C26—C25—C30—C290.6 (9)
C9—C10—C15—C14174.4 (5)C24—C25—C30—C29179.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C29—H19···O2i0.932.633.218 (8)122
Symmetry code: (i) x+1, y1, z.
Relative percentage contributions of the close contacts to the Hirshfeld surface of the title compound. top
ContactPercentage contribution
H···H36.0
C···H/H···C17.7
O···H/H···O11.5
Cl···H/H···Cl11.0
C···C10.5
C···Cl4.3
C···Se3.5
Se···H/H···Se2.8
Cl···Cl2.4
C···O0.3
Short contacts (Å) in the crystal of the title compound. top
Atom 1Atom 2Length (Å)Length-VdW (Å)
H3H10i2.4980.098
O2H19ii2.632-0.088
H12O2iii2.7590.039
O1H3iii2.7700.050
O2H20ii2.8180.098
H2C6iii2.9220.022
C3H4ii2.9430.043
H3C15i2.9640.064
O2C29ii3.217-0.003
O2C30ii3.3140.094
C5C8i3.4610.061
Se1C17i3.475-0.125
C20C23i3.4800.080
Cl2Cl1iv3.5490.049
Symmetry codes: (i) x-1, y, z; (ii) x - 1, y + 1, z; (iii) x, y - 1, z; (iv) x - 1, y - 1, z + 1.
 

Acknowledgements

This work was supported by the Laboratoire de Cristallographie, Departement de Physique, Universite Constantine 1, Algeria. We also thank Mr F. Saidi, Engineer at the Laboratory of Crystallography, University Constantine 1, for assistance in collecting data on the Xcalibur X-ray diffractometer.

References

First citationAbdel-Hafez, H. (2008). Eur. J. Med. Chem. 43, 1971–1977.  Web of Science PubMed CAS Google Scholar
First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAnderson, C. M., Hallberg, A. & Haegberg, T. (1996). Adv. Drug Res. 28, 65–180.  CAS Google Scholar
First citationBellinger, F. P., He, Q. P., Bellinger, M. T., Lin, Y., Raman, A. V., White, L. R. & Berry, M. J. (2008). J. Alzheimers Dis. 15, 465–472.  CrossRef PubMed CAS Google Scholar
First citationBhandary, S., Sirohiwal, A., Kadu, R., Kumar, S. & Chopra, D. (2018). Cryst. Growth Des. 18, 3734–3739.  CSD CrossRef CAS Google Scholar
First citationBlackmore, W. R. & Abrahams, S. C. (1955). Acta Cryst. 8, 323–328.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBouraoui, H., Boudjada, A., Bouacida, S., Mechehoud, Y. & Meinnel, J. (2011). Acta Cryst. E67, o941.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouraoui, H., Boudjada, A., Hamdouni, N., Mechehoud, Y. & Meinnel, J. (2015). Acta Cryst. E71, o935–o936.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHellberg, J., Remonen, T., Johansson, M., Inganäs, O., Theander, M., Engman, L. & Eriksson, P. (1997). Synth. Met. 84, 251–252.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMechehoud, Y., Benayache, F., Benayache, S. & Mosset, P. (2010). Eur. J. Chem. 7(S1), S143–S150.  Google Scholar
First citationProcter, D. J. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 335–354.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteinbrenner, H., Speckmann, B., Pinto, A. & Sies, H. (2011). J. Clin. Biochem. Nutr. 48, 40–45.  CrossRef CAS PubMed Google Scholar
First citationStranges, S., Navas-Acien, A., Rayman, M. P. & Guallar, E. (2010). Nutr. Metab. Cardiovasc. Dis. 20, 754–760.  CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.netGoogle Scholar
First citationUchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abdureyim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liq. Cryst. 315, 135–140.  Web of Science CSD CrossRef Google Scholar
First citationVerma, A., JANA, S., Durga Prasad, Ch., Yadav, A. & Kumar, S. (2016). Chem. Commun. 52, 4179–4182.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWoods, J. A., Hadfield, J. A., McGown, A. T. & Fox, B. W. (1993). Bioorg. Med. Chem. 1, 333–340.  CrossRef CAS PubMed Google Scholar
First citationZade, S. S., Panda, S., Singh, H. B. & Wolmershäuser, G. (2005). Tetrahedron Lett. 46, 665–669.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, L., Li, J., Li, Y., Liu, J., Wirth, T. & Li, Z. (2012). Bioorg. Med. Chem. 20, 2558–2563.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhu, Z. & Jiang, W. (2008). Biomed. Res. Trace Elem. 19, 282–289.  CAS Google Scholar
First citationZuo, Z.-L. (2013). Acta Cryst. E69, o636.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds