research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and physicochemical characterization of bis­­[4-(di­methyl­amino)­pyridinium] di-μ-chlorido-bis­[di­chlorido­mercurate(II)]

CROSSMARK_Color_square_no_text.svg

aUniversity of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics, 2092 El Manar II, Tunis, Tunisia, and bChemistry Department, College of Science, IMSIU (Imam Mohammad Ibn Saud Islamic University), Riyadh 11623, Kingdom of Saudi Arabia
*Correspondence e-mail: chebhamouda@yahoo.fr

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 9 September 2019; accepted 23 September 2019; online 3 October 2019)

The title mol­ecular salt, (C7H11N2)2[Hg2Cl6], crystallizes with two 4-(di­methyl­amino)­pyridinium cations (A and B) and two half hexa­chlorido­dimercurate(II) anions in the asymmetric unit. The organic cations exhibit essentially the same features with an almost planar pyridyl ring (r.m.s. deviations of 0.0028 and 0.0109 Å), which forms an inclined dihedral angle with the dimethyamino group [3.06 (1) and 1.61 (1)°, respectively]. The di­methyl­amino groups in the two cations are planar, and the C—N bond lengths are shorter than that in 4-(di­methyl­amino)­pyridine. In the crystal, mixed cation–anion layers lying parallel to the (010) plane are formed through N—H⋯Cl hydrogen bonds and adjacent layers are linked by C—H⋯Cl hydrogen bonds, forming a three-dimensional network. The analyses of the calculated Hirshfeld surfaces confirm the relevance of the above inter­molecular inter­actions, but also serve to further differentiate the weaker inter­molecular inter­actions formed by the organic cations and inorganic anions, such as ππ and Cl⋯Cl inter­actions. The powder XRD data confirms the phase purity of the crystalline sample. Furthermore, the vibrational absorption bands were identified by IR spectroscopy and the optical properties were studied by using optical UV–visible absorption spectroscopy.

1. Chemical context

Hybrid organic–inorganic materials have been widely studied in recent years for their promising applications in different fields, including catalysis, magnetism and optics and for their luminescence properties (Clément et al., 1994[Cléement, R., Lacroix, P. G., O'Hare, D. & Evans, J. (1994). Adv. Mater. 6, 794-797.]; Rabu et al., 2001[Rabu, P., Rueff, J. M., Huang, Z. L., Angelov, S., Souletie, J. & Drillon, M. (2001). Polyhedron, 20, 1677-1685.]; Hu et al., 2003[Hu, A., Ngo, H. L. & Lin, W. (2003). J. Am. Chem. Soc. 125, 11490-11491.]; Morris et al., 2008[Morris, R. E. & Wheatley, P. A. (2008). Angew. Chem. Int. Ed. 47, 4966-4981.]). However, owing to the confinement of the inorganic layers, the organic cations have to possess the right ionic bond and steric hindrance, as well as hydrogen bonds, to fit the coordination environment provided by the inorganic framework for stabilization of these organic–inorganic hybrid systems.

Hybrids based on mercury have been synthesized and characterized with simple, different techniques, thanks to their self-assembling character (Mitzi et al., 2001[Mitzi, D. B. (2001). Chem. Mater. 13, 3283-3298.]) and are very inter­esting both for fundamental physics exploration such as electronic confinement (Wei et al., 2015[Wei, K., Zhang, B., Ni, J., Geng, J., Zhang, J., Xu, D., Cui, Y. & Liu, Y. (2015). Inorg. Chem. Commun. 51, 103-105.]) or as low-dimensional magnetic systems (Fersi et al., 2015[Fersi, M. A., Chaabane, I., Gargouri, M. & Bulou, A. (2015). Polyhedron, 85, 41-47.]) and diversify the field of technological applications.

A number of chloro­mercurate(II) complexes have been shown to exhibit ferroelectric behaviour (Mitsui & Nakamura, 1990[Mitsui, T. & Nakamura, E. (1990). Editors. Ferroelectrics and Related Substances. Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, New Series III: Crystal and Solid State Physics, 28B, §43. Berlin: Springer-Verlag.]) and inter­est has focused on the mechanism of the ferroelectric–paraelectric phase transition (White, 1963[White, J. G. (1963). Acta Cryst. 16, 397-403.]; Körfer et al., 1988[Körfer, M., Fuess, H., Prager, M. & Zehnder, E.-J. (1988). Ber. Bunsenges. Phys. Chem. 92, 68-73.]; Jiang et al., 1995[Jiang, Z.-T., James, B. D., Liesegang, J., Tan, K. L., Gopalakrishnan, R. & Novak, I. (1995). J. Phys. Chem. Solids, 56, 277-283.]; Liesegang et al., 1995[Liesegang, J., James, B. D. & Jiang, Z.-T. (1995). Integr. Ferroelectr. 9, 189-198.]) for which structural information is crucial. In addition, the ability of the anions in this class of compounds to exhibit a wide range of geometry, stoichiometry and connectivity has long been known (Grdenic, 1965[Grdenic, D. (1965). Q. Rev. Chem. Soc. 19, 303-328.]). This flexibility is a result of the large volume and spherical charge distribution of the Hg2+ ion, which are a consequence of the filled 4f and 5d electron shells. Moreover, organic–inorganic materials with pyridine and its derivatives as template agents have led to the preparation of some materials with inter­esting physical properties (Aakeröy et al., 2000[Aakeröy, C. B., Beatty, A. M., Leinen, D. S. & Lorimer, K. R. (2000). Chem. Commun. pp. 935-936.]; Prince et al., 2003[Prince, B. J., Turnbull, M. M. & Willett, R. D. (2003). J. Coord. Chem. 56, 441-452.]) and biological activities (Bossert et al., 1981[Bossert, F., Meyer, H. & Wehinger, E. (1981). Angew. Chem. Int. Ed. Engl. 20, 762-769.]; Wang et al., 1989[Wang, S. D., Herbette, L. G. & Rhodes, D. G. (1989). Acta Cryst. C45, 1748-1751.]).

[Scheme 1]

As part of our continuing investigation of new hybrid compounds containing an organic cation and an inorganic anion such as CrO42− (Chebbi et al., 2000[Chebbi, H., Hajem, A. A. & Driss, A. (2000). Acta Cryst. C56, e333-e334.]; Chebbi & Driss, 2001[Chebbi, H. & Driss, A. (2001). Acta Cryst. C57, 1369-1370.], 2002a[Chebbi, H. & Driss, A. (2002a). Acta Cryst. E58, m147-m149.],b[Chebbi, H. & Driss, A. (2002b). Acta Cryst. E58, m494-m496.], 2004[Chebbi, H. & Driss, A. (2004). Acta Cryst. E60, m904-m906.]), Cr2O72− (Chebbi et al., 2016[Chebbi, H., Ben Smail, R. & Zid, M. F. (2016). J. Struct. Chem. 57, 632-635.], Ben Smail et al., 2017[Ben Smail, R., Chebbi, H., Srinivasan, B. R. & Zid, M. F. (2017). J. Struct. Chem. 58, 724-733.]), NO3 (Chebbi et al., 2014[Chebbi, H., Ben Smail, R. & Zid, M. F. (2014). Acta Cryst. E70, o642.], 2018[Chebbi, H., Mezrigui, S., Ben Jomaa, M. & Zid, M. F. (2018). Acta Cryst. E74, 949-954.]) and ClO4 (Chebbi et al., 2017[Chebbi, H., Boumakhla, A., Zid, M. F. & Guesmi, A. (2017). Acta Cryst. E73, 1453-1457.]; Ben Jomaa et al., 2018[Ben Jomaa, M., Chebbi, H., Fakhar Bourguiba, N. & Zid, M. F. (2018). Acta Cryst. E74, 91-97.]), we report in this work the crystal structure, the Hirshfeld surface analysis and the physicochemical characterization of a new organic chloro­mercurate(II), (C7H11N2)2[Hg2Cl6] (I)[link].

2. Structural commentary

The asymmetric unit of the title compound comprises two 4-(di­methyl­amino)­pyridinium cations (A and B), and two half [Hg2Cl6]2− anions (Fig. 1[link]). The two independent [Hg2(1,2)Cl6]2− anions are found to adopt a centrosymmetric arrangement with terminal Cl1—Hg1—Cl3 and Cl4—Hg2—Cl5 angles of 141.4 (1)° and 141.7 (1)° respectively. Each anion appears to be a distorted edge-shared bi­tetra­hedron, similar to that reported by Larock et al. (1987[Larock, R. C., Burns, L. D., Varaprath, S., Russell, C. F., Richardson, J. W., Janakiraman, M. N. & Jacobson, R. A. (1987). Organometallics, 6, 1780-1789.]), with its center of mass coincident with a crystallographic center of symmetry. The two independent Hg⋯Cl bridging distances are 2.539 (2) and 2.542 (2) Å, leading to a slightly asymmetric bridging system as has been found in most structures containing the [Hg2Cl6]2− moiety (Linden et al., 1999[Linden, A., James, B. D., Liesegang, J. & Gonis, N. (1999). Acta Cryst. B55, 396-409.]; Zabel et al., 2008[Zabel, M., Pavlovskii, I. & Poznyak, A. L. (2008). J. Struct. Chem. 49, 758-761.]). In each anion, the two terminal Hg—Cl bonds are quite short [Hg1—Cl1 = 2.371 (2) and Hg1—Cl3 = 2.380 (2) Å, Hg2—Cl4 = 2.367 (3) and Hg2—Cl5 = 2.392 (2) Å] with a Cl1—Hg1—Cl2 and Cl4—Hg2—Cl6 angles of 112.01 (9) and 112.72 (10)°, respectively. Assessment of the organic geometrical features shows that they exhibit essentially the same features with an almost planar pyridyl ring (r.m.s. deviation = 0.0028 and 0.0109 Å for C1A–C5A/N1A and C1B–C5B/N1B, respectively), which forms an inclined dihedral angle with the dimethyamino group [3.06 (1) and 1.61 (1)°, respectively]. The di­methyl­amino groups in the two cations are planar and the C—N bond lengths [1.357 (11) Å for A and 1.326 (11) Å for B] are shorter than that in 4-di­methyl­amino­pyridine [1.367 (2) Å; Ohms & Guth, 1984[Ohms, U. & Guth, H. (1984). Z. Kristallogr. New Cryst. Struct. 166, 213-217.]]. These findings indicate the presence of strong conjugation between the di­methyl­amino group and the pyridine ring. The C3A—N1A—C4A [121.2 (8)°] and C3B—N1B—C4B [119.8 (9)°] bond angles are wider than that in pyridine (116.94°; Sørensen et al., 1974[Sørensen, G. O., Mahler, L. & Rastrup-Andersen, N. (1974). J. Mol. Struct. 20, 119-126.]), which indicates that the pyridine ring N atom is protonated. Examination of the C—C(N) distances and C—C—C (N), C—N—C angles in the 4-(di­methyl­amino)­pyridinium dications (A and B) shows no significant difference from those obtained in other organic materials associated with the same organic groups (Chao et al., 1977[Chao, M., Schempp, E. & Rosenstein, D. (1977). Acta Cryst. B33, 1820-1823.]; Mustaqim et al., 2005[Mustaqim, R. M., Ali, S., Razak, I. A., Fun, H.-K., Goswami, S. & Adak, A. (2005). Acta Cryst. E61, o3733-o3734.]).

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link]. Atomic displacement parameters for the non-H atoms are drawn at the 50% probability level. Unlabelled atoms are related to labelled ones by the symmetry operationx + 1, −y, −z + 2.

The experimental powder X-ray diffraction pattern of the title compound, (C7H11N2)2[Hg2Cl6] is in good agreement with that simulated (Fig. 2[link]). This indicates the purity of the synthesized product and confirms the crystal data used.

[Figure 2]
Figure 2
Experimental and simulated powder XRD patterns of (I)[link].

3. Supra­molecular features

In the crystal structure, mixed cation–anion layers lying parallel to the (010) plane are formed through N—H⋯Cl hydrogen bonds and adjacent layers are linked by C—H⋯Cl hydrogen bonds, forming a three-dimensional network (Table 1[link], Fig. 3[link]). A mixed layer is formed by alternating of organic and inorganic columns parallel to the [100] direction (Fig. 4[link]). The cations (A or B) inter­act via offset face-to-face ππ stacking inter­actions, leading to two types of organic columns formed by the cations (A or B) with centroid-centroid distances of 3.698 (2) and 3.982 (2) Å, respectively (Fig. 5[link]) (Janiak, 2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]; Ben Moussa et al., 2018[Ben Moussa, O., Chebbi, H. & Zid, M. F. (2018). Acta Cryst. E74, 436-440.]). Similarly, the hexa­chlorido­dimercurate(II) anions are dispersed parallel to the a axis whose cohesion is ensured by Cl⋯Cl [3.652 (6) Å] and Hg⋯Cl [3.167 (7) Å] weak inter­actions (Sumanesh et al., 2016[Sumanesh, Awasthi, A. & Gupta, P. (2016). Chem Sci Trans, 5, 311-320.]; Ben Moussa et al., 2019a[Ben Moussa, O., Chebbi, H. & Zid, M. F. (2019a). J. Mol. Struct. 1180, 72-80.],b[Moussa, Ben O., Chebbi, H., Arfaoui, Y., Falvello, L. R., Tomas, M. & Zid, M. F. (2019b). J. Mol. Struct. 1195, 344-354.]; Fig. 6[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯Cl3 0.86 2.54 3.239 (8) 140
N1B—H1B⋯Cl5 0.86 2.46 3.195 (10) 145
C2B—H2B⋯Cl1i 0.93 2.82 3.634 (11) 147
C3A—H3A⋯Cl5 0.93 2.75 3.485 (11) 136
Symmetry code: (i) -x+1, -y, -z+2.
[Figure 3]
Figure 3
Structure of (I)[link] viewed along the a axis showing the succession of mixed layers parallel to the (010) plane. The orange dotted lines indicate hydrogen bonds.
[Figure 4]
Figure 4
A view of the supra­molecular mixed layer in the ac plane of (I)[link], showing the alternating organic and inorganic columns parallel to the [100] direction. The orange dotted lines indicate N—H⋯Cl hydrogen bonds.
[Figure 5]
Figure 5
ππ stacking inter­actions between the nearest aromatic organic cation neighbors into two types of organic columns (A or B).
[Figure 6]
Figure 6
Cl⋯Cl and Hg⋯Cl inter­actions between hexa­chlorido­dimercurate(II) anions dispersed parallel to the a axis in the inorganic column.

4. Vibrational study

The obtained FT–IR spectrum for the studied hexa­chlorido­dimercurate(II) salt is depicted in Fig. 7[link]. Detailed assignment of all bands observed in the infrared spectrum of the 4-(di­methyl­amino)­pyridinium cation in the title compound is based on the comparison with other compounds associated to the same cation (Koleva et al., 2008[Koleva, B. B., Kolev, T., Seidel, R. W., Tsanev, T., Mayer-Figge, H., Spiteller, M. & Sheldrick, W. S. (2008). Spectrochim. Acta A, 71, 695-702.]; Hu et al., 2012[Hu, Y. L., Lin, J. H., Han, S., Chen, W. Q., Yu, L. L., Zhou, D. D., Yin, W. T., Zuo, H. R., Zhou, J. R., Yang, L. M. & Ni, C. L. (2012). Synth. Met. 162, 1024-1029.]). In the region of high frequencies, the bands at 3243, 3130, 3100, 2959 cm−1 are due to the stretching vibrations of the N—H and C—H bonds. The band at 1646 cm−1 is assigned to the N—H bending mode. The bands at 1557 and 1445 cm−1 are attributed to the C=C and C=N stretching modes of the pyridine ring. The absorption band located at 1212 cm−1 corresponds to the ν(C—N) and ν(C—C) modes. The band at 1056 cm−1 can be attributed to the δ(C—C) mode. The remaining bands in the range 1000 to 500 cm−1 are assigned to γ(C—C), γ(C—H) and γ(C—N) out-of-plane bending modes.

[Figure 7]
Figure 7
Infrared spectrum of (I)[link].

5. Optical properties and frontier mol­ecular orbitals

Optical absorption (OA) measurement of the title compound was performed at ambient temperature in an ethanol solution (10−4 M). As shown in Fig. 8[link], the OA spectrum exhibits two distinct absorption bands around 213 and 278 nm assigned to the ππ* absorption bands of the 4-(di­methyl­amino)­pyridinium cations. Thus, the experimental band-gap energy obtained from the absorption edge wavelength is about 3.98 eV. This band-gap value indicates that the grown crystal exhibits semiconductor behavior (Rosencher & Vinter, 2002[Rosencher, E. & Vinter, B. (2002). Optoelectronics. Cambridge University Press.]). The highest occupied mol­ecular orbital (HOMO) and the lowest unoccupied mol­ecular orbital (LUMO), known as frontier orbitals, obtained with a B3LYP/6-311G+(d,p) [H, C, N, Cl]–LANL2DZ [Hg] level calculation are illustrated in Fig. 9[link]. The HOMO is mainly delocalized at the pyridine ring system. After excitation, the charge is localized on the hexa­chlorido­dimercurate(II) moieties, as depicted in the LUMO. The calculated HOMO–LUMO energy gap (4.26 eV) is shifted from the experimental value, which may be attributed to solvent effects, compared to the gas-phase calculation.

[Figure 8]
Figure 8
UV–vis spectrum of (I)[link]. The inset shows the experimental energy band gap obtained from the absorption edge wavelength.
[Figure 9]
Figure 9
HOMO–LUMO mol­ecular orbitals showing the ground to excited state electronic transitions for (I)[link].

6. Hirshfeld surface analysis

A Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.]) to investigate the inter­molecular inter­actions in the title compound. Fig. 10[link]a illustrates the Hirshfeld surface mapped over dnorm, which was plotted with a colour scale of −0.211 to 1.132 a.u. with a standard (high) surface resolution. The red spots highlight the inter­atomic contacts including the N—H⋯Cl and C—H⋯Cl hydrogen bonds.

[Figure 10]
Figure 10
View of the Hirshfeld surfaces for (I)[link] mapped over (a) dnorm and (b) shape-index, displaying the inter­molecular inter­actions.

The shape-index of the Hirshfeld surface is a tool to visualize the ππ stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig.10b clearly suggests that ππ inter­actions are present in the title hexa­chlorido­dimercurate(II) salt.

Fig. 11[link]a shows the two-dimensional fingerprint of all contacts contributing to the Hirshfeld surface. In Fig. 11[link]b, with two symmetrical wings on the left and right sides illustrate the H⋯Cl/Cl⋯H inter­actions with a contribution of 49.5%. Fig. 11[link]c illustrates the two-dimensional fingerprint plot of (di, de) points related to H⋯H contacts, which represent a 24.9% contribution. Furthermore, there are Hg⋯Cl/Cl⋯Hg (7.1%; Fig. 11[link]d), C⋯C (3.6%; Fig. 11[link]e) and Cl⋯Cl (1.2%; Fig. 11[link]f) contacts. Fig. 12[link] shows the percentage contributions of the various contacts in the title structure.

[Figure 11]
Figure 11
Full two-dimensional fingerprint plots for (I)[link], showing (a) all inter­actions, and delineated into (b) H⋯Cl/Cl⋯H, (c) H⋯H, (d) Hg⋯Cl/Cl⋯Hg, (e) C⋯C and (f) Cl⋯Cl inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from a given point on the Hirshfeld surface.
[Figure 12]
Figure 12
Relative contribution (%) of various inter­molecular inter­actions to the Hirshfeld surface area.

7. Synthesis and crystallization

The title compound was synthesized by dissolving 2 mmol (241 mg) of 4-di­methyl­amino­pyridine 98% (Sigma–Aldrich) in an HCl 36–38% (Sigma–Aldrich) aqueous solution and 1 mmol (273 mg) of mercury(II) chloride HgCl2 (Merck) in ethanol in a molar ratio of 2:1. The mixture was then stirred for 2 h. The resulting aqueous solution was filtered and then evaporated at room temperature, which finally led to the growth of parallelepipedic colourless crystals after one day.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in calculated positions, with N—H = 0.86 Å and C—H = 0.93 or 0.96 Å. Uiso(H) values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms, and 1.2Ueq for the remaining H atoms. The (111) and (121) reflections were omitted owing to bad disagreement.

Table 2
Experimental details

Crystal data
Chemical formula (C7H11N2)2[Hg2Cl6]
Mr 860.23
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 7.6558 (3), 11.8961 (5), 13.5853 (4)
α, β, γ (°) 82.950 (3), 76.072 (3), 76.339 (4)
V3) 1164.07 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 13.87
Crystal size (mm) 0.72 × 0.24 × 0.18
 
Data collection
Diffractometer Enraf–Nonius CAD-4
Absorption correction ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])
Tmin, Tmax 0.53, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 7139, 5875, 3913
Rint 0.040
(sin θ/λ)max−1) 0.671
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.153, 1.03
No. of reflections 5875
No. of parameters 236
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 3.41, −3.00
Computer programs: CAD-4 EXPRESS (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]; Macíček & Yordanov, 1992[Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.]), XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: CAD-4 EXPRESS (Duisenberg, 1992 ; Macíček & Yordanov, 1992); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2006) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Bis[4-(dimethylamino)pyridinium] di-µ-chlorido-bis[dichloridomercurate(II)] top
Crystal data top
(C7H11N2)2[Hg2Cl6]Z = 2
Mr = 860.23F(000) = 792
Triclinic, P1Dx = 2.454 Mg m3
a = 7.6558 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.8961 (5) ÅCell parameters from 25 reflections
c = 13.5853 (4) Åθ = 10–15°
α = 82.950 (3)°µ = 13.87 mm1
β = 76.072 (3)°T = 293 K
γ = 76.339 (4)°Parallelepiped, colorless
V = 1164.07 (8) Å30.72 × 0.24 × 0.18 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
3913 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
Graphite monochromatorθmax = 28.5°, θmin = 2.3°
ω/2θ scansh = 102
Absorption correction: ψ scan
(North et al., 1968)
k = 1515
Tmin = 0.53, Tmax = 0.99l = 1818
7139 measured reflections2 standard reflections every 120 reflections
5875 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.055 w = 1/[σ2(Fo2) + (0.0933P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.153(Δ/σ)max = 0.001
S = 1.03Δρmax = 3.41 e Å3
5875 reflectionsΔρmin = 3.00 e Å3
236 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0058 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.73846 (6)0.52983 (3)0.96401 (3)0.04867 (15)
Hg20.70787 (6)0.02376 (3)0.53548 (3)0.05017 (16)
Cl30.7012 (4)0.6752 (2)0.82926 (18)0.0507 (6)
Cl50.5562 (4)0.1596 (2)0.66140 (18)0.0518 (6)
Cl20.4827 (3)0.5982 (2)1.11547 (17)0.0489 (6)
Cl60.5814 (4)0.1067 (2)0.37887 (17)0.0487 (5)
Cl10.9450 (4)0.3586 (2)1.0069 (2)0.0507 (6)
Cl40.9497 (4)0.1420 (2)0.5038 (2)0.0544 (6)
N1B0.3722 (13)0.0129 (9)0.8551 (6)0.055 (2)
H1B0.4233410.0229210.7919110.067*
N1A0.6907 (12)0.5280 (8)0.6462 (6)0.047 (2)
H1A0.6657750.5378180.7101420.056*
N2B0.1208 (12)0.0324 (7)1.1557 (6)0.0441 (18)
C1B0.2047 (12)0.0182 (8)1.0590 (6)0.0359 (19)
C5B0.2580 (14)0.0880 (8)1.0172 (8)0.043 (2)
H5B0.2378460.1492571.0578480.051*
N2A0.8004 (12)0.4827 (8)0.3413 (6)0.047 (2)
C2A0.7198 (13)0.4105 (8)0.5161 (8)0.042 (2)
H2A0.7125300.3400210.4961580.050*
C4B0.3388 (16)0.0977 (10)0.9166 (9)0.058 (3)
H4B0.3722590.1672440.8895810.069*
C1A0.7683 (12)0.4958 (8)0.4424 (6)0.0352 (18)
C2B0.2482 (14)0.1070 (9)0.9916 (7)0.043 (2)
H2B0.2230270.1793391.0159000.052*
C3B0.3261 (15)0.0884 (10)0.8918 (8)0.052 (3)
H3B0.3477960.1470790.8481960.063*
C5A0.7751 (14)0.6032 (9)0.4768 (8)0.047 (2)
H5A0.8052300.6635820.4303890.056*
C4A0.7372 (15)0.6156 (9)0.5779 (8)0.050 (2)
H4A0.7429240.6848380.6009440.061*
C3A0.6831 (14)0.4271 (9)0.6157 (7)0.045 (2)
H3A0.6522800.3681000.6636490.054*
C7B0.0765 (17)0.0644 (11)1.2239 (8)0.061 (3)
H7Q0.0163440.0398051.2908070.091*
H7P0.1883020.0857891.2270410.091*
H7D0.0034860.1299901.1976620.091*
C6B0.0727 (16)0.1412 (10)1.1987 (8)0.058 (3)
H6Q0.0132660.1346281.2691440.087*
H6D0.0094930.1598691.1628610.087*
H6P0.1823380.2014111.1925740.087*
C7A0.8505 (17)0.5720 (11)0.2661 (8)0.063 (3)
H7I0.8672260.5463040.1994820.094*
H7J0.7546090.6408120.2749330.094*
H7K0.9633340.5886430.2733770.094*
C6A0.8007 (17)0.3711 (11)0.3057 (8)0.065 (3)
H6K0.8254730.3765600.2327240.097*
H6I0.8942860.3118340.3285490.097*
H6J0.6825640.3518490.3323840.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0531 (3)0.0467 (2)0.0452 (2)0.00220 (18)0.01806 (17)0.00119 (16)
Hg20.0507 (3)0.0470 (3)0.0479 (2)0.00196 (18)0.00822 (17)0.00665 (17)
Cl30.0702 (17)0.0420 (12)0.0451 (12)0.0111 (11)0.0240 (11)0.0015 (10)
Cl50.0602 (15)0.0440 (13)0.0483 (12)0.0159 (11)0.0017 (11)0.0101 (10)
Cl20.0486 (13)0.0604 (15)0.0393 (11)0.0136 (11)0.0069 (10)0.0111 (10)
Cl60.0551 (14)0.0543 (14)0.0414 (11)0.0190 (11)0.0166 (10)0.0044 (10)
Cl10.0547 (14)0.0363 (11)0.0709 (16)0.0105 (10)0.0348 (12)0.0018 (11)
Cl40.0431 (13)0.0373 (12)0.0800 (18)0.0075 (10)0.0079 (12)0.0065 (11)
N1B0.052 (5)0.072 (7)0.038 (4)0.005 (5)0.012 (4)0.002 (4)
N1A0.057 (5)0.053 (5)0.034 (4)0.016 (4)0.011 (4)0.006 (4)
N2B0.049 (5)0.048 (5)0.035 (4)0.012 (4)0.009 (3)0.004 (3)
C1B0.030 (4)0.043 (5)0.035 (4)0.002 (3)0.018 (3)0.002 (4)
C5B0.049 (5)0.028 (4)0.050 (5)0.001 (4)0.018 (4)0.000 (4)
N2A0.041 (4)0.067 (6)0.033 (4)0.011 (4)0.007 (3)0.005 (4)
C2A0.040 (5)0.035 (5)0.053 (5)0.006 (4)0.015 (4)0.007 (4)
C4B0.050 (6)0.047 (6)0.072 (7)0.005 (5)0.021 (5)0.017 (5)
C1A0.031 (4)0.042 (5)0.034 (4)0.007 (4)0.013 (3)0.001 (4)
C2B0.046 (5)0.044 (5)0.043 (5)0.006 (4)0.019 (4)0.004 (4)
C3B0.052 (6)0.061 (7)0.046 (5)0.004 (5)0.019 (5)0.026 (5)
C5A0.049 (6)0.043 (5)0.051 (6)0.013 (4)0.018 (5)0.003 (4)
C4A0.053 (6)0.038 (5)0.061 (6)0.004 (4)0.013 (5)0.014 (5)
C3A0.046 (5)0.048 (6)0.041 (5)0.013 (4)0.008 (4)0.004 (4)
C7B0.061 (7)0.080 (8)0.042 (5)0.014 (6)0.008 (5)0.019 (5)
C6B0.064 (7)0.063 (7)0.051 (6)0.019 (6)0.019 (5)0.005 (5)
C7A0.066 (7)0.074 (8)0.041 (5)0.013 (6)0.006 (5)0.013 (5)
C6A0.068 (8)0.081 (9)0.048 (6)0.014 (7)0.011 (5)0.020 (6)
Geometric parameters (Å, º) top
Hg1—Cl12.371 (2)C2A—C3A1.344 (14)
Hg1—Cl32.380 (2)C2A—C1A1.386 (13)
Hg1—Cl22.539 (2)C2A—H2A0.9300
Hg1—Cl2i2.975 (2)C4B—H4B0.9300
Hg2—Cl42.367 (3)C1A—C5A1.429 (13)
Hg2—Cl52.392 (2)C2B—C3B1.357 (15)
Hg2—Cl62.542 (2)C2B—H2B0.9300
Hg2—Cl6ii2.934 (3)C3B—H3B0.9300
N1B—C4B1.329 (15)C5A—C4A1.352 (15)
N1B—C3B1.340 (15)C5A—H5A0.9300
N1B—H1B0.8600C4A—H4A0.9300
N1A—C3A1.334 (13)C3A—H3A0.9300
N1A—C4A1.362 (14)C7B—H7Q0.9600
N1A—H1A0.8600C7B—H7P0.9600
N2B—C1B1.326 (12)C7B—H7D0.9600
N2B—C6B1.445 (14)C6B—H6Q0.9600
N2B—C7B1.492 (13)C6B—H6D0.9600
C1B—C2B1.410 (13)C6B—H6P0.9600
C1B—C5B1.429 (14)C7A—H7I0.9600
C5B—C4B1.360 (15)C7A—H7J0.9600
C5B—H5B0.9300C7A—H7K0.9600
N2A—C1A1.357 (11)C6A—H6K0.9600
N2A—C7A1.435 (14)C6A—H6I0.9600
N2A—C6A1.468 (15)C6A—H6J0.9600
Cl1—Hg1—Cl3141.44 (10)C2A—C1A—C5A117.1 (8)
Cl1—Hg1—Cl2112.01 (9)C3B—C2B—C1B121.0 (10)
Cl3—Hg1—Cl2106.16 (9)C3B—C2B—H2B119.5
Cl1—Hg1—Cl2i93.63 (8)C1B—C2B—H2B119.5
Cl3—Hg1—Cl2i88.63 (8)N1B—C3B—C2B121.1 (9)
Cl2—Hg1—Cl2i94.45 (7)N1B—C3B—H3B119.4
Cl4—Hg2—Cl5141.70 (10)C2B—C3B—H3B119.4
Cl4—Hg2—Cl6112.72 (10)C4A—C5A—C1A119.1 (10)
Cl5—Hg2—Cl6105.06 (9)C4A—C5A—H5A120.5
Cl4—Hg2—Cl6ii95.28 (8)C1A—C5A—H5A120.5
Cl5—Hg2—Cl6ii87.53 (8)C5A—C4A—N1A120.7 (9)
Cl6—Hg2—Cl6ii94.73 (7)C5A—C4A—H4A119.6
Hg1—Cl2—Hg1i85.55 (7)N1A—C4A—H4A119.6
Hg2—Cl6—Hg2ii85.27 (7)N1A—C3A—C2A120.3 (9)
C4B—N1B—C3B119.8 (9)N1A—C3A—H3A119.9
C4B—N1B—H1B120.1C2A—C3A—H3A119.9
C3B—N1B—H1B120.1N2B—C7B—H7Q109.5
C3A—N1A—C4A121.2 (8)N2B—C7B—H7P109.5
C3A—N1A—H1A119.4H7Q—C7B—H7P109.5
C4A—N1A—H1A119.4N2B—C7B—H7D109.5
C1B—N2B—C6B121.7 (9)H7Q—C7B—H7D109.5
C1B—N2B—C7B120.2 (9)H7P—C7B—H7D109.5
C6B—N2B—C7B118.1 (8)N2B—C6B—H6Q109.5
N2B—C1B—C2B122.2 (9)N2B—C6B—H6D109.5
N2B—C1B—C5B121.8 (9)H6Q—C6B—H6D109.5
C2B—C1B—C5B116.1 (9)N2B—C6B—H6P109.5
C4B—C5B—C1B118.6 (9)H6Q—C6B—H6P109.5
C4B—C5B—H5B120.7H6D—C6B—H6P109.5
C1B—C5B—H5B120.7N2A—C7A—H7I109.5
C1A—N2A—C7A122.1 (9)N2A—C7A—H7J109.5
C1A—N2A—C6A120.1 (9)H7I—C7A—H7J109.5
C7A—N2A—C6A117.6 (9)N2A—C7A—H7K109.5
C3A—C2A—C1A121.6 (9)H7I—C7A—H7K109.5
C3A—C2A—H2A119.2H7J—C7A—H7K109.5
C1A—C2A—H2A119.2N2A—C6A—H6K109.5
N1B—C4B—C5B123.3 (11)N2A—C6A—H6I109.5
N1B—C4B—H4B118.4H6K—C6A—H6I109.5
C5B—C4B—H4B118.4N2A—C6A—H6J109.5
N2A—C1A—C2A122.8 (9)H6K—C6A—H6J109.5
N2A—C1A—C5A120.0 (9)H6I—C6A—H6J109.5
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···Cl30.862.543.239 (8)140
N1B—H1B···Cl50.862.463.195 (10)145
C2B—H2B···Cl1iii0.932.823.634 (11)147
C3A—H3A···Cl50.932.753.485 (11)136
Symmetry code: (iii) x+1, y, z+2.
 

References

First citationAakeröy, C. B., Beatty, A. M., Leinen, D. S. & Lorimer, K. R. (2000). Chem. Commun. pp. 935–936.  Google Scholar
First citationBen Jomaa, M., Chebbi, H., Fakhar Bourguiba, N. & Zid, M. F. (2018). Acta Cryst. E74, 91–97.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoussa, Ben O., Chebbi, H., Arfaoui, Y., Falvello, L. R., Tomas, M. & Zid, M. F. (2019b). J. Mol. Struct. 1195, 344–354.  Google Scholar
First citationBen Moussa, O., Chebbi, H. & Zid, M. F. (2018). Acta Cryst. E74, 436–440.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBen Moussa, O., Chebbi, H. & Zid, M. F. (2019a). J. Mol. Struct. 1180, 72–80.  Web of Science CSD CrossRef CAS Google Scholar
First citationBen Smail, R., Chebbi, H., Srinivasan, B. R. & Zid, M. F. (2017). J. Struct. Chem. 58, 724–733.  Web of Science CSD CrossRef CAS Google Scholar
First citationBossert, F., Meyer, H. & Wehinger, E. (1981). Angew. Chem. Int. Ed. Engl. 20, 762–769.  CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChao, M., Schempp, E. & Rosenstein, D. (1977). Acta Cryst. B33, 1820–1823.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationChebbi, H., Ben Smail, R. & Zid, M. F. (2014). Acta Cryst. E70, o642.  CSD CrossRef IUCr Journals Google Scholar
First citationChebbi, H., Ben Smail, R. & Zid, M. F. (2016). J. Struct. Chem. 57, 632–635.  Web of Science CSD CrossRef CAS Google Scholar
First citationChebbi, H., Boumakhla, A., Zid, M. F. & Guesmi, A. (2017). Acta Cryst. E73, 1453–1457.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChebbi, H. & Driss, A. (2001). Acta Cryst. C57, 1369–1370.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChebbi, H. & Driss, A. (2002a). Acta Cryst. E58, m147–m149.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChebbi, H. & Driss, A. (2002b). Acta Cryst. E58, m494–m496.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChebbi, H. & Driss, A. (2004). Acta Cryst. E60, m904–m906.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChebbi, H., Hajem, A. A. & Driss, A. (2000). Acta Cryst. C56, e333–e334.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChebbi, H., Mezrigui, S., Ben Jomaa, M. & Zid, M. F. (2018). Acta Cryst. E74, 949–954.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCléement, R., Lacroix, P. G., O'Hare, D. & Evans, J. (1994). Adv. Mater. 6, 794–797.  Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFersi, M. A., Chaabane, I., Gargouri, M. & Bulou, A. (2015). Polyhedron, 85, 41–47.  Web of Science CSD CrossRef CAS Google Scholar
First citationGrdenic, D. (1965). Q. Rev. Chem. Soc. 19, 303–328.  CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHu, A., Ngo, H. L. & Lin, W. (2003). J. Am. Chem. Soc. 125, 11490–11491.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHu, Y. L., Lin, J. H., Han, S., Chen, W. Q., Yu, L. L., Zhou, D. D., Yin, W. T., Zuo, H. R., Zhou, J. R., Yang, L. M. & Ni, C. L. (2012). Synth. Met. 162, 1024–1029.  Web of Science CSD CrossRef CAS Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationJiang, Z.-T., James, B. D., Liesegang, J., Tan, K. L., Gopalakrishnan, R. & Novak, I. (1995). J. Phys. Chem. Solids, 56, 277–283.  CrossRef CAS Web of Science Google Scholar
First citationKoleva, B. B., Kolev, T., Seidel, R. W., Tsanev, T., Mayer-Figge, H., Spiteller, M. & Sheldrick, W. S. (2008). Spectrochim. Acta A, 71, 695–702.  Web of Science CSD CrossRef Google Scholar
First citationKörfer, M., Fuess, H., Prager, M. & Zehnder, E.-J. (1988). Ber. Bunsenges. Phys. Chem. 92, 68–73.  Google Scholar
First citationLarock, R. C., Burns, L. D., Varaprath, S., Russell, C. F., Richardson, J. W., Janakiraman, M. N. & Jacobson, R. A. (1987). Organometallics, 6, 1780–1789.  CSD CrossRef CAS Web of Science Google Scholar
First citationLiesegang, J., James, B. D. & Jiang, Z.-T. (1995). Integr. Ferroelectr. 9, 189–198.  CrossRef CAS Web of Science Google Scholar
First citationLinden, A., James, B. D., Liesegang, J. & Gonis, N. (1999). Acta Cryst. B55, 396–409.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73–80.  CrossRef Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMitsui, T. & Nakamura, E. (1990). Editors. Ferroelectrics and Related Substances. Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, New Series III: Crystal and Solid State Physics, 28B, §43. Berlin: Springer-Verlag.  Google Scholar
First citationMitzi, D. B. (2001). Chem. Mater. 13, 3283–3298.  Web of Science CrossRef CAS Google Scholar
First citationMorris, R. E. & Wheatley, P. A. (2008). Angew. Chem. Int. Ed. 47, 4966–4981.  Web of Science CrossRef CAS Google Scholar
First citationMustaqim, R. M., Ali, S., Razak, I. A., Fun, H.-K., Goswami, S. & Adak, A. (2005). Acta Cryst. E61, o3733–o3734.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOhms, U. & Guth, H. (1984). Z. Kristallogr. New Cryst. Struct. 166, 213–217.  CAS Google Scholar
First citationPrince, B. J., Turnbull, M. M. & Willett, R. D. (2003). J. Coord. Chem. 56, 441–452.  Web of Science CSD CrossRef CAS Google Scholar
First citationRabu, P., Rueff, J. M., Huang, Z. L., Angelov, S., Souletie, J. & Drillon, M. (2001). Polyhedron, 20, 1677–1685.  CAS Google Scholar
First citationRosencher, E. & Vinter, B. (2002). Optoelectronics. Cambridge University Press.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSørensen, G. O., Mahler, L. & Rastrup-Andersen, N. (1974). J. Mol. Struct. 20, 119–126.  Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSumanesh, Awasthi, A. & Gupta, P. (2016). Chem Sci Trans, 5, 311–320.  CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.  Google Scholar
First citationWang, S. D., Herbette, L. G. & Rhodes, D. G. (1989). Acta Cryst. C45, 1748–1751.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWei, K., Zhang, B., Ni, J., Geng, J., Zhang, J., Xu, D., Cui, Y. & Liu, Y. (2015). Inorg. Chem. Commun. 51, 103–105.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWhite, J. G. (1963). Acta Cryst. 16, 397–403.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationZabel, M., Pavlovskii, I. & Poznyak, A. L. (2008). J. Struct. Chem. 49, 758–761.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds