research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 2-(2-bromo-5-fluoro­phen­yl)-8-eth­­oxy-3-nitro-2H-thio­chromene and 2-(2-bromo-5-fluoro­phen­yl)-7-meth­­oxy-3-nitro-2H-thio­chromene

aFaculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Ha Noi, Vietnam
*Correspondence e-mail: thaithanhthubui@gmail.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 4 October 2019; accepted 16 October 2019; online 31 October 2019)

Two thio­chromene com­pounds containing Br and F atoms, namely 2-(2-bromo-5-fluoro­phen­yl)-8-eth­oxy-3-nitro-2H-thio­chromene (C17H13BrFNO3S, A) and 2-(2-bromo-5-fluoro­phen­yl)-7-meth­oxy-3-nitro-2H-thio­chromene (C16H11BrFNO3S, B), were prepared via the condensation reaction between 2-mer­capto­benzaldehyde and nitro­styrene derivatives. In both com­pounds, the thio­chromene plane is almost perpendicular to the phenyl ring. In the structure of A, mol­ecules are assembled via ππ stacking and C—H⋯O and C—F⋯π inter­actions. In the crystal packing of B, mol­ecules are linked by C—H⋯F, C—H⋯O, C—H⋯π and ππ inter­actions.

1. Chemical context

2H-Chromenes (or 2H-benzo­pyrans) are heterocyclic com­pounds found in many natural plants. This class of mol­ecules shows a wide variety of biological activities, such as anti­cancer, anti-inflammation and anti-HIV (Horton et al., 2003[Horton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893-930.]). Recently, we have shown that 3-nitro-2H-chromene can act as a selective mTOR/Pi3K inhibitor, which can lead to a new com­pound to treat breast cancer (Fouqué et al., 2015[Fouqué, A., Delalande, O., Jean, M., Castellano, R., Josselin, E., Malleter, M., Shoji, K. F., Hung, M. D., Rampanarivo, H., Collette, Y., van de Weghe, P. & Legembre, P. (2015). J. Med. Chem. 58, 6559-6573.]). Inter­estingly, we observed that thio­chromene derivatives, where the O atom is replaced by an S atom, can increase significantly the biological activity of these com­pounds. With the goal in mind to synthesize a chemical library of thio­chromene com­pounds (Nguyen et al., 2016[Nguyen, T. T. H., Nguyen, T. X., Cao, T. T. T., Dinh, T. H., Nguyen, H. H., Bui, T. T. T., Pham, V. P. & Mac, D. H. (2016). Synlett, 28, 429-432.]), we have now successfully prepared 2-(2-bromo-5-fluoro­phen­yl)-8-eth­oxy-3-nitro-2H-thio­chromene (A) and 2-(2-bromo-5-fluoro­phen­yl)-7-meth­oxy-3-nitro-2H-thio­chromene (B). Crystal structure determination can help to understand the role of halogenated substituents in the biological activity of these com­pounds.

[Scheme 1]

2. Structural commentary

Compound (A) crystallizes in the triclinic space group P[\overline{1}], while com­pound (B) crystallizes in the space group P21/c, both with one mol­ecule in the asymmetric unit (Figs. 1[link] and 2[link]). In both com­pounds, the conformation of the thio­chromene ring is similar. In A, the thio­chromene ring makes an angle of 89.3 (2)° with phenyl ring C1–C6, while in B, this angle is 86.94 (8)°, which indicates that the 2-bromo-5-fluoro­phenyl ring is roughly perpendicular to the thio­chromene plane. Both 2H-thio­pyran rings have a screw-boat conformation, with atom C7 having the largest deviation from the best plane through atoms S1/C7–C11 [puckering parameters Q = 0.388 (4) Å, θ = 119.6 (7)° and φ = 202.2 (9)° for A, and Q = 0.5111 (18) Å, θ = 118.2 (2)° and φ = 208.1 (3)° for B]. The C—S bond lengths are almost equal [C7—S1 = 1.828 (4) Å and C11—S1 = 1.8307 (19) Å for A, and 1.758 (5) and 1.7574 (19) Å for B, respectively]. The C11—S1—C7 bond angle is 102.5 (2)° in A and 100.47 (9)° in B. The N—O bond lengths in com­pound B [1.232 (2) and 1.221 (2) Å] are slightly longer than those in com­pound A [both 1.219 (5) Å]. The nitro group is situated in the thio­chromene plane, as illustrated by the torsion angle O2—N8—C8—C9 of 1.3 (7)° in A and 9.5 (3)° in B.

[Figure 1]
Figure 1
The mol­ecular structure of 2-(2-bromo-5-fluoro­phen­yl)-8-eth­oxy-3-nitro-2H-thio­chromene (A), showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of 2-(2-bromo-5-fluoro­phen­yl)-7-meth­oxy-3-nitro-2H-thio­chromene (B), showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal of A, mol­ecules form inversion dimers via C—H⋯O hydrogen bonds (Table 1[link] and Fig. 3[link]) and ππ inter­actions [Cg3⋯Cg3i = 3.646 (3) Å; symmetry code: (i) −x, −y + 2, −z; Cg3 is the centroid of the C10–C15 ring]. Neighbouring dimers inter­act through C—F⋯π and short Br1⋯H5ii inter­actions [F4⋯Cg3ii = 3.328 (4) Å and Br1⋯H5iii = 2.96 Å; symmetry codes: (ii) −x, −y + 1, −z + 1; (iii) x + 1, y, z].

Table 1
Hydrogen-bond geometry (Å, °) for A[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O2i 0.93 2.50 3.419 (7) 168
Symmetry code: (i) -x, -y+1, -z.
[Figure 3]
Figure 3
Packing diagram for A, showing C—H⋯O, C—F⋯π, ππ and H⋯Br inter­actions [symmetry codes: (i) −x, −y + 1, −z + 1; (ii) −x, −y + 2, −z; (iii) −x + 1, −y + 1, −z + 1; (iv) −x, −y + 1, −z]. Cg3 is the centroid of the C10–C15 ring.

In the crystal of com­pound B, two mol­ecules form dimers through C—H⋯F hydrogen bonds (Table 2[link] and Fig. 4[link]). These dimers form chains running in the c direction through ππ inter­actions [Cg2⋯Cg2i = 3.8458 (13) Å; symmetry code: (i) −x + 2, −y + 1, −z + 1; Cg2 is the centroid of the C1–C6 ring]. Parallel chains inter­act via C—H⋯O and C—H⋯π inter­actions.

Table 2
Hydrogen-bond geometry (Å, °) for B[link]

Cg3 is the centroid of the C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1i 0.93 2.60 3.418 (3) 148
C15—H15⋯F4ii 0.93 2.54 3.268 (2) 136
C16—C16B⋯Cg3iii 0.96 2.86 3.668 (3) 143
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+2; (iii) -x+1, -y+1, -z+2.
[Figure 4]
Figure 4
Packing diagram for B, showing C—H⋯O, C—H⋯F, C—H⋯π and ππ inter­actions [symmetry codes: (i) x, −y + [{1\over 2}], z − [{1\over 2}]; (ii) −x + 2, −y + 1, −z + 2; (iii) −x + 1, y − [{1\over 2}], −z + [{3\over 2}]; (iv) −x + 1, −y + 1, −z + 1]. Cg2 and Cg3 are the centroids of the C1–C6 and C10–C15 rings, respectively.

4. Database survey

The Cambridge Structural Database (CSD, Version 5.40, update of May 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains seven phenyl-2H-thio­chromene derivatives, of which three contain halogen atoms [CSD refcodes IFOZIO (Choudhury & Mukherjee, 2013[Choudhury, A. R. & Mukherjee, S. (2013). Adv. Synth. Catal. 355, 1989-1995.]), QAPSAE (Simlandy & Mukherjee, 2017[Simlandy, A. K. & Mukherjee, S. (2017). J. Org. Chem. 82, 4851-4858.]) and WAPCUO (Sangeetha & Sekar, 2017[Sangeetha, S. & Sekar, G. (2017). Org. Lett. 19, 1670-1673.])] and only one structure contains a nitro substituent on the 2H-thio­chromene ring (NOGDIZ; Le et al., 2019[Le, T. T. H., Youhei, C., Le, Q. H., Nguyen, T. B. & Mac, D. H. (2019). Org. Biomol. Chem. 17, 6355-6358.]). In all seven structures, the phenyl ring is roughly perpendicular to the thio­chromene plane, with dihedral angles between 87.73 and 98.89°. Four of the seven structures display inter­molecular inter­actions between the S atom and a C—H bond. However, in the two structures presented here, this type of inter­action has not been observed.

5. Synthesis and crystallization

To a round-bottomed flask was added 2-mercaptobenzaldehyde (1 equiv.), nitro­styrene (1 equiv.) and K2CO3 (1 equiv.) in toluene and the reaction mixture was stirred at room temperature for 2 h. After com­pletion of the reaction, the solvent was evaporated under reduced pressure and the crude product was purified by flash chromatography on silica gel (yield 90%). Crystals suitable for single-crystal X-ray diffraction data collection were obtained by slow evaporation from an ethanol solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms bonded to C atoms were placed at calculated positions, with C—H = 0.93–0.98 Å, and refined as riding, with Uiso(H) = 1.2Ueq(C) for Csp2—H and Uiso(H) = 1.5Ueq(C) for Csp3—H. A rotating-group model was applied for methyl-group C17 in A and C16 in B.

Table 3
Experimental details

  A B
Crystal data
Chemical formula C17H13BrFNO3S C16H11BrFNO3S
Mr 410.25 396.23
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 273 273
a, b, c (Å) 7.6695 (12), 10.6867 (18), 12.2767 (19) 7.6231 (4), 17.3484 (8), 11.8345 (6)
α, β, γ (°) 64.686 (4), 80.760 (4), 70.395 (4) 90, 106.016 (2), 90
V3) 856.7 (2) 1504.35 (13)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 2.55 2.90
Crystal size (mm) 0.25 × 0.2 × 0.15 0.30 × 0.22 × 0.11
 
Data collection
Diffractometer Bruker D8 Quest CMOS Bruker D8 Quest CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.621, 0.745 0.599, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 12684, 3255, 2291 31660, 3745, 3018
Rint 0.037 0.032
(sin θ/λ)max−1) 0.611 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.128, 1.04 0.029, 0.070, 1.04
No. of reflections 3255 3745
No. of parameters 218 209
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.53, −0.49 0.52, −0.49
Computer programs: APEX2 (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2-(2-Bromo-5-fluorophenyl)-8-ethoxy-3-nitro-2H-thiochromene (A) top
Crystal data top
C17H13BrFNO3SZ = 2
Mr = 410.25F(000) = 412
Triclinic, P1Dx = 1.590 Mg m3
a = 7.6695 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6867 (18) ÅCell parameters from 5933 reflections
c = 12.2767 (19) Åθ = 3.0–25.6°
α = 64.686 (4)°µ = 2.55 mm1
β = 80.760 (4)°T = 273 K
γ = 70.395 (4)°Triangular-prism, clear light yellow
V = 856.7 (2) Å30.25 × 0.2 × 0.15 mm
Data collection top
Bruker D8 Quest CMOS
diffractometer
2291 reflections with I > 2σ(I)
φ and ω scansRint = 0.037
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 25.7°, θmin = 3.0°
Tmin = 0.621, Tmax = 0.745h = 99
12684 measured reflectionsk = 1313
3255 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0419P)2 + 2.0237P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3255 reflectionsΔρmax = 0.53 e Å3
218 parametersΔρmin = 0.49 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.78831 (7)0.45042 (7)0.29672 (6)0.0676 (2)
S10.34737 (16)0.76031 (13)0.17001 (11)0.0459 (3)
F40.1093 (5)0.3152 (4)0.5616 (3)0.0878 (11)
O10.4800 (5)0.3584 (4)0.1158 (3)0.0627 (10)
N80.3239 (6)0.4388 (5)0.0863 (4)0.0514 (10)
O30.1347 (6)0.9891 (4)0.2321 (4)0.0800 (12)
C60.4041 (5)0.4707 (4)0.3176 (4)0.0317 (9)
C70.3916 (5)0.5738 (5)0.1873 (4)0.0344 (10)
H70.51370.54640.15050.041*
O20.2238 (6)0.4176 (5)0.0326 (4)0.0877 (14)
C10.5698 (6)0.4073 (5)0.3787 (4)0.0398 (10)
C50.2496 (6)0.4375 (5)0.3831 (4)0.0430 (11)
H50.13530.47850.34630.052*
C80.2567 (6)0.5648 (5)0.1183 (4)0.0394 (11)
C90.0857 (6)0.6514 (5)0.0895 (4)0.0441 (11)
H90.01620.63000.04800.053*
C100.0005 (6)0.7756 (5)0.1180 (4)0.0449 (12)
C110.1047 (6)0.8283 (5)0.1624 (4)0.0440 (11)
C20.5820 (7)0.3155 (5)0.4989 (5)0.0540 (13)
H20.69450.27600.53760.065*
C40.2649 (7)0.3447 (6)0.5014 (4)0.0538 (13)
C120.0194 (8)0.9462 (6)0.1916 (5)0.0588 (14)
C30.4268 (8)0.2827 (6)0.5611 (5)0.0593 (14)
H30.43230.21960.64200.071*
C150.1906 (7)0.8446 (6)0.1038 (5)0.0612 (15)
H150.26170.81000.07510.073*
C130.1723 (9)1.0141 (6)0.1749 (6)0.0758 (19)
H130.23061.09460.19320.091*
C140.2721 (8)0.9611 (7)0.1315 (5)0.0757 (19)
H140.39871.00620.12090.091*
C160.0603 (12)1.1016 (8)0.2740 (8)0.108 (3)
H16A0.03551.07990.33480.129*
H16B0.00661.19290.20800.129*
C170.2145 (15)1.1110 (9)0.3261 (10)0.140 (4)
H17A0.30431.13910.26390.211*
H17B0.27171.01820.38770.211*
H17C0.16731.18190.36040.211*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0326 (3)0.0840 (5)0.0826 (4)0.0170 (3)0.0096 (2)0.0277 (3)
S10.0434 (6)0.0424 (7)0.0506 (7)0.0164 (5)0.0098 (5)0.0116 (6)
F40.084 (2)0.116 (3)0.0506 (19)0.054 (2)0.0178 (17)0.0102 (19)
O10.056 (2)0.070 (3)0.071 (3)0.014 (2)0.0018 (19)0.040 (2)
N80.057 (3)0.069 (3)0.045 (2)0.029 (2)0.004 (2)0.031 (2)
O30.094 (3)0.049 (2)0.096 (3)0.013 (2)0.003 (2)0.036 (2)
C60.031 (2)0.035 (2)0.034 (2)0.0095 (18)0.0047 (17)0.0171 (19)
C70.029 (2)0.046 (3)0.034 (2)0.0144 (19)0.0037 (17)0.020 (2)
O20.078 (3)0.129 (4)0.105 (3)0.037 (3)0.012 (2)0.083 (3)
C10.038 (2)0.034 (2)0.047 (3)0.005 (2)0.007 (2)0.018 (2)
C50.038 (2)0.052 (3)0.040 (3)0.016 (2)0.002 (2)0.017 (2)
C80.037 (2)0.058 (3)0.029 (2)0.022 (2)0.0029 (18)0.019 (2)
C90.039 (2)0.064 (3)0.030 (2)0.026 (2)0.0020 (19)0.011 (2)
C100.035 (2)0.051 (3)0.034 (3)0.013 (2)0.0046 (19)0.002 (2)
C110.043 (3)0.039 (3)0.031 (2)0.008 (2)0.0030 (19)0.002 (2)
C20.058 (3)0.046 (3)0.050 (3)0.004 (3)0.023 (3)0.013 (2)
C40.064 (3)0.062 (3)0.040 (3)0.030 (3)0.007 (2)0.018 (3)
C120.067 (4)0.039 (3)0.054 (3)0.013 (3)0.005 (3)0.008 (3)
C30.083 (4)0.051 (3)0.035 (3)0.021 (3)0.012 (3)0.006 (2)
C150.043 (3)0.061 (4)0.050 (3)0.011 (3)0.003 (2)0.002 (3)
C130.069 (4)0.046 (3)0.069 (4)0.005 (3)0.019 (3)0.007 (3)
C140.048 (3)0.067 (4)0.062 (4)0.003 (3)0.006 (3)0.006 (3)
C160.130 (7)0.070 (5)0.128 (7)0.011 (5)0.009 (5)0.057 (5)
C170.187 (10)0.072 (5)0.179 (10)0.016 (6)0.027 (8)0.075 (6)
Geometric parameters (Å, º) top
Br1—C11.901 (4)C10—C111.400 (7)
S1—C71.828 (4)C10—C151.403 (7)
S1—C111.758 (5)C11—C121.379 (7)
F4—C41.356 (6)C2—H20.9300
O1—N81.219 (5)C2—C31.372 (7)
N8—O21.219 (5)C4—C31.357 (7)
N8—C81.468 (6)C12—C131.408 (8)
O3—C121.360 (7)C3—H30.9300
O3—C161.418 (8)C15—H150.9300
C6—C71.501 (6)C15—C141.353 (9)
C6—C11.389 (6)C13—H130.9300
C6—C51.381 (6)C13—C141.367 (9)
C7—H70.9800C14—H140.9300
C7—C81.488 (6)C16—H16A0.9700
C1—C21.376 (7)C16—H16B0.9700
C5—H50.9300C16—C171.481 (11)
C5—C41.361 (6)C17—H17A0.9600
C8—C91.325 (6)C17—H17B0.9600
C9—H90.9300C17—H17C0.9600
C9—C101.433 (7)
C11—S1—C7102.5 (2)C3—C2—C1119.4 (5)
O1—N8—C8117.8 (4)C3—C2—H2120.3
O2—N8—O1122.5 (5)F4—C4—C5117.7 (5)
O2—N8—C8119.8 (4)F4—C4—C3119.2 (5)
C12—O3—C16119.7 (5)C3—C4—C5123.1 (5)
C1—C6—C7121.8 (4)O3—C12—C11114.8 (5)
C5—C6—C7121.3 (4)O3—C12—C13125.5 (6)
C5—C6—C1117.0 (4)C11—C12—C13119.6 (6)
S1—C7—H7106.6C2—C3—H3120.9
C6—C7—S1111.5 (3)C4—C3—C2118.2 (5)
C6—C7—H7106.6C4—C3—H3120.9
C8—C7—S1111.0 (3)C10—C15—H15119.8
C8—C7—C6114.2 (3)C14—C15—C10120.4 (6)
C8—C7—H7106.6C14—C15—H15119.8
C6—C1—Br1119.9 (3)C12—C13—H13120.2
C2—C1—Br1117.9 (3)C14—C13—C12119.6 (6)
C2—C1—C6122.3 (4)C14—C13—H13120.2
C6—C5—H5120.0C15—C14—C13121.4 (6)
C4—C5—C6119.9 (4)C15—C14—H14119.3
C4—C5—H5120.0C13—C14—H14119.3
N8—C8—C7113.7 (4)O3—C16—H16A110.3
C9—C8—N8118.5 (4)O3—C16—H16B110.3
C9—C8—C7127.7 (4)O3—C16—C17107.3 (7)
C8—C9—H9117.8H16A—C16—H16B108.5
C8—C9—C10124.5 (4)C17—C16—H16A110.3
C10—C9—H9117.8C17—C16—H16B110.3
C11—C10—C9120.9 (4)C16—C17—H17A109.5
C11—C10—C15119.0 (5)C16—C17—H17B109.5
C15—C10—C9120.1 (5)C16—C17—H17C109.5
C10—C11—S1122.3 (4)H17A—C17—H17B109.5
C12—C11—S1117.5 (4)H17A—C17—H17C109.5
C12—C11—C10120.0 (5)H17B—C17—H17C109.5
C1—C2—H2120.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O2i0.932.503.419 (7)168
Symmetry code: (i) x, y+1, z.
2-(2-Bromo-5-fluorophenyl)-7-methoxy-3-nitro-2H-thiochromene (B) top
Crystal data top
C16H11BrFNO3SF(000) = 792
Mr = 396.23Dx = 1.749 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.6231 (4) ÅCell parameters from 9945 reflections
b = 17.3484 (8) Åθ = 3.0–28.3°
c = 11.8345 (6) ŵ = 2.90 mm1
β = 106.016 (2)°T = 273 K
V = 1504.35 (13) Å3Block, yellow
Z = 40.30 × 0.22 × 0.11 mm
Data collection top
Bruker D8 Quest CMOS
diffractometer
3018 reflections with I > 2σ(I)
φ and ω scansRint = 0.032
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 28.4°, θmin = 3.0°
Tmin = 0.599, Tmax = 0.746h = 1010
31660 measured reflectionsk = 2323
3745 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0274P)2 + 0.9845P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3745 reflectionsΔρmax = 0.52 e Å3
209 parametersΔρmin = 0.49 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.57090 (3)0.36398 (2)0.38157 (2)0.04708 (9)
S10.52686 (6)0.31114 (3)0.66185 (4)0.03212 (11)
F41.0275 (2)0.57875 (8)0.73645 (12)0.0538 (4)
O30.2529 (2)0.42250 (10)0.96347 (13)0.0458 (4)
O21.1678 (2)0.23148 (10)0.82659 (17)0.0550 (4)
O11.0798 (2)0.26267 (11)0.64265 (15)0.0545 (4)
N81.0577 (2)0.26017 (10)0.74190 (18)0.0383 (4)
C60.7901 (2)0.40495 (10)0.61148 (16)0.0265 (4)
C10.7106 (3)0.43164 (11)0.49777 (16)0.0306 (4)
C80.8921 (3)0.29553 (11)0.75735 (17)0.0307 (4)
C70.7581 (3)0.32337 (11)0.64724 (16)0.0289 (4)
H70.76920.28930.58350.035*
C110.5550 (3)0.34811 (11)0.80401 (16)0.0288 (4)
C120.4044 (3)0.37801 (11)0.83133 (17)0.0325 (4)
H120.29660.38540.77210.039*
C100.7218 (3)0.33978 (11)0.89180 (17)0.0311 (4)
C50.8972 (3)0.45668 (11)0.69165 (16)0.0300 (4)
H50.95390.44110.76820.036*
C20.7313 (3)0.50680 (13)0.46588 (18)0.0375 (5)
H20.67420.52320.38980.045*
C90.8784 (3)0.30534 (11)0.86622 (17)0.0338 (4)
H90.97460.28920.92870.041*
C40.9184 (3)0.53081 (12)0.65674 (18)0.0349 (4)
C140.5759 (3)0.39037 (13)1.03475 (18)0.0385 (5)
H140.58290.40431.11180.046*
C150.7271 (3)0.36263 (12)1.00596 (17)0.0361 (4)
H150.83680.35891.06460.043*
C130.4121 (3)0.39734 (12)0.94672 (18)0.0347 (4)
C30.8361 (3)0.55789 (12)0.54603 (19)0.0386 (5)
H30.85030.60880.52560.046*
C160.2464 (4)0.43592 (16)1.0811 (2)0.0534 (6)
H16A0.12540.45151.08070.080*
H16B0.33130.47591.11570.080*
H16C0.27810.38941.12610.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.05237 (15)0.05020 (14)0.03012 (11)0.00306 (11)0.00293 (9)0.00516 (9)
S10.0285 (2)0.0376 (3)0.0274 (2)0.0057 (2)0.00289 (18)0.00232 (19)
F40.0685 (9)0.0376 (7)0.0489 (8)0.0167 (7)0.0057 (7)0.0092 (6)
O30.0422 (9)0.0591 (10)0.0385 (8)0.0009 (7)0.0153 (7)0.0034 (7)
O20.0376 (9)0.0477 (10)0.0733 (12)0.0126 (7)0.0044 (8)0.0180 (9)
O10.0390 (9)0.0724 (12)0.0530 (10)0.0034 (8)0.0143 (8)0.0143 (9)
N80.0301 (9)0.0276 (8)0.0544 (11)0.0014 (7)0.0066 (8)0.0011 (8)
C60.0260 (9)0.0271 (9)0.0274 (9)0.0028 (7)0.0091 (7)0.0009 (7)
C10.0301 (9)0.0346 (10)0.0264 (9)0.0027 (8)0.0068 (7)0.0023 (8)
C80.0278 (9)0.0244 (9)0.0371 (10)0.0008 (7)0.0044 (8)0.0026 (8)
C70.0290 (9)0.0277 (9)0.0287 (9)0.0002 (8)0.0059 (7)0.0012 (7)
C110.0319 (10)0.0275 (9)0.0250 (9)0.0046 (7)0.0046 (7)0.0031 (7)
C120.0302 (9)0.0353 (10)0.0291 (9)0.0052 (8)0.0032 (8)0.0031 (8)
C100.0339 (10)0.0275 (9)0.0281 (9)0.0027 (8)0.0019 (8)0.0059 (7)
C50.0326 (10)0.0312 (10)0.0257 (9)0.0012 (8)0.0070 (7)0.0004 (8)
C20.0422 (11)0.0393 (11)0.0309 (10)0.0086 (9)0.0099 (9)0.0083 (9)
C90.0318 (10)0.0301 (10)0.0341 (10)0.0011 (8)0.0000 (8)0.0073 (8)
C40.0378 (11)0.0312 (10)0.0362 (10)0.0032 (8)0.0114 (8)0.0058 (8)
C140.0479 (12)0.0390 (11)0.0272 (10)0.0054 (10)0.0081 (9)0.0003 (8)
C150.0381 (11)0.0369 (11)0.0273 (9)0.0032 (9)0.0010 (8)0.0042 (8)
C130.0370 (11)0.0341 (10)0.0341 (10)0.0042 (9)0.0115 (8)0.0020 (8)
C30.0469 (12)0.0295 (10)0.0421 (11)0.0029 (9)0.0169 (10)0.0051 (9)
C160.0579 (15)0.0655 (16)0.0437 (13)0.0029 (13)0.0256 (12)0.0042 (12)
Geometric parameters (Å, º) top
Br1—C11.8961 (19)C12—H120.9300
S1—C71.8307 (19)C12—C131.392 (3)
S1—C111.7574 (19)C10—C91.440 (3)
F4—C41.357 (2)C10—C151.398 (3)
O3—C131.355 (3)C5—H50.9300
O3—C161.426 (3)C5—C41.374 (3)
O2—N81.221 (2)C2—H20.9300
O1—N81.232 (2)C2—C31.380 (3)
N8—C81.460 (3)C9—H90.9300
C6—C11.394 (3)C4—C31.370 (3)
C6—C71.516 (3)C14—H140.9300
C6—C51.395 (3)C14—C151.376 (3)
C1—C21.379 (3)C14—C131.393 (3)
C8—C71.497 (3)C15—H150.9300
C8—C91.332 (3)C3—H30.9300
C7—H70.9800C16—H16A0.9600
C11—C121.377 (3)C16—H16B0.9600
C11—C101.410 (3)C16—H16C0.9600
C11—S1—C7100.47 (9)C4—C5—C6119.55 (18)
C13—O3—C16117.99 (18)C4—C5—H5120.2
O2—N8—O1123.58 (19)C1—C2—H2119.8
O2—N8—C8119.36 (19)C1—C2—C3120.50 (19)
O1—N8—C8117.04 (17)C3—C2—H2119.8
C1—C6—C7121.27 (17)C8—C9—C10123.18 (18)
C1—C6—C5117.40 (17)C8—C9—H9118.4
C5—C6—C7121.32 (16)C10—C9—H9118.4
C6—C1—Br1120.14 (15)F4—C4—C5117.72 (18)
C2—C1—Br1118.09 (15)F4—C4—C3119.08 (19)
C2—C1—C6121.77 (18)C3—C4—C5123.20 (19)
N8—C8—C7115.63 (17)C15—C14—H14120.5
C9—C8—N8118.44 (18)C15—C14—C13118.98 (19)
C9—C8—C7125.74 (18)C13—C14—H14120.5
S1—C7—H7107.0C10—C15—H15118.8
C6—C7—S1111.58 (13)C14—C15—C10122.39 (19)
C6—C7—H7107.0C14—C15—H15118.8
C8—C7—S1108.90 (13)O3—C13—C12115.12 (18)
C8—C7—C6114.88 (15)O3—C13—C14124.95 (19)
C8—C7—H7107.0C12—C13—C14119.93 (19)
C12—C11—S1118.22 (14)C2—C3—H3121.2
C12—C11—C10120.41 (18)C4—C3—C2117.55 (19)
C10—C11—S1121.01 (15)C4—C3—H3121.2
C11—C12—H12119.7O3—C16—H16A109.5
C11—C12—C13120.61 (18)O3—C16—H16B109.5
C13—C12—H12119.7O3—C16—H16C109.5
C11—C10—C9121.27 (18)H16A—C16—H16B109.5
C15—C10—C11117.59 (19)H16A—C16—H16C109.5
C15—C10—C9121.07 (18)H16B—C16—H16C109.5
C6—C5—H5120.2
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.932.603.418 (3)148
C15—H15···F4ii0.932.543.268 (2)136
C16—C16B···Cg3iii0.962.863.668 (3)143
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y+1, z+2; (iii) x+1, y+1, z+2.
 

References

First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoudhury, A. R. & Mukherjee, S. (2013). Adv. Synth. Catal. 355, 1989–1995.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFouqué, A., Delalande, O., Jean, M., Castellano, R., Josselin, E., Malleter, M., Shoji, K. F., Hung, M. D., Rampanarivo, H., Collette, Y., van de Weghe, P. & Legembre, P. (2015). J. Med. Chem. 58, 6559–6573.  PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHorton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893–930.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLe, T. T. H., Youhei, C., Le, Q. H., Nguyen, T. B. & Mac, D. H. (2019). Org. Biomol. Chem. 17, 6355–6358.  CrossRef CAS PubMed Google Scholar
First citationNguyen, T. T. H., Nguyen, T. X., Cao, T. T. T., Dinh, T. H., Nguyen, H. H., Bui, T. T. T., Pham, V. P. & Mac, D. H. (2016). Synlett, 28, 429–432.  Google Scholar
First citationSangeetha, S. & Sekar, G. (2017). Org. Lett. 19, 1670–1673.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSimlandy, A. K. & Mukherjee, S. (2017). J. Org. Chem. 82, 4851–4858.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds