research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2-(4-nitro­phen­yl)-2-oxo­ethyl benzoate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, GSSS Institute of Engineering and Technology for Women, Mysuru 570 016, Karnataka, India, bDepartment of Engineering Chemistry, Vidya Vikas Institute of Engineering & Technology, Visvesvaraya Technological University, Alanahally, Mysuru 570 028, Karnataka, India, cDepartment of Physics, School of Engineering and Technology, Jain University, Bangalore 562 112, India, dDepartment of Chemistry, Sri Siddhartha Institute of Technology, Tumkur 572 105, Karnataka, India, eSchool of Chemical & Biomolecular Engineering, The University of Sydney, Sydney, NSW, Australia, and fDepartment of Chemistry, Science College, An-Najah National University, PO Box 7, Nablus, West Bank, Palestinian Territories
*Correspondence e-mail: s.naveen@jainuniversity.ac.in, khalil.i@najah.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 9 October 2019; accepted 14 October 2019; online 22 October 2019)

The title com­pound, C15H11NO5, is relatively planar, with the planes of the two aromatic rings being inclined to each other by 3.09 (5)°. In the crystal, mol­ecules are linked by a pair of C—H⋯O hydrogen bonds, forming inversion dimers, which enclose an R22(16) ring motif. The dimers are linked by a further pair of C—H⋯O hydrogen-bonds forming ribbons enclosing R44(26) ring motifs. The ribbons are linked by offset ππ inter­actions [centroid–centroid distances = 3.6754 (6)–3.7519 (6) Å] to form layers parallel to the ac plane. Through Hirshfeld surface analyses, the dnorm surfaces, electrostatic potential and two-dimensional fingerprint (FP) plots were examined to verify the contributions of the different inter­molecular contacts within the supra­molecular structure. The shape-index surface shows that two sides of the mol­ecule are involved with the same contacts in neighbouring mol­ecules, and the curvedness plot shows flat surface patches that are characteristic of planar stacking.

1. Chemical context

Photoreleasable protecting groups have been of long-standing inter­est for their diverse applications in various multistep syntheses (Ruzicka et al., 2002[Ruzicka, R., Zabadal, M. & Klán, P. (2002). Synth. Commun. 32, 2581-2590.]; Literák et al., 2006[Literák, J., Dostálová, A. & Klán, P. (2006). J. Org. Chem. 71, 713-723.]). The reaction between an acid and a phenacyl bromide yields the keto ester derivative. As a protecting group, the ester derivatives are well known as protecting groups for carb­oxy­lic acids in chemical synthesis (Rather & Reid, 1919[Rather, J. B. & Reid, E. (1919). J. Am. Chem. Soc. 41, 75-83.]; Literák et al., 2006[Literák, J., Dostálová, A. & Klán, P. (2006). J. Org. Chem. 71, 713-723.]). They can easily be cleaved under com­pletely neutral or mild conditions (Sheehan & Umezawa, 1973[Sheehan, J. C. & Umezawa, K. (1973). J. Org. Chem. 38, 3771-3774.]) and are therefore used for the identification of organic acids. Versatile applications of these com­pounds are seen in the field of synthetic chemistry, such as in the synthesis of oxazoles and imidazoles (Huang et al., 1996[Huang, W., Pei, J., Chen, B., Pei, W. & Ye, X. (1996). Tetrahedron, 52, 10131-10136.]), as well as benzoxazepine (Gandhi et al., 1995[Gandhi, S. S., Bell, K. L. & Gibson, M. S. (1995). Tetrahedron, 51, 13301-13308.]), and they are also useful in peptide synthesis. Studies reveal an inhibitory activity against two isozymes of 11b-hy­droxy­steroid de­hydrogenases (11b-HSD1 and 11b-HSD2), which catalyze the interconversion of active cortisol and inactive cortisone (Zhang et al., 2009[Zhang, L., Shen, Y., Zhu, H. J., Wang, F., Leng, Y. & Liu, J. K. (2009). J. Antibiot. 62, 239-242.]). Researchers have reported the synthesis and photolysis studies of a number of phenacyl esters. The commercial importance of phenacyl benzoates arose due to their applications in various fields of chemistry. In continuation of our work on such mol­ecules (Kumar et al., 2014[Kumar, C. S. C., Chia, T. S., Ooi, C. W., Quah, C. K., Chandraju, S. & Fun, H. K. (2014). Z. Kristallogr. Cryst. Mater. 229, 328-342.]; Chidan Kumar et al., 2014[Chidan Kumar, C. S., Fun, H.-K., Tursun, M., Ooi, C. W., Chandraju, S., Quah, C. K. & Parlak, C. (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc. 124, 595-602.]), we report herein on the crystal and mol­ecular structure of 2-(4-nitro­phen­yl)-2-oxoethyl benzoate.

[Scheme 1]

.

2. Structural commentary

The mol­ecular structure of the title com­pound is shown in Fig. 1[link]. The com­pound is com­posed of two aromatic rings linked by a C—C(=O)—O—C(=O) bridge. The unique mol­ecular conformation of this com­pound is characterized by three torsion angles, viz. τ1 (C11—C10—C9—O3), τ2 (C7—C8—O1—C9) and τ3 (O2—C7—C8—O1), whereby the τ1 value of 9.60 (16)° signifies the apparent coplanarity between the mean planes of the phenyl ring and the adjacent carbonyl groups of the connecting bridge. The τ2 value of 174.08 (9)° between the two carbonyl groups indicates an anti­periplanar conformation. Likewise, owing to a substitution on the functional group, the title com­pound experiences steric repulsion between the substituent and adjacent carbonyl groups, influencing the torsion angle [τ3 = 1.88 (15)°], and it adopts a +synperiplanar conformation. The bond lengths and angles are normal and the mol­ecular conformation is characterized by a dihedral angle of 3.09 (5)° between the mean planes of the two aromatic rings indicating that they are coplanar. The nitro group lies almost in the plane of the phenyl ring, as indicated by the torsion angle values of 7.80 (15) and 8.46 (15)° for C4—C3—N1—O4 and C2—C3—N1—O5, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of the title com­pound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, there are no classical hydrogen bonds present. However, the structure is stabilized by weak inter­molecular C—H⋯O inter­actions. Specifically, a pair of inter­molecular C5—H5⋯O3i inter­actions stabilize the supra­molecular architecture by forming inversion dimers with an [R_{2}^{2}](16) ring motif (Table 1[link] and Fig. 2[link]). The dimers are linked by a further pair of C—H⋯O hydrogen bonds, forming ribbons that enclose R44(26) ring motifs (Table 1[link] and Fig. 2[link]). The ribbons are linked by a series of offset ππ inter­actions (Table 2[link]), forming layers that stack up the b-axis direction (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O3i 0.95 2.47 3.3967 (14) 164
C13—H13⋯O5ii 0.95 2.54 3.2361 (14) 130
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x-1, y, z-2.

Table 2
π–π contacts (Å, °) in the crystal of the title com­pound

Cg1 and Cg2 are the centroids of rings C1–C6 and C10–C15, respectively.

Cg(I) Cg(J) Cg(I)⋯Cg(J) (Å) α (°) β (°) γ (°) CgI_Perp (Å) CgJ_Perp (Å) offset (Å)
Cg1 Cg2iii 3.6754 (6) 3.09 (5) 22.5 21.5 3.4199 (4) 3.3948 (4) 1.408
Cg1 Cg2iv 3.7519 (6) 3.09 (5) 27.9 25.1 3.3975 (4) 3.3171 (4) 1.753
Cg2 Cg1v 3.7519 (6) 3.09 (5) 25.1 27.9 3.3171 (4) 3.3975 (4) 1.592
Cg2 Cg1vi 3.6754 (6) 3.09 (5) 21.5 22.5 3.3948 (4) 3.4200 (4) 1.346
Symmetry codes: (iii) x, y, z + 1; (iv) x + 1, y, z + 1; (v) x − 1, y, z − 1; (vi) x, y, z − 1.
[Figure 2]
Figure 2
A partial view of the crystal packing of the title com­pound. The hydrogen bonds are shown as dashed lines (Table 1[link]) and only H atoms H5 and H13 have been included.
[Figure 3]
Figure 3
The crystal packing of the title com­pound, viewed along the c axis. The hydrogen bonds are shown as dashed lines (Table 1[link]) and only H atoms H5 and H13 have been included.

4. Hirshfeld surface analysis and two-dimensional fingerprint plots

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed and created with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.]). Hirshfeld surface analysis enables the visualization of inter­molecular inter­actions by different colours and colour intensity, representing short or long contacts and indicating the relative strengths of the inter­actions. Figs. 4[link] and 5[link] show the Hirshfeld surfaces mapped over dnorm (−0.195 to 1.091 a.u.) and shape-index (−1.0 to 1.0 a.u.), respectively.

[Figure 4]
Figure 4
A view of the three-dimensional Hirshfeld surface of the title com­pound mapped over dnorm.
[Figure 5]
Figure 5
Hirshfeld surface of the title com­pound, mapped over (a) the shape-index and (b) the curvedness.

In Fig. 4[link], the dark spots near the C and O atoms result from C—H⋯O inter­actions, which play a significant role in the mol­ecular packing. The Hirshfeld surfaces illustrated in Fig. 4[link] also reflect the involvement of different atoms in the inter­molecular inter­actions through the appearance of blue and red regions around the participating atoms, which correspond to positive and negative electrostatic potential, respectively. The shape-index surface clearly shows that the two sides of the mol­ecules are involved in the same contacts with neighbouring mol­ecules and the curvedness plots show flat surface patches characteristic of planar stacking.

The overall two-dimensional fingerprint plot for the title com­pound and those delineated into O—H/H—O, H—H, C—H/H—C and C—C contacts are illustrated in Fig. 6[link]. The percentage contributions from the different inter­atomic contacts to the Hirshfeld surfaces are O⋯H = 35.9%, H⋯H = 29.7%, C⋯H = 14.7% and C⋯C = 10.3%, and are shown in the two-dimensional fingerprint plots in Fig. 6[link]. The percentage contributions of other inter­molecular contacts are less than 5% in the Hirshfeld surface mapping.

[Figure 6]
Figure 6
Two-dimensional fingerprint plots of the title com­pound, showing the percentage contributions of all contacts and of individual atom-atom contacts.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, last update May 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using 2-oxo-2-phenyl­ethyl benzoate as the main skeleton revealed the presence of 62 structures with different substituents on the terminal phenyl rings (see supplementary information file S1). In these structures, the two aromatic rings are inclined to each other by dihedral angles varying from ca 0 to 90°. There are seven structures with a nitro substituent on one of the aromatic rings (see supplementary information file S2). However, there is only one com­pound with the same skeleton as the title com­pound, i.e. 2-(biphenyl-4-yl)-2-oxoethyl 4-nitro­benzoate (CSD refcode CISSAB; Kwong et al., 2017[Kwong, H. C., Chidan Kumar, C. S., Mah, S. H., Chia, T. S., Quah, C. K., Loh, Z. H., Chandraju, S. & Lim, G. K. (2017). PLoS One, 12, e0170117.]). Here, the two aromatic rings are inclined to each other by ca 70.96°, com­pared to an inclination of only 3.09 (5)° in the title com­pound.

6. Synthesis and crystallization

The title com­pound was synthesized as per the procedure of Kumar et al. (2014[Kumar, C. S. C., Chia, T. S., Ooi, C. W., Quah, C. K., Chandraju, S. & Fun, H. K. (2014). Z. Kristallogr. Cryst. Mater. 229, 328-342.]). A mixture of 2-bromo-1-(4-nitro­phen­yl)ethanone (0.2 g, 0.5 mmol), potassium carbonate (0.087 g, 0.63 mmol) and benzoic acid (0.079 g, 0.65 mmol) in di­methyl­formamide (5 ml) was stirred at room temperature for 2 h. After com­pletion of the reaction, the reaction mixture was poured into ice-cold water. The solid product obtained was filtered off, washed with water and recrystallized from ethanol to give colourless needle-like crystals (m.p. 386–390 K).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms on C atoms were positioned geometrically (C—H = 0.95–0.99 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C15H11NO5
Mr 285.25
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 7.3371 (4), 21.0051 (11), 8.3069 (4)
β (°) 102.711 (1)
V3) 1248.86 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.37 × 0.19 × 0.11
 
Data collection
Diffractometer Bruker APEXII DUO CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.959, 0.988
No. of measured, independent and observed [I > 2σ(I)] reflections 14140, 3496, 3133
Rint 0.029
(sin θ/λ)max−1) 0.708
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.120, 1.06
No. of reflections 3696
No. of parameters 190
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.39, −0.30
Computer programs: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

2-(4-Nitrophenyl)-2-oxoethyl benzoate top
Crystal data top
C15H11NO5F(000) = 592
Mr = 285.25Dx = 1.517 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3133 reflections
a = 7.3371 (4) Åθ = 1.9–30.2°
b = 21.0051 (11) ŵ = 0.12 mm1
c = 8.3069 (4) ÅT = 100 K
β = 102.711 (1)°Needle, colourless
V = 1248.86 (11) Å30.37 × 0.19 × 0.11 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3496 independent reflections
Radiation source: Rotating Anode3133 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 18.4 pixels mm-1θmax = 30.2°, θmin = 1.9°
φ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 2929
Tmin = 0.959, Tmax = 0.988l = 1111
14140 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0687P)2 + 0.3119P]
where P = (Fo2 + 2Fc2)/3
3696 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.30 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.14827 (11)0.38115 (4)0.37625 (9)0.0160 (2)
O20.34743 (16)0.30646 (4)0.58368 (11)0.0357 (3)
O30.02999 (13)0.46698 (4)0.29186 (10)0.0227 (3)
O40.55675 (12)0.44140 (4)1.40112 (10)0.0228 (2)
O50.70482 (14)0.35199 (5)1.40652 (11)0.0292 (3)
N10.59732 (13)0.39281 (5)1.33492 (11)0.0167 (2)
C10.47223 (14)0.31711 (5)0.92088 (13)0.0142 (3)
C20.54458 (14)0.32506 (5)1.08833 (13)0.0142 (3)
C30.51595 (14)0.38305 (5)1.15843 (12)0.0129 (2)
C40.41568 (14)0.43237 (5)1.06970 (13)0.0137 (2)
C50.34479 (14)0.42390 (5)0.90160 (12)0.0128 (2)
C60.37472 (13)0.36653 (5)0.82655 (12)0.0123 (2)
C70.30848 (15)0.35532 (5)0.64525 (13)0.0152 (3)
C80.19380 (15)0.40611 (5)0.54070 (12)0.0144 (3)
C90.03139 (14)0.41587 (5)0.26299 (12)0.0132 (2)
C100.01390 (13)0.38341 (5)0.09985 (12)0.0122 (2)
C110.11222 (14)0.41756 (5)0.03566 (13)0.0140 (3)
C120.16055 (14)0.38880 (5)0.18959 (13)0.0159 (3)
C130.11199 (15)0.32571 (5)0.20797 (13)0.0168 (3)
C140.01248 (15)0.29164 (5)0.07323 (13)0.0162 (3)
C150.03811 (14)0.32043 (5)0.08058 (13)0.0138 (3)
H10.489000.277700.869700.0170*
H20.611700.291801.153000.0170*
H40.395800.471101.122500.0160*
H50.276100.457100.837900.0150*
H8A0.078800.415100.580500.0170*
H8B0.266500.446000.544500.0170*
H110.146200.460600.022600.0170*
H120.226600.412200.282100.0190*
H130.146800.305700.312900.0200*
H140.020900.248600.086600.0190*
H150.107700.297400.172200.0170*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0200 (4)0.0170 (4)0.0090 (3)0.0052 (3)0.0008 (3)0.0008 (3)
O20.0581 (7)0.0226 (4)0.0179 (4)0.0205 (4)0.0097 (4)0.0078 (3)
O30.0325 (5)0.0174 (4)0.0160 (4)0.0090 (3)0.0003 (3)0.0014 (3)
O40.0256 (4)0.0266 (4)0.0150 (4)0.0018 (3)0.0018 (3)0.0064 (3)
O50.0366 (5)0.0313 (5)0.0149 (4)0.0113 (4)0.0048 (4)0.0036 (3)
N10.0159 (4)0.0219 (4)0.0115 (4)0.0000 (3)0.0015 (3)0.0007 (3)
C10.0155 (5)0.0123 (4)0.0142 (5)0.0001 (3)0.0017 (4)0.0004 (3)
C20.0142 (5)0.0138 (4)0.0137 (5)0.0008 (3)0.0012 (4)0.0032 (3)
C30.0120 (4)0.0171 (4)0.0093 (4)0.0018 (3)0.0015 (3)0.0007 (3)
C40.0142 (4)0.0138 (4)0.0128 (4)0.0007 (3)0.0026 (4)0.0012 (3)
C50.0130 (4)0.0128 (4)0.0119 (4)0.0016 (3)0.0010 (3)0.0007 (3)
C60.0117 (4)0.0126 (4)0.0119 (4)0.0012 (3)0.0012 (3)0.0005 (3)
C70.0171 (5)0.0145 (4)0.0120 (4)0.0007 (4)0.0012 (4)0.0007 (3)
C80.0184 (5)0.0149 (4)0.0089 (4)0.0024 (4)0.0010 (4)0.0004 (3)
C90.0139 (4)0.0142 (4)0.0112 (4)0.0001 (3)0.0020 (4)0.0019 (3)
C100.0115 (4)0.0144 (4)0.0106 (4)0.0010 (3)0.0021 (3)0.0002 (3)
C110.0136 (4)0.0151 (4)0.0129 (5)0.0012 (3)0.0022 (4)0.0021 (3)
C120.0142 (5)0.0207 (5)0.0118 (5)0.0004 (4)0.0007 (4)0.0030 (4)
C130.0180 (5)0.0209 (5)0.0109 (4)0.0024 (4)0.0022 (4)0.0011 (4)
C140.0203 (5)0.0156 (5)0.0128 (5)0.0002 (4)0.0041 (4)0.0012 (4)
C150.0157 (5)0.0142 (4)0.0113 (4)0.0004 (3)0.0027 (4)0.0015 (3)
Geometric parameters (Å, º) top
O1—C81.4324 (12)C10—C151.3958 (15)
O1—C91.3407 (13)C11—C121.3879 (15)
O2—C71.2087 (14)C12—C131.3894 (15)
O3—C91.2085 (14)C13—C141.3923 (15)
O4—N11.2267 (13)C14—C151.3883 (15)
O5—N11.2266 (14)C1—H10.9500
N1—C31.4706 (13)C2—H20.9500
C1—C21.3855 (15)C4—H40.9500
C1—C61.3988 (15)C5—H50.9500
C2—C31.3859 (15)C8—H8A0.9900
C3—C41.3853 (15)C8—H8B0.9900
C4—C51.3901 (14)C11—H110.9500
C5—C61.3962 (15)C12—H120.9500
C6—C71.4959 (14)C13—H130.9500
C7—C81.5096 (15)C14—H140.9500
C9—C101.4878 (14)C15—H150.9500
C10—C111.3945 (14)
C8—O1—C9116.69 (8)C12—C13—C14120.25 (10)
O4—N1—O5123.90 (9)C13—C14—C15120.18 (10)
O4—N1—C3118.53 (9)C10—C15—C14119.60 (10)
O5—N1—C3117.56 (9)C2—C1—H1120.00
C2—C1—C6120.58 (10)C6—C1—H1120.00
C1—C2—C3117.89 (10)C1—C2—H2121.00
N1—C3—C2118.40 (9)C3—C2—H2121.00
N1—C3—C4118.54 (9)C3—C4—H4121.00
C2—C3—C4123.06 (9)C5—C4—H4121.00
C3—C4—C5118.44 (10)C4—C5—H5120.00
C4—C5—C6119.88 (9)C6—C5—H5120.00
C1—C6—C5120.11 (9)O1—C8—H8A111.00
C1—C6—C7117.39 (9)O1—C8—H8B111.00
C5—C6—C7122.50 (9)C7—C8—H8A111.00
O2—C7—C6120.33 (10)C7—C8—H8B111.00
O2—C7—C8120.69 (10)H8A—C8—H8B109.00
C6—C7—C8118.98 (9)C10—C11—H11120.00
O1—C8—C7105.87 (8)C12—C11—H11120.00
O1—C9—O3123.56 (9)C11—C12—H12120.00
O1—C9—C10111.72 (9)C13—C12—H12120.00
O3—C9—C10124.72 (9)C12—C13—H13120.00
C9—C10—C11118.15 (9)C14—C13—H13120.00
C9—C10—C15121.80 (9)C13—C14—H14120.00
C11—C10—C15120.06 (9)C15—C14—H14120.00
C10—C11—C12120.11 (10)C10—C15—H15120.00
C11—C12—C13119.78 (10)C14—C15—H15120.00
C9—O1—C8—C7174.08 (9)C1—C6—C7—C8176.74 (10)
C8—O1—C9—O32.69 (15)C5—C6—C7—O2175.36 (11)
C8—O1—C9—C10176.70 (9)C5—C6—C7—C84.18 (15)
O4—N1—C3—C2172.74 (10)O2—C7—C8—O11.88 (15)
O4—N1—C3—C47.80 (15)C6—C7—C8—O1178.58 (9)
O5—N1—C3—C28.46 (15)O1—C9—C10—C11171.02 (9)
O5—N1—C3—C4171.00 (10)O1—C9—C10—C159.44 (14)
C6—C1—C2—C30.43 (16)O3—C9—C10—C119.60 (16)
C2—C1—C6—C51.83 (16)O3—C9—C10—C15169.95 (11)
C2—C1—C6—C7177.27 (10)C9—C10—C11—C12178.79 (10)
C1—C2—C3—N1178.03 (9)C15—C10—C11—C120.77 (15)
C1—C2—C3—C41.41 (16)C9—C10—C15—C14178.01 (10)
N1—C3—C4—C5177.65 (9)C11—C10—C15—C141.52 (15)
C2—C3—C4—C51.79 (16)C10—C11—C12—C130.53 (16)
C3—C4—C5—C60.33 (15)C11—C12—C13—C141.06 (16)
C4—C5—C6—C11.43 (15)C12—C13—C14—C150.30 (17)
C4—C5—C6—C7177.62 (10)C13—C14—C15—C100.99 (16)
C1—C6—C7—O23.72 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O3i0.952.473.3967 (14)164
C13—H13···O5ii0.952.543.2361 (14)130
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z2.
ππ contacts (Å, °) in the crystal of the title compound. top
Cg 1 and Cg2 are the centroids of rings C1–C6 and C10–C15, respectively.
Cg(I)Cg(J)Cg(I)···Cg(J) (Å)α (°)β (°)γ (°)CgI_Perp (Å)CgJ_Perp (Å)offset (Å)
Cg1Cg2iii3.6754 (6)3.09 (5)22.521.53.4199 (4)3.3948 (4)1.408
Cg1Cg2iv3.7519 (6)3.09 (5)27.925.13.3975 (4)3.3171 (4)1.753
Cg2Cg1v3.7519 (6)3.09 (5)25.127.93.3171 (4)3.3975 (4)1.592
Cg2Cg1vi3.6754 (6)3.09 (5)21.522.53.3948 (4)3.4200 (4)1.346
Symmetry codes: (iii) x, y, z + 1; (iv) x + 1, y, z + 1; (v) x - 1, y, z - 1; (vi) x, y, z - 1.
 

Acknowledgements

CSCK extends his appreciation to Vidya Vikas Research & Development Centre for facilities and encouragement. NS thanks Jain University for sanctioning research grants under a minor project.

References

First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChidan Kumar, C. S., Fun, H.-K., Tursun, M., Ooi, C. W., Chandraju, S., Quah, C. K. & Parlak, C. (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc. 124, 595–602.  CSD CrossRef CAS PubMed Google Scholar
First citationGandhi, S. S., Bell, K. L. & Gibson, M. S. (1995). Tetrahedron, 51, 13301–13308.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHuang, W., Pei, J., Chen, B., Pei, W. & Ye, X. (1996). Tetrahedron, 52, 10131–10136.  CrossRef CAS Google Scholar
First citationKumar, C. S. C., Chia, T. S., Ooi, C. W., Quah, C. K., Chandraju, S. & Fun, H. K. (2014). Z. Kristallogr. Cryst. Mater. 229, 328–342.  CSD CrossRef Google Scholar
First citationKwong, H. C., Chidan Kumar, C. S., Mah, S. H., Chia, T. S., Quah, C. K., Loh, Z. H., Chandraju, S. & Lim, G. K. (2017). PLoS One, 12, e0170117.  CSD CrossRef PubMed Google Scholar
First citationLiterák, J., Dostálová, A. & Klán, P. (2006). J. Org. Chem. 71, 713–723.  PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationRather, J. B. & Reid, E. (1919). J. Am. Chem. Soc. 41, 75–83.  CrossRef CAS Google Scholar
First citationRuzicka, R., Zabadal, M. & Klán, P. (2002). Synth. Commun. 32, 2581–2590.  CrossRef CAS Google Scholar
First citationSheehan, J. C. & Umezawa, K. (1973). J. Org. Chem. 38, 3771–3774.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.netGoogle Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, L., Shen, Y., Zhu, H. J., Wang, F., Leng, Y. & Liu, J. K. (2009). J. Antibiot. 62, 239–242.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds