research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2-(4-nitro­phen­yl)-2-oxo­ethyl 2-chloro­benzoate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, GSSS Institute of Engineering and Technology for Women, Mysuru 570 016, Karnataka, India, bDepartment of Engineering Chemistry, Vidya Vikas Institute of, Engineering & Technology, Visvesvaraya Technological University, Alanahally, Mysuru 570 028, Karnataka, India, cDepartment of Physics, School of Engineering and Technology, Jain University, Bangalore 562 112, India, dDepartment of Chemistry, Sri Siddhartha Institute of Technology, Tumkur 572 105, Karnataka, India, eSchool of Chemical & Biomolecular Engineering, The University of Sydney, Sydney, NSW, Australia, and fDepartment of Chemistry, Science College, An-Najah National University, PO Box 7, Nablus, West Bank, Palestinian Territories
*Correspondence e-mail: s.naveen@jainuniversity.ac.in, khalil.i@najah.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 18 October 2019; accepted 21 October 2019; online 31 October 2019)

The title compound, C15H10ClNO5, is relatively planar with the two aromatic rings being inclined to each other by 3.56 (11)°. The central —C(=O)—C–O—C(=O)— bridge is slightly twisted, with a C—C—O—C torsion angle of 164.95 (16)°. In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯Cl hydrogen bonds, forming layers parallel to the (101) plane. The layers are linked by a further C—H⋯O hydrogen bond, forming a three-dimensional supra­molecular structure. There are a number of offset ππ inter­actions present between the layers [inter­centroid distances vary from 3.8264 (15) to 3.9775 (14) Å]. Hirshfeld surface analyses, the dnorm surfaces, electrostatic potential and two-dimensional fingerprint plots were examined to verify the contributions of the different inter­molecular contacts within the supra­molecular structure. The shape-index surface shows that two sides of the mol­ecule are involved in the same contacts with neighbouring mol­ecules, and the curvedness plot shows flat surface patches that are characteristic of planar stacking.

1. Chemical context

Due to their numerous applications in various fields of chemistry, phenacyl benzoates are of great importance (Rather & Reid, 1919[Rather, J. B. & Reid, E. (1919). J. Am. Chem. Soc. 41, 75-83.]; Literák et al., 2006[Literák, J., Dostálová, A. & Klán, P. (2006). J. Org. Chem. 71, 713-723.]; Sheehan & Umezawa, 1973[Sheehan, J. C. & Umezawa, K. (1973). J. Org. Chem. 38, 3771-3774.]; Huang et al., 1996[Huang, W., Pei, J., Chen, B., Pei, W. & Ye, X. (1996). Tetrahedron, 52, 10131-10136.]; Gandhi et al., 1995[Gandhi, S. S., Bell, K. L. & Gibson, M. S. (1995). Tetrahedron, 51, 13301-13308.]; Zhang et al., 2009[Zhang, L., Shen, Y., Zhu, H. J., Wang, F., Leng, Y. & Liu, J. K. (2009). J. Antibiot. 62, 239-242.]). In continuation of our work on such mol­ecules (Kumar et al., 2014[Kumar, C. S. C., Chia, T. S., Ooi, C. W., Quah, C. K., Chandraju, S. & Fun, H. K. (2014). Z. Kristallogr. Cryst. Mater. 229, 328-342.]; Chidan Kumar et al., 2014[Chidan Kumar, C. S., Fun, H.-K., Tursun, M., Ooi, C. W., Chandraju, S., Quah, C. K. & Parlak, C. (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc. 124, 595-602.]), we report herein on the crystal and mol­ecular structures of 2-(4-nitro­phen­yl)-2-oxoethyl chloro­benzoate (I)[link]. Its crystal and mol­ecular structures are compared with those of 2-(4-nitro­phen­yl)-2-oxoethyl benzoate (II) (Sheshadri et al., 2019[Sheshadri, S. N., Chidan Kumar, C. S., Naveen, S., Veeraiah, M. K., Raghava Reddy, K. & Warad, I. (2019). Acta Cryst. E75, 1719-1723.]), published by us recently, and further details of uses and applications of such mol­ecules are described therein.

2. Structural commentary

The mol­ecular structure of the title compound, I, is shown in Fig. 1[link]. The compound is composed of two aromatic rings (C1–C6 and C10–C15) linked by the –C7(=O2)—C8—O1—C9(=O3)– bridge. The bond lengths and angles in I are normal and similar to those reported for compound II. The two benzene rings are inclined to each other by 3.56 (11)°, indicating that they are almost coplanar, as in the structure of II. The nitro group (N1/O4/O5) lies almost in the plane of the benzene ring (C1–C6), with a dihedral angle between the two planes of 5.4 (4)°; the torsion angles C4—C3—N1—O4 and C2—C3—N1—O5 are −5.4 (3) and −5.1 (4)°, respectively. Atom Cl1 is displaced by 0.0749 (8) Å from the plane of benzene ring C10–C15.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of compound I, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

The overall mol­ecular conformation of I is characterized by three torsion angles, viz. τ1 (C11—C10—C9—O3), τ2 (C7—C8—O1—C9) and τ3 (O2—C7—C6—C1). Torsion angle τ1 at −12.5 (3)° signifies a certain noncoplanarity between the benzene ring (C10–C15) and the adjacent carbonyl group (C9=O3) as a result of steric repulsion between the substituent Cl1 and the adjacent carbonyl group C9=O3. This is also reflected in the torsion angle τ2 of −164.95 (16)°, between the two carbonyl groups, C7=O2 and C9=O3, which have a –anti­periplanar conformation. Torsion angle τ3, involving the benzene ring (C1–C6) and the adjacent carbonyl group (C7=O2), is −3.6 (3)° and indicates a –synperiplanar conformation. A comparison of the torsion angles in I and II, indicates that the insertion of the Cl atom in I has the most significant influence on torsion τ2, which is −164.95 (16)° in I compared to 174.08 (9)° in II. Torsion angles τ1 of −12.5 (3)° and τ3 of −3.6 (3)° are slightly larger than the values observed in II, viz. 9.60 (16) and 1.88 (15)°, respectively. Hence, compound I has a less planar conformation than unsubstituted compound II.

3. Supra­molecular features

The crystal structure of the title compound, is stabilized by inter­molecular hydrogen bonds of the types C—H⋯O and C—H⋯Cl (Table 1[link]). Mol­ecules are linked by the C2—H2⋯O3i, C14—H14⋯O4i and C13—H13⋯Cl1iii hydrogen bonds to form layers lying parallel to the (101) plane; see Fig. 2[link] and Table 1[link]. The layers are linked by C8—H8A⋯O3ii hydrogen bonds and offset ππ inter­actions (see Table 2[link]), forming a supra­molecular three-dimensional structure (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O3i 0.93 2.54 3.258 (2) 135
C8—H8A⋯O3ii 0.97 2.59 3.553 (3) 171
C13—H13⋯Cl1iii 0.93 2.82 3.670 (3) 153
C14—H14⋯O4i 0.93 2.50 3.211 (4) 134
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
π–π contacts (Å, °) in the crystal of compound I

Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.

Cg(I) Cg(J) Cg(I)⋯Cg(J) (Å) α (°) β (°) γ (°) CgI_Perp (Å) CgJ_Perp (Å) Offset (Å)
Cg1 Cg1iv 3.9775 (14) 0.02 (10) 31.8 31.8 3.3791 (9) 3.3791 (9) 2.098
Cg1 Cg2v 3.8801 (14) 3.56 (11) 30.1 29.1 3.3895 (9) 3.3559 (10) 1.948
Cg2 Cg2vi 3.8264 (15) 0.00 (11) 24.8 24.8 3.4722 (10) 3.4722 (10) 1.608
Symmetry codes: (iv) −x + 1, −y + 1, −z; (v) −x + 1, −y + 1, −z + 1; (vi) −x, −y + 1, −z + 1.
[Figure 2]
Figure 2
A view normal to the (101) plane of the crystal packing of compound I. The hydrogen bonds are shown as dashed lines (Table 1[link]; symmetry codes as in Table 1[link]), and, for clarity, only the H atoms involved in hydrogen bonding have been included.
[Figure 3]
Figure 3
The crystal packing of compound I, viewed along the b axis, showing the layered stacking. For clarity, only the H atoms involved in hydrogen bonding have been included, and the hydrogen bonds are shown as dashed lines (Table 1[link]).

4. Hirshfeld surface analysis and two-dimensional fingerprint plots

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814.]) were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.]). Hirshfeld surface analysis enables the visualization of inter­molecular inter­actions by different colours and colour intensity, representing short or long contacts and indicating the relative strength of the inter­actions. Fig. 4[link](a) shows the Hirshfeld surface mapped over dnorm (−0.154 to 1.305) and for Fig. 4[link](b) the electrostatic potential. The Hirshfeld surface illustrated in Fig. 4[link](a) reflects the involvement of different atoms with the inter­molecular inter­actions through the appearance of blue and red patches, which correspond to the regions of positive and negative electrostatic potential shown in Fig. 4[link](b). The shape-index surface (Fig. 5[link]a) clearly shows that the two sides of the mol­ecule are involved in contacts with neighbouring mol­ecules and the curvedness plot (Fig. 5[link]b) shows flat surface patches characteristic of planar stacking.

[Figure 4]
Figure 4
A view of the Hirshfeld surface of compound I, mapped over dnorm.
[Figure 5]
Figure 5
Hirshfeld surface of compound I, mapped over (a) the shape-index and (b) the curvedness.

The overall two-dimensional fingerprint plot for the title compound and those delineated into O⋯H/H⋯O, H⋯H, C⋯H/H⋯C and Cl⋯H/H⋯Cl contacts are illustrated in Fig. 6[link]. The percentage contributions from the different inter­atomic contacts to the Hirshfeld surfaces are as follows: O⋯H (34.8%), H⋯H (18.8%), C⋯H (14.7%) and Cl⋯H (10.1%), shown in the two-dimensional fingerprint plots, respectively, in Fig. 6[link]. The percentage contributions for other inter­molecular contacts are less than 5% in the Hirshfeld surface mapping.

[Figure 6]
Figure 6
The two-dimensional fingerprint plots of compound I, showing the percentage contributions of all contacts and of individual atom–atom contacts.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, last update May 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using 2-oxo-2-phenyl­ethyl benzoate as the main skeleton revealed the presence of 62 structures with different substituents on the terminal phenyl rings. In these structures, the two aromatic rings are inclined to each other by dihedral angles varying from ca 0 to 90°. There were seven structures with a nitro substituent on one of the aromatic rings. However, there is only one compound with the same skeleton as the title compound, i.e. 2-(biphenyl-4-yl)-2-oxoethyl 4-nitro­benzoate (CSD refcode CISSAB; Kwong et al., 2017[Kwong, H. C., Chidan Kumar, C. S., Mah, S. H., Chia, T. S., Quah, C. K., Loh, Z. H., Chandraju, S. & Lim, G. K. (2017). PLoS One, 12, e0170117.]). Here the two aromatic rings are inclined to each other by ca 70.96°, compared to only 3.56 (11)° in the title compound. In the crystal structure of the recently published compound 2-(4-nitro­phen­yl)-2-oxoethyl benzoate (II) (Sheshadri et al., 2019[Sheshadri, S. N., Chidan Kumar, C. S., Naveen, S., Veeraiah, M. K., Raghava Reddy, K. & Warad, I. (2019). Acta Cryst. E75, 1719-1723.]), this dihedral angle is 3.09 (5)°.

6. Synthesis and crystallization

The title compound, was synthesized as per the procedure reported earlier by Kumar et al. (2014[Kumar, C. S. C., Chia, T. S., Ooi, C. W., Quah, C. K., Chandraju, S. & Fun, H. K. (2014). Z. Kristallogr. Cryst. Mater. 229, 328-342.]). A mixture of 2-bromo-1-(4-nitro­phen­yl)ethanone (0.2 g, 0.5 mmol), potassium carbonate (0.087 g, 0.63 mmol) and 2-chloro­benzoic acid (0.156 g, 0.65 mmol) in di­methyl­formamide (5 ml) was stirred at room temperature for 2 h. After completion of the reaction, the reaction mixture was poured into ice-cold water. The solid product obtained was filtered, washed with water and recrystallized from ethanol to give colourless block-like crystals (m.p. 386–390 K).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C15H10ClNO5
Mr 319.69
Crystal system, space group Monoclinic, P21/c
Temperature (K) 294
a, b, c (Å) 12.6646 (18), 12.4099 (18), 9.0902 (13)
β (°) 99.947 (2)
V3) 1407.2 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.30
Crystal size (mm) 0.55 × 0.26 × 0.19
 
Data collection
Diffractometer Bruker APEXII DUO CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.796, 0.946
No. of measured, independent and observed [I > 2σ(I)] reflections 36449, 4122, 2586
Rint 0.058
(sin θ/λ)max−1) 0.705
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.141, 1.06
No. of reflections 4122
No. of parameters 199
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.44
Computer programs: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

2-(4-Nitrophenyl)-2-oxoethyl 2-chlorobenzoate top
Crystal data top
C15H10ClNO5F(000) = 656
Mr = 319.69Dx = 1.509 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6264 reflections
a = 12.6646 (18) Åθ = 2.3–27.5°
b = 12.4099 (18) ŵ = 0.30 mm1
c = 9.0902 (13) ÅT = 294 K
β = 99.947 (2)°Block, colourless
V = 1407.2 (3) Å30.55 × 0.26 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4122 independent reflections
Radiation source: Rotating Anode2586 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
Detector resolution: 18.4 pixels mm-1θmax = 30.1°, θmin = 1.6°
φ and ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 1717
Tmin = 0.796, Tmax = 0.946l = 1212
36449 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.141 W = 1/[Σ2(FO2) + (0.0456P)2 + 0.8032P] WHERE P = (FO2 + 2FC2)/3
S = 1.06(Δ/σ)max < 0.001
4122 reflectionsΔρmax = 0.26 e Å3
199 parametersΔρmin = 0.44 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.13276 (6)0.19871 (4)0.64688 (9)0.0704 (3)
O10.32241 (12)0.43016 (11)0.42430 (17)0.0451 (5)
O20.44530 (13)0.57459 (11)0.32308 (19)0.0553 (6)
O30.31616 (15)0.26717 (12)0.5238 (2)0.0662 (7)
O40.8091 (3)0.28826 (18)0.0648 (4)0.1349 (15)
O50.8233 (2)0.45298 (17)0.1127 (3)0.1031 (10)
N10.78442 (18)0.38048 (17)0.0532 (3)0.0632 (8)
C10.60280 (16)0.53537 (15)0.1467 (2)0.0378 (6)
C20.68013 (17)0.51241 (15)0.0615 (2)0.0407 (6)
C30.70239 (17)0.40590 (16)0.0379 (2)0.0432 (7)
C40.65143 (19)0.32166 (16)0.0961 (3)0.0493 (7)
C50.57408 (18)0.34589 (15)0.1802 (3)0.0458 (7)
C60.54870 (15)0.45265 (14)0.2066 (2)0.0356 (6)
C70.46407 (16)0.48220 (15)0.2957 (2)0.0367 (6)
C80.40417 (18)0.38936 (16)0.3492 (2)0.0429 (6)
C90.28099 (17)0.35666 (15)0.5069 (2)0.0394 (6)
C100.19286 (15)0.40267 (15)0.5758 (2)0.0365 (6)
C110.12673 (17)0.33809 (16)0.6478 (2)0.0414 (6)
C120.05046 (19)0.3840 (2)0.7205 (3)0.0548 (8)
C130.0388 (2)0.4942 (2)0.7222 (3)0.0604 (9)
C140.10067 (19)0.55891 (18)0.6499 (3)0.0544 (8)
C150.17715 (17)0.51397 (16)0.5769 (3)0.0443 (7)
H10.586500.606800.164500.0450*
H20.716200.567300.021100.0490*
H40.668900.250500.079000.0590*
H50.538300.290400.219800.0550*
H8A0.372200.345500.264900.0510*
H8B0.453300.344600.416800.0510*
H120.007100.340400.768100.0660*
H130.011500.524800.773000.0720*
H140.091300.633200.649900.0650*
H150.218700.558600.527700.0530*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0741 (4)0.0363 (3)0.1119 (6)0.0032 (3)0.0471 (4)0.0109 (3)
O10.0529 (9)0.0353 (7)0.0540 (9)0.0031 (6)0.0285 (7)0.0035 (6)
O20.0648 (11)0.0323 (7)0.0754 (11)0.0003 (7)0.0311 (9)0.0077 (7)
O30.0755 (12)0.0382 (8)0.0983 (14)0.0158 (8)0.0524 (11)0.0190 (8)
O40.165 (3)0.0587 (13)0.222 (3)0.0172 (14)0.149 (3)0.0060 (16)
O50.1241 (19)0.0699 (13)0.144 (2)0.0058 (13)0.1036 (18)0.0043 (13)
N10.0670 (14)0.0509 (11)0.0825 (16)0.0031 (10)0.0433 (12)0.0073 (11)
C10.0436 (11)0.0268 (8)0.0437 (11)0.0021 (7)0.0095 (9)0.0019 (8)
C20.0446 (11)0.0342 (9)0.0456 (12)0.0058 (8)0.0141 (9)0.0031 (8)
C30.0444 (12)0.0394 (10)0.0504 (13)0.0019 (9)0.0214 (10)0.0037 (9)
C40.0588 (14)0.0296 (9)0.0659 (15)0.0004 (9)0.0284 (12)0.0048 (9)
C50.0554 (13)0.0288 (9)0.0591 (14)0.0051 (9)0.0268 (11)0.0009 (9)
C60.0393 (10)0.0295 (8)0.0392 (11)0.0031 (7)0.0106 (9)0.0026 (8)
C70.0412 (11)0.0320 (9)0.0383 (11)0.0015 (8)0.0105 (9)0.0013 (8)
C80.0517 (12)0.0341 (9)0.0486 (12)0.0005 (8)0.0250 (10)0.0021 (8)
C90.0428 (11)0.0322 (9)0.0458 (12)0.0011 (8)0.0149 (9)0.0010 (8)
C100.0355 (10)0.0339 (9)0.0410 (11)0.0012 (7)0.0089 (9)0.0032 (8)
C110.0409 (11)0.0368 (9)0.0491 (12)0.0001 (8)0.0149 (9)0.0046 (9)
C120.0500 (13)0.0566 (13)0.0644 (16)0.0006 (11)0.0288 (12)0.0066 (12)
C130.0540 (14)0.0560 (14)0.0790 (18)0.0104 (11)0.0336 (14)0.0026 (13)
C140.0537 (14)0.0369 (11)0.0762 (17)0.0096 (9)0.0214 (13)0.0022 (10)
C150.0456 (12)0.0343 (10)0.0553 (13)0.0018 (8)0.0150 (10)0.0030 (9)
Geometric parameters (Å, º) top
Cl1—C111.732 (2)C10—C111.401 (3)
O1—C81.428 (3)C10—C151.396 (3)
O1—C91.344 (2)C11—C121.384 (3)
O2—C71.206 (2)C12—C131.376 (4)
O3—C91.197 (2)C13—C141.367 (4)
O4—N11.196 (3)C14—C151.383 (3)
O5—N11.199 (3)C1—H10.9300
N1—C31.470 (3)C2—H20.9300
C1—C21.379 (3)C4—H40.9300
C1—C61.396 (3)C5—H50.9300
C2—C31.376 (3)C8—H8A0.9700
C3—C41.381 (3)C8—H8B0.9700
C4—C51.376 (3)C12—H120.9300
C5—C61.394 (3)C13—H130.9300
C6—C71.496 (3)C14—H140.9300
C7—C81.506 (3)C15—H150.9300
C9—C101.485 (3)
C8—O1—C9114.31 (15)C10—C11—C12120.71 (19)
O4—N1—O5123.0 (3)C11—C12—C13120.0 (2)
O4—N1—C3118.4 (3)C12—C13—C14120.5 (2)
O5—N1—C3118.6 (2)C13—C14—C15120.1 (2)
C2—C1—C6120.74 (17)C10—C15—C14121.0 (2)
C1—C2—C3118.07 (18)C2—C1—H1120.00
N1—C3—C2118.53 (18)C6—C1—H1120.00
N1—C3—C4118.41 (19)C1—C2—H2121.00
C2—C3—C4123.1 (2)C3—C2—H2121.00
C3—C4—C5118.17 (19)C3—C4—H4121.00
C4—C5—C6120.72 (19)C5—C4—H4121.00
C1—C6—C5119.24 (18)C4—C5—H5120.00
C1—C6—C7118.47 (16)C6—C5—H5120.00
C5—C6—C7122.29 (18)O1—C8—H8A110.00
O2—C7—C6122.01 (18)O1—C8—H8B110.00
O2—C7—C8122.19 (19)C7—C8—H8A110.00
C6—C7—C8115.80 (16)C7—C8—H8B110.00
O1—C8—C7109.30 (16)H8A—C8—H8B108.00
O1—C9—O3121.9 (2)C11—C12—H12120.00
O1—C9—C10111.65 (16)C13—C12—H12120.00
O3—C9—C10126.36 (19)C12—C13—H13120.00
C9—C10—C11122.06 (17)C14—C13—H13120.00
C9—C10—C15120.13 (18)C13—C14—H14120.00
C11—C10—C15117.74 (18)C15—C14—H14120.00
Cl1—C11—C10122.61 (16)C10—C15—H15120.00
Cl1—C11—C12116.66 (17)C14—C15—H15119.00
C9—O1—C8—C7164.95 (16)C5—C6—C7—O2177.1 (2)
C8—O1—C9—O35.3 (3)C5—C6—C7—C82.8 (3)
C8—O1—C9—C10177.15 (15)O2—C7—C8—O13.6 (3)
O4—N1—C3—C2174.8 (3)C6—C7—C8—O1176.59 (15)
O4—N1—C3—C45.1 (4)O1—C9—C10—C11170.13 (17)
O5—N1—C3—C25.4 (3)O1—C9—C10—C1513.2 (3)
O5—N1—C3—C4174.7 (3)O3—C9—C10—C1112.5 (3)
C6—C1—C2—C30.2 (3)O3—C9—C10—C15164.3 (2)
C2—C1—C6—C50.4 (3)C9—C10—C11—Cl16.6 (3)
C2—C1—C6—C7178.83 (17)C9—C10—C11—C12175.2 (2)
C1—C2—C3—N1179.79 (19)C15—C10—C11—Cl1176.60 (17)
C1—C2—C3—C40.4 (3)C15—C10—C11—C121.6 (3)
N1—C3—C4—C5179.5 (2)C9—C10—C15—C14175.3 (2)
C2—C3—C4—C50.7 (4)C11—C10—C15—C141.6 (3)
C3—C4—C5—C60.5 (4)Cl1—C11—C12—C13178.1 (2)
C4—C5—C6—C10.0 (3)C10—C11—C12—C130.2 (3)
C4—C5—C6—C7179.2 (2)C11—C12—C13—C141.3 (4)
C1—C6—C7—O23.7 (3)C12—C13—C14—C151.3 (4)
C1—C6—C7—C8176.42 (17)C13—C14—C15—C100.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.932.543.258 (2)135
C8—H8A···O3ii0.972.593.553 (3)171
C13—H13···Cl1iii0.932.823.670 (3)153
C14—H14···O4i0.932.503.211 (4)134
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z+3/2.
Table 2. ππ contacts (Å, °) in the crystal of compound I. top
Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.
Cg(I)Cg(J)Cg(I)···Cg(J) (Å)α (°)β (°)γ (°)CgI_Perp (Å)CgJ_Perp (Å)Offset (Å)
Cg1Cg1iv3.9775 (14)0.02 (10)31.831.83.3791 (9)3.3791 (9)2.098
Cg1Cg2v3.8801 (14)3.56 (11)30.129.13.3895 (9)3.3559 (10)1.948
Cg2Cg2vi3.8264 (15)0.00 (11)24.824.83.4722 (10)3.4722 (10)1.608
Symmetry codes: (iv) -x + 1, -y + 1, -z; (v) -x + 1, -y + 1, -z + 1; (vi) -x, -y + 1, -z + 1.
 

Acknowledgements

CSCK extends his appreciation to Vidya Vikas Research & Development Centre for the facilities and encouragement. NS thanks Jain University for sanctioning research grants under minor project.

References

First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChidan Kumar, C. S., Fun, H.-K., Tursun, M., Ooi, C. W., Chandraju, S., Quah, C. K. & Parlak, C. (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc. 124, 595–602.  CSD CrossRef CAS PubMed Google Scholar
First citationGandhi, S. S., Bell, K. L. & Gibson, M. S. (1995). Tetrahedron, 51, 13301–13308.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHuang, W., Pei, J., Chen, B., Pei, W. & Ye, X. (1996). Tetrahedron, 52, 10131–10136.  CrossRef CAS Google Scholar
First citationKumar, C. S. C., Chia, T. S., Ooi, C. W., Quah, C. K., Chandraju, S. & Fun, H. K. (2014). Z. Kristallogr. Cryst. Mater. 229, 328–342.  CSD CrossRef Google Scholar
First citationKwong, H. C., Chidan Kumar, C. S., Mah, S. H., Chia, T. S., Quah, C. K., Loh, Z. H., Chandraju, S. & Lim, G. K. (2017). PLoS One, 12, e0170117.  CSD CrossRef PubMed Google Scholar
First citationLiterák, J., Dostálová, A. & Klán, P. (2006). J. Org. Chem. 71, 713–723.  PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814.  Google Scholar
First citationRather, J. B. & Reid, E. (1919). J. Am. Chem. Soc. 41, 75–83.  CrossRef CAS Google Scholar
First citationSheehan, J. C. & Umezawa, K. (1973). J. Org. Chem. 38, 3771–3774.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheshadri, S. N., Chidan Kumar, C. S., Naveen, S., Veeraiah, M. K., Raghava Reddy, K. & Warad, I. (2019). Acta Cryst. E75, 1719–1723.  CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, L., Shen, Y., Zhu, H. J., Wang, F., Leng, Y. & Liu, J. K. (2009). J. Antibiot. 62, 239–242.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds