research communications
Crystal structures and Hirshfeld surface analyses of 4-benzyl-6-phenyl-4,5-dihydropyridazin-3(2H)-one and methyl 2-[5-(2,6-dichlorobenzyl)-6-oxo-3-phenyl-1,4,5,6-tetrahydropyridazin-1-yl]acetate
aLaboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, Mohamed I University, 60000 Oujda, Morocco, bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Kurupelit, Samsun, Turkey, cLaboratory of Organic Synthesis, Extraction and Valorization, Faculty of Sciences, Ain Chok, University Hassan II, Casablanca, Rabat, Morocco, and dLaboratory of Plant Chemistry, Organic and Bioorganic Synthesis, URAC23, Faculty of Science, B.P. 1014, GEOPAC Research Center, Mohammed V University, Rabat, Morocco
*Correspondence e-mail: sdadou86@gmail.com, sevgi.kansiz85@gmail.com
The asymmetric units of the title compounds both contain one nonplanar molecule. In 4-benzyl-6-phenyl-4,5-dihydropyridazin-3(2H)-one, C17H14N2O, (I), the phenyl and pyridazine rings are twisted with respect to each other, making a dihedral angle of 46.69 (9)°; the phenyl ring of the benzyl group is nearly perpendicular to the plane of the pyridazine ring, the dihedral angle being 78.31 (10)°. In methyl 2-[5-(2,6-dichlorobenzyl)-6-oxo-3-phenyl-1,4,5,6-tetrahydropyridazin-1-yl]acetate, C20H16Cl2N2O3, (II), the phenyl and pyridazine rings are twisted with respect to each other, making a dihedral angle of 21.76 (18)°, whereas the phenyl ring of the dichlorobenzyl group is inclined to the pyridazine ring by 79.61 (19)°. In the of (I), pairs of N—H⋯O hydrogen bonds link the molecules into inversion dimers with an R22(8) ring motif. In the of (II), C—H⋯O hydrogen bonds generate dimers with R12(7), R22(16) and R22(18) ring motifs. The Hirshfeld surface analyses of compound (I) suggests that the most significant contributions to the crystal packing are by H⋯H (48.2%), C⋯H/H⋯C (29.9%) and O⋯H/H⋯O (8.9%) contacts. For compound (II), H⋯H (34.4%), C⋯H/H⋯C (21.3%) and O⋯H/H⋯O (16.5%) interactions are the most important contributions.
1. Chemical context
Pyridazines are an important family of six-membered aromatic heterocycles (Akhtar et al., 2016). The chemistry of pyridazinones has been an interesting field of research for decades and this nitrogen-containing heterocycle has become a scaffold of choice for the development of potential drug candidates (Dubey & Bhosle, 2015). Pyridazinone is an important pharmacophore possessing a wide range of biological applications (Asif, 2014). A review of the literature revealed that substituted pyridazinones have received a lot of attention in recent years because of their significant potential as antimicrobial (Sönmez et al., 2006), antihypertensive (Siddiqui et al., 2011), antidepressant (Boukharsa et al., 2016), anti-HIV (Livermore et al., 1993) and anti-inflammatory (Barberot et al., 2018) agents.
We report herein the syntheses and crystal and molecular structures of the pyridazinone derivatives 4-benzyl-6-phenyl-4,5-dihydropyridazin-3(2H)-one, (I), and methyl 2-[5-(2,6-dichlorobenzyl)-6-oxo-3-phenyl-1,4,5,6-tetrahydropyridazin-1-yl]acetate, (II), as well as the analyses of their Hirshfeld surfaces.
2. Structural commentary
The molecular structures of compounds (I) and (II) are illustrated in Figs. 1 and 2, respectively. The common moiety for (I) and (II) is 4-benzyl-6-phenyl-4,5-dihydropyridazin-3(2H)-one. The differences between (I) and (II) pertain to the addition of two chloro groups at the C2 and C6 ring positions of the benzyl group and N-alkylation of pyridazinone at the 2-position with an ethyl acetate group for (II). In (I), the phenyl ring (atoms C12–C17) and the pyridazine ring (N1/N2/C11/C10/C2/C1) are twisted with respect to each other, making a dihedral angle of 46.69 (9)°; the phenyl ring of the benzyl group (C4–C9) is nearly perpendicular to the pyridazine ring, with a dihedral angle of 78.31 (10)° (Fig. 1). In (II), the phenyl ring (C11–C16) and the pyridazine ring (N1/N2/C17/C8/C9/C10) are twisted with respect to each other, making a dihedral angle of 21.76 (18)°; the phenyl ring (C1–C6) of the benzyl group is inclined to the pyridazine ring by 79.61 (19)°. The methoxy group in (II) is disordered over two sets of sites with an occupancy ratio of 0.626 (11):0.374 (11) (Fig. 2). In (I), the carbonyl group has a C1=O1 bond length of 1.243 (2) Å, and the C1—N1 and C11—N2 bond lengths in the pyridazine ring are 1.363 (2) and 1.304 (2) Å, respectively. The corresponding values in (II) are 1.229 (5) Å for C17=O1, 1.388 (5) Å for C17—N2 and 1.299 (4) Å for C10—N1. The N1—N2 bond lengths in the structures are virtually the same, with values of 1.348 (2) Å in (I) and 1.353 (4) Å in (II).
3. Supramolecular features
In the crystal of (I), molecules are linked by C—H⋯O hydrogen bonds (Table 1) between the methine C10—H10 group and the carbonyl O1 atom of an adjacent molecule (Fig. 3a), and by a pair of N—H⋯O hydrogen bonds forming inversion dimers with an (8) ring motif (Fig. 3b). The dimers are linked by weak π–π interactions, with a centroid-to-centroid distance of 3.957 (2) Å for Cg1 and Cg2, where Cg1 is the centroid of the N1/N2/C11/C10/C2/C1 ring and Cg2 that of the C12–C17 phenyl ring. In this way, a three-dimensional network is formed.
|
In the crystal of (II), molecules are connected via C—H⋯O hydrogen bonds between and the carbonyl O1 atom (Table 2), whereby C9—H9⋯O2i and C12—H12⋯O2i hydrogen bonds generate R12(7) motifs (Fig. 4); likewise, (16) and (18) ring motifs are also observed.
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, update of February 2019; Groom et al., 2016) for the 4-benzyl-6-phenylpyridazin-3(2H)-one skeleton yielded three hits, namely 4-(2-chloro-6-fluorophenyl)-2,5-dioxo-8-phenyl-1,2,3,4,5,6-hexahydropyrido[2,3-d]pyridazine (BARQOA; Pita et al., 2000), 4-(2-chloro-5-nitrophenyl)-2,5-dioxo-8-phenyl-1,2,3,4,5,6-hexahydropyrido[2,3-d]pyridazine (BARQUG; Pita et al., 2000) and 4-benzyl-6-p-tolylpyridazin-3(2H)-one (YOTVIN; Oubair et al., 2009). In YOTVIN, the molecules are connected two-by-two through N—H⋯O hydrogen bonds, with an (8) graph-set motif, building up a pseudo-dimer arranged around an inversion centre. In the three structures, the C—N bonds in the pyridazine rings correspond to C1—N1 in the structure of (I) [1.363 (2) Å], with a value of 1.363 (2) Å for BARQOA, 1.364 (7) Å for BARQUG and 1.350 (2) Å for YOTVIN. The pyridazinone ring in each molecule is essentially planar, as in the structures of (I) and (II). The conformations of all three compounds resemble those of compounds (I) and (II), with the dihedral angles between the planes of the pyridazine and phenyl rings varying in the range 27.35–82.0°, compared to 46.69 (9) and 21.76 (18)° in (I) and (II), respectively.
5. Hirshfeld surface analysis
Hirshfield surface analyses (Spackman & Jayatilaka, 2009) were carried out using CrystalExplorer (Version 17.5; Turner et al., 2017). The Hirshfeld surfaces and their associated two-dimensional fingerprint plots were used to quantify the various intermolecular interactions in the structures of the title compounds. Calculations of the molecular Hirshfeld surfaces (HS) were performed using a standard (high) surface resolution with the three-dimensional dnorm surfaces mapped over a fixed colour scale of −0.6062 (red) to 1.3165 a.u. (blue) for (I) and of −0.2803 (red) to 1.5329 a.u. (blue) for (II). The red spots on the surface indicate the contacts involved in hydrogen bonding. Fig. 5(a) illustrates the intermolecular N—H⋯O hydrogen bonding in (I), with dnorm mapped on the Hirshfeld surface. Likewise, C—H⋯O hydrogen bonding is visualized in Fig. 5(b) for compound (II).
Fig. 6 shows the two-dimensional fingerprint plot of the sum of the contacts contributing to the Hirhsfeld surface of compound (I), represented in normal mode. H⋯H contacts clearly make the most significant contribution to the Hirshfeld surface (48.2%). A significant contribution of H⋯H interactions to the total HS (72.2%) was also reported by Ilmi et al. (2019) for a similar compound. In addition, C⋯H/H⋯C and O⋯H/H⋯O contacts contribute 29.9 and 8.9%, respectively, to the Hirshfeld surface. In particular, the O⋯H/H⋯O contacts indicate the presence of intermolecular N—H⋯O and C—H⋯O interactions.
Similarly, Fig. 7 illustrates the two-dimensional fingerprint plot of the sum of the contacts contributing to the Hirhsfeld surface of compound (II). The H⋯H interactions appear in the middle of the scattered points in the two-dimensional fingerprint plots, with a contribution to the overall Hirshfeld surface of 34.4% (Fig. 7b). The contributions (16.5%) from the O⋯H/H⋯O contacts, corresponding to the C—H⋯O interactions, are represented by a pair of sharp spikes characteristic of such hydrogen bonding (Fig. 7d).
6. Synthesis and crystallization
For the preparation of compound (I), sodium hydroxide (0.5 g, 3.5 mmol) was added to a solution (0.15 g, 1 mmol) of 6-phenyl-4,5-dihydropyridazin-3(2H)-one and benzaldehyde (0.11 g, 1 mmol) in 30 ml of ethanol. The solvent was evaporated under vacuum and the residue was purified by silica-gel using hexane/ethyl acetate (7:3 v/v). Colourless single crystals were obtained by slow evaporation at room temperature.
For the preparation of compound (II), potassium carbonate (0.50 g, 3.5 mmol) was added to a solution (0.83 g, 2.5 mmol) of 4-(2,6-dichlorobenzyl)-6-phenylpyridazin-3(2H)-one in 30 ml of tetrahydrofuran (THF). The mixture was refluxed for 1 h. After cooling, ethyl bromoacetate (0.50 g, 3 mmol) was added and the mixture was refluxed for 8 h. The solid material which formed was removed by filtration and the solvent evaporated in vacuo. The residue was purified by silica-gel using hexane/ethyl acetate (4:6 v/v). Slow evaporation at room temperature led to colourless single crystals.
7. Refinement
Crystal data, data collection and structure . For the structure of compound (I), the N-bound H atom was located in a difference Fourier map and refined with N—H = 0.86 Å. For the of structure (II), reflections with a θ angle greater than 28° were omitted from the due to their very weak intensities. The methoxy group (O3—C20) in this compound was found to be disordered over two sets of sites and was refined with an occupancy ratio of 0.626 (11):0.374 (11) (SIMU, DELU and ISOR commands in SHELX; Sheldrick, 2015b). For both structures, the C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms or 1.2Ueq(C) otherwise.
details are summarized in Table 3Supporting information
https://doi.org/10.1107/S2056989019013707/wm5515sup1.cif
contains datablocks I, II, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019013707/wm5515Isup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019013707/wm5515Isup4.cml
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989019013707/wm5515IIsup5.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019013707/wm5515IIsup5.cml
For both structures, data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2017 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012).C17H14N2O | F(000) = 552 |
Mr = 262.30 | Dx = 1.252 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.819 (3) Å | Cell parameters from 15196 reflections |
b = 11.501 (3) Å | θ = 3.2–31.3° |
c = 11.187 (4) Å | µ = 0.08 mm−1 |
β = 90.93 (3)° | T = 296 K |
V = 1391.7 (7) Å3 | Prism, colourless |
Z = 4 | 0.78 × 0.71 × 0.59 mm |
STOE IPDS 2 diffractometer | 4234 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 1728 reflections with I > 2σ(I) |
Detector resolution: 6.67 pixels mm-1 | Rint = 0.084 |
rotation method scans | θmax = 30.9°, θmin = 3.2° |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | h = −13→15 |
Tmin = 0.943, Tmax = 0.963 | k = −16→16 |
14296 measured reflections | l = −15→16 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.056 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.104 | w = 1/[σ2(Fo2) + (0.034P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.88 | (Δ/σ)max < 0.001 |
4234 reflections | Δρmax = 0.12 e Å−3 |
185 parameters | Δρmin = −0.22 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.62706 (11) | 0.40510 (10) | 0.98172 (10) | 0.0511 (3) | |
N1 | 0.48091 (14) | 0.45541 (13) | 0.84500 (12) | 0.0441 (4) | |
N2 | 0.41272 (13) | 0.44540 (12) | 0.74360 (12) | 0.0441 (4) | |
C11 | 0.44527 (16) | 0.36178 (14) | 0.67190 (15) | 0.0405 (4) | |
C2 | 0.61718 (15) | 0.30051 (13) | 0.79846 (14) | 0.0392 (4) | |
C1 | 0.57821 (16) | 0.38841 (14) | 0.88184 (15) | 0.0406 (4) | |
C10 | 0.54855 (16) | 0.28797 (14) | 0.69831 (14) | 0.0446 (4) | |
H10 | 0.568712 | 0.229595 | 0.644512 | 0.053* | |
C3 | 0.73380 (16) | 0.23298 (14) | 0.82536 (15) | 0.0475 (4) | |
H3A | 0.728334 | 0.156834 | 0.788363 | 0.057* | |
H3B | 0.742972 | 0.222204 | 0.911046 | 0.057* | |
C12 | 0.37007 (16) | 0.34746 (15) | 0.56177 (15) | 0.0440 (4) | |
C4 | 0.84563 (17) | 0.29722 (15) | 0.77837 (16) | 0.0475 (4) | |
C13 | 0.33000 (17) | 0.23823 (18) | 0.52768 (17) | 0.0556 (5) | |
H13 | 0.352747 | 0.173742 | 0.573115 | 0.067* | |
C5 | 0.9009 (2) | 0.38546 (17) | 0.84222 (19) | 0.0628 (5) | |
H5 | 0.872935 | 0.403399 | 0.918191 | 0.075* | |
C17 | 0.33608 (18) | 0.44182 (17) | 0.49299 (16) | 0.0559 (5) | |
H17 | 0.362199 | 0.515999 | 0.514775 | 0.067* | |
C15 | 0.22392 (19) | 0.3182 (2) | 0.35938 (19) | 0.0733 (6) | |
H15 | 0.174705 | 0.308662 | 0.291153 | 0.088* | |
C14 | 0.25661 (19) | 0.2239 (2) | 0.4269 (2) | 0.0684 (6) | |
H14 | 0.229389 | 0.150109 | 0.404994 | 0.082* | |
C9 | 0.8903 (2) | 0.2735 (2) | 0.66590 (19) | 0.0735 (6) | |
H9 | 0.854388 | 0.214096 | 0.620805 | 0.088* | |
C16 | 0.2635 (2) | 0.4265 (2) | 0.39206 (18) | 0.0722 (6) | |
H16 | 0.241251 | 0.490523 | 0.345696 | 0.087* | |
C6 | 0.9983 (2) | 0.4484 (2) | 0.7947 (3) | 0.0943 (9) | |
H6 | 1.034628 | 0.507883 | 0.839257 | 0.113* | |
C7 | 1.0412 (3) | 0.4237 (3) | 0.6833 (4) | 0.1156 (12) | |
H7 | 1.106222 | 0.465952 | 0.651715 | 0.139* | |
C8 | 0.9869 (3) | 0.3360 (3) | 0.6192 (3) | 0.1073 (10) | |
H8 | 1.015410 | 0.318269 | 0.543388 | 0.129* | |
H1 | 0.4486 (16) | 0.5073 (16) | 0.9010 (16) | 0.060 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0612 (8) | 0.0586 (8) | 0.0334 (6) | 0.0067 (6) | −0.0021 (6) | −0.0081 (6) |
N1 | 0.0550 (10) | 0.0423 (9) | 0.0351 (8) | 0.0067 (7) | 0.0024 (7) | −0.0069 (7) |
N2 | 0.0504 (9) | 0.0452 (9) | 0.0366 (8) | 0.0039 (7) | 0.0012 (7) | −0.0033 (7) |
C11 | 0.0447 (10) | 0.0403 (10) | 0.0367 (9) | −0.0009 (8) | 0.0043 (8) | −0.0012 (7) |
C2 | 0.0466 (10) | 0.0351 (9) | 0.0360 (9) | −0.0009 (8) | 0.0024 (8) | 0.0002 (7) |
C1 | 0.0489 (11) | 0.0405 (10) | 0.0327 (10) | −0.0038 (9) | 0.0053 (9) | 0.0002 (7) |
C10 | 0.0539 (11) | 0.0399 (10) | 0.0399 (10) | 0.0019 (9) | 0.0004 (9) | −0.0092 (8) |
C3 | 0.0597 (12) | 0.0403 (9) | 0.0423 (9) | 0.0075 (9) | −0.0055 (9) | −0.0020 (8) |
C12 | 0.0397 (10) | 0.0539 (11) | 0.0384 (10) | 0.0057 (9) | 0.0028 (8) | −0.0086 (8) |
C4 | 0.0434 (10) | 0.0516 (10) | 0.0474 (10) | 0.0131 (9) | −0.0041 (9) | 0.0031 (9) |
C13 | 0.0514 (11) | 0.0595 (12) | 0.0556 (11) | 0.0084 (10) | −0.0070 (10) | −0.0142 (10) |
C5 | 0.0614 (13) | 0.0666 (13) | 0.0601 (13) | −0.0035 (11) | −0.0142 (11) | 0.0065 (10) |
C17 | 0.0572 (13) | 0.0602 (12) | 0.0501 (11) | 0.0030 (10) | −0.0025 (10) | 0.0021 (10) |
C15 | 0.0566 (14) | 0.113 (2) | 0.0494 (12) | 0.0119 (14) | −0.0123 (10) | −0.0194 (14) |
C14 | 0.0531 (13) | 0.0787 (15) | 0.0731 (14) | 0.0052 (11) | −0.0094 (11) | −0.0305 (13) |
C9 | 0.0715 (15) | 0.0874 (16) | 0.0619 (13) | 0.0268 (13) | 0.0118 (12) | −0.0014 (12) |
C16 | 0.0694 (15) | 0.0965 (18) | 0.0504 (12) | 0.0146 (13) | −0.0086 (12) | 0.0098 (12) |
C6 | 0.0636 (16) | 0.097 (2) | 0.121 (2) | −0.0194 (15) | −0.0214 (17) | 0.0302 (18) |
C7 | 0.0527 (17) | 0.144 (3) | 0.151 (3) | 0.0057 (18) | 0.0204 (19) | 0.063 (3) |
C8 | 0.077 (2) | 0.149 (3) | 0.096 (2) | 0.036 (2) | 0.0412 (17) | 0.022 (2) |
O1—C1 | 1.243 (2) | C13—C14 | 1.378 (3) |
N1—N2 | 1.348 (2) | C13—H13 | 0.9300 |
N1—C1 | 1.363 (2) | C5—C6 | 1.390 (3) |
N1—H1 | 0.937 (18) | C5—H5 | 0.9300 |
N2—C11 | 1.3044 (19) | C17—C16 | 1.376 (3) |
C11—C10 | 1.430 (2) | C17—H17 | 0.9300 |
C11—C12 | 1.475 (2) | C15—C14 | 1.365 (3) |
C2—C10 | 1.342 (2) | C15—C16 | 1.365 (3) |
C2—C1 | 1.443 (2) | C15—H15 | 0.9300 |
C2—C3 | 1.508 (2) | C14—H14 | 0.9300 |
C10—H10 | 0.9300 | C9—C8 | 1.379 (4) |
C3—C4 | 1.519 (2) | C9—H9 | 0.9300 |
C3—H3A | 0.9700 | C16—H16 | 0.9300 |
C3—H3B | 0.9700 | C6—C7 | 1.367 (4) |
C12—C17 | 1.377 (2) | C6—H6 | 0.9300 |
C12—C13 | 1.381 (2) | C7—C8 | 1.364 (4) |
C4—C5 | 1.373 (3) | C7—H7 | 0.9300 |
C4—C9 | 1.382 (3) | C8—H8 | 0.9300 |
N2—N1—C1 | 128.00 (14) | C14—C13—H13 | 119.7 |
N2—N1—H1 | 114.4 (11) | C12—C13—H13 | 119.7 |
C1—N1—H1 | 116.9 (11) | C4—C5—C6 | 120.8 (2) |
C11—N2—N1 | 115.52 (15) | C4—C5—H5 | 119.6 |
N2—C11—C10 | 121.89 (16) | C6—C5—H5 | 119.6 |
N2—C11—C12 | 116.44 (15) | C16—C17—C12 | 120.1 (2) |
C10—C11—C12 | 121.67 (15) | C16—C17—H17 | 120.0 |
C10—C2—C1 | 116.83 (16) | C12—C17—H17 | 120.0 |
C10—C2—C3 | 124.15 (15) | C14—C15—C16 | 120.0 (2) |
C1—C2—C3 | 118.96 (15) | C14—C15—H15 | 120.0 |
O1—C1—N1 | 119.96 (15) | C16—C15—H15 | 120.0 |
O1—C1—C2 | 124.38 (17) | C15—C14—C13 | 119.9 (2) |
N1—C1—C2 | 115.66 (15) | C15—C14—H14 | 120.1 |
C2—C10—C11 | 121.92 (15) | C13—C14—H14 | 120.1 |
C2—C10—H10 | 119.0 | C8—C9—C4 | 121.3 (2) |
C11—C10—H10 | 119.0 | C8—C9—H9 | 119.3 |
C2—C3—C4 | 110.44 (14) | C4—C9—H9 | 119.3 |
C2—C3—H3A | 109.6 | C15—C16—C17 | 120.6 (2) |
C4—C3—H3A | 109.6 | C15—C16—H16 | 119.7 |
C2—C3—H3B | 109.6 | C17—C16—H16 | 119.7 |
C4—C3—H3B | 109.6 | C7—C6—C5 | 120.7 (3) |
H3A—C3—H3B | 108.1 | C7—C6—H6 | 119.6 |
C17—C12—C13 | 118.88 (17) | C5—C6—H6 | 119.6 |
C17—C12—C11 | 121.17 (16) | C8—C7—C6 | 118.9 (3) |
C13—C12—C11 | 119.93 (17) | C8—C7—H7 | 120.5 |
C5—C4—C9 | 117.6 (2) | C6—C7—H7 | 120.5 |
C5—C4—C3 | 121.50 (17) | C7—C8—C9 | 120.6 (3) |
C9—C4—C3 | 120.73 (19) | C7—C8—H8 | 119.7 |
C14—C13—C12 | 120.6 (2) | C9—C8—H8 | 119.7 |
C1—N1—N2—C11 | −0.7 (2) | C2—C3—C4—C5 | 82.6 (2) |
N1—N2—C11—C10 | −1.6 (2) | C2—C3—C4—C9 | −93.2 (2) |
N1—N2—C11—C12 | 178.58 (15) | C17—C12—C13—C14 | −0.4 (3) |
N2—N1—C1—O1 | −175.85 (16) | C11—C12—C13—C14 | 178.07 (17) |
N2—N1—C1—C2 | 4.0 (2) | C9—C4—C5—C6 | 0.1 (3) |
C10—C2—C1—O1 | 174.96 (17) | C3—C4—C5—C6 | −175.88 (18) |
C3—C2—C1—O1 | −7.8 (2) | C13—C12—C17—C16 | −0.1 (3) |
C10—C2—C1—N1 | −4.9 (2) | C11—C12—C17—C16 | −178.52 (17) |
C3—C2—C1—N1 | 172.33 (14) | C16—C15—C14—C13 | −0.3 (3) |
C1—C2—C10—C11 | 3.1 (2) | C12—C13—C14—C15 | 0.6 (3) |
C3—C2—C10—C11 | −173.96 (15) | C5—C4—C9—C8 | 0.0 (3) |
N2—C11—C10—C2 | 0.3 (3) | C3—C4—C9—C8 | 176.0 (2) |
C12—C11—C10—C2 | −179.90 (16) | C14—C15—C16—C17 | −0.2 (3) |
C10—C2—C3—C4 | 90.0 (2) | C12—C17—C16—C15 | 0.4 (3) |
C1—C2—C3—C4 | −86.97 (18) | C4—C5—C6—C7 | 0.0 (4) |
N2—C11—C12—C17 | 45.2 (2) | C5—C6—C7—C8 | −0.1 (4) |
C10—C11—C12—C17 | −134.69 (17) | C6—C7—C8—C9 | 0.1 (4) |
N2—C11—C12—C13 | −133.26 (17) | C4—C9—C8—C7 | −0.1 (4) |
C10—C11—C12—C13 | 46.9 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···O1i | 0.93 | 2.48 | 3.404 (2) | 172 |
N1—H1···O1ii | 0.937 (18) | 1.855 (19) | 2.7873 (19) | 173.0 (16) |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, −y+1, −z+2. |
C20H16Cl2N2O3 | F(000) = 832 |
Mr = 403.25 | Dx = 1.359 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.2730 (13) Å | Cell parameters from 14081 reflections |
b = 12.3808 (9) Å | θ = 1.6–30.5° |
c = 14.1405 (15) Å | µ = 0.35 mm−1 |
β = 92.801 (9)° | T = 296 K |
V = 1971.2 (3) Å3 | Cubic, colourless |
Z = 4 | 0.80 × 0.76 × 0.60 mm |
STOE IPDS 2 diffractometer | 6015 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 1892 reflections with I > 2σ(I) |
Detector resolution: 6.67 pixels mm-1 | Rint = 0.095 |
rotation method scans | θmax = 30.6°, θmin = 1.8° |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | h = −14→16 |
Tmin = 0.762, Tmax = 0.832 | k = −17→17 |
19293 measured reflections | l = −20→20 |
Refinement on F2 | 68 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.068 | H-atom parameters constrained |
wR(F2) = 0.231 | w = 1/[σ2(Fo2) + (0.1133P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.83 | (Δ/σ)max < 0.001 |
6015 reflections | Δρmax = 0.96 e Å−3 |
265 parameters | Δρmin = −0.28 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cl2 | 0.28302 (11) | 0.78380 (8) | 0.39545 (9) | 0.0874 (4) | |
Cl1 | 0.11530 (12) | 0.56182 (11) | 0.68990 (9) | 0.0990 (4) | |
O1 | 0.4761 (2) | 0.6024 (2) | 0.73816 (19) | 0.0734 (8) | |
O2 | 0.7312 (3) | 0.4765 (2) | 0.6889 (2) | 0.0785 (8) | |
N2 | 0.4886 (3) | 0.4295 (2) | 0.6878 (2) | 0.0598 (8) | |
N1 | 0.4620 (3) | 0.3458 (2) | 0.6290 (2) | 0.0589 (8) | |
C10 | 0.3921 (3) | 0.3643 (2) | 0.5550 (2) | 0.0521 (8) | |
C9 | 0.3431 (3) | 0.4694 (2) | 0.5375 (3) | 0.0525 (8) | |
H9 | 0.293991 | 0.480718 | 0.483617 | 0.063* | |
C8 | 0.3664 (3) | 0.5517 (2) | 0.5968 (2) | 0.0522 (8) | |
C6 | 0.1935 (3) | 0.6695 (3) | 0.5385 (3) | 0.0575 (9) | |
C17 | 0.4456 (3) | 0.5342 (3) | 0.6787 (3) | 0.0570 (9) | |
C11 | 0.3627 (3) | 0.2690 (3) | 0.4945 (3) | 0.0555 (9) | |
C5 | 0.1694 (3) | 0.7216 (3) | 0.4534 (3) | 0.0645 (10) | |
C7 | 0.3150 (3) | 0.6633 (3) | 0.5872 (3) | 0.0624 (10) | |
H7A | 0.368806 | 0.707534 | 0.552254 | 0.075* | |
H7B | 0.311027 | 0.694349 | 0.649953 | 0.075* | |
C19 | 0.6926 (4) | 0.4357 (3) | 0.7570 (3) | 0.0660 (9) | |
C12 | 0.3198 (3) | 0.2793 (3) | 0.4022 (3) | 0.0636 (10) | |
H12 | 0.311970 | 0.347892 | 0.375777 | 0.076* | |
C18 | 0.5661 (3) | 0.4012 (3) | 0.7686 (3) | 0.0659 (10) | |
H18A | 0.563881 | 0.323646 | 0.777873 | 0.079* | |
H18B | 0.537030 | 0.435149 | 0.824835 | 0.079* | |
C1 | 0.0960 (4) | 0.6252 (3) | 0.5811 (3) | 0.0689 (10) | |
C16 | 0.3768 (4) | 0.1655 (3) | 0.5324 (3) | 0.0702 (11) | |
H16 | 0.406443 | 0.156363 | 0.594423 | 0.084* | |
C13 | 0.2881 (4) | 0.1900 (3) | 0.3477 (3) | 0.0761 (12) | |
H13 | 0.258183 | 0.199013 | 0.285767 | 0.091* | |
C14 | 0.3009 (4) | 0.0890 (3) | 0.3850 (3) | 0.0779 (12) | |
H14 | 0.279112 | 0.028804 | 0.348834 | 0.093* | |
C15 | 0.3463 (4) | 0.0763 (3) | 0.4771 (3) | 0.0832 (13) | |
H15 | 0.356513 | 0.007258 | 0.502085 | 0.100* | |
C4 | 0.0557 (4) | 0.7290 (4) | 0.4124 (4) | 0.0859 (13) | |
H4 | 0.042696 | 0.765185 | 0.355204 | 0.103* | |
C2 | −0.0182 (4) | 0.6326 (4) | 0.5418 (4) | 0.0892 (14) | |
H2 | −0.081667 | 0.603691 | 0.572954 | 0.107* | |
C3 | −0.0371 (4) | 0.6835 (4) | 0.4557 (4) | 0.0965 (16) | |
H3 | −0.113140 | 0.686665 | 0.427209 | 0.116* | |
O3A | 0.7602 (3) | 0.3969 (6) | 0.8303 (3) | 0.0728 (15) | 0.626 (11) |
C20A | 0.8977 (5) | 0.4168 (8) | 0.8327 (6) | 0.092 (2) | 0.626 (11) |
H20A | 0.918846 | 0.449346 | 0.774225 | 0.138* | 0.626 (11) |
H20B | 0.938559 | 0.349210 | 0.841005 | 0.138* | 0.626 (11) |
H20C | 0.919935 | 0.464147 | 0.884368 | 0.138* | 0.626 (11) |
O3B | 0.7492 (6) | 0.4387 (10) | 0.8431 (4) | 0.0755 (19) | 0.374 (11) |
C20B | 0.8759 (9) | 0.4925 (14) | 0.8535 (8) | 0.091 (3) | 0.374 (11) |
H20D | 0.916704 | 0.482091 | 0.796241 | 0.137* | 0.374 (11) |
H20E | 0.920606 | 0.459831 | 0.905487 | 0.137* | 0.374 (11) |
H20F | 0.867405 | 0.568435 | 0.865276 | 0.137* | 0.374 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl2 | 0.1012 (9) | 0.0618 (6) | 0.0996 (9) | 0.0013 (6) | 0.0092 (7) | 0.0122 (6) |
Cl1 | 0.1100 (10) | 0.1085 (9) | 0.0791 (8) | −0.0063 (7) | 0.0106 (7) | 0.0075 (7) |
O1 | 0.0876 (19) | 0.0628 (15) | 0.0671 (17) | −0.0012 (13) | −0.0224 (14) | −0.0133 (13) |
O2 | 0.0850 (19) | 0.0732 (17) | 0.0761 (17) | −0.0032 (14) | −0.0089 (15) | 0.0184 (15) |
N2 | 0.0670 (19) | 0.0536 (17) | 0.0570 (17) | 0.0014 (14) | −0.0160 (15) | 0.0007 (15) |
N1 | 0.0655 (19) | 0.0484 (16) | 0.0619 (18) | 0.0012 (14) | −0.0076 (15) | 0.0044 (15) |
C10 | 0.0540 (19) | 0.0444 (17) | 0.057 (2) | −0.0001 (14) | −0.0094 (16) | 0.0043 (16) |
C9 | 0.0537 (19) | 0.0460 (17) | 0.056 (2) | 0.0014 (14) | −0.0114 (16) | 0.0009 (15) |
C8 | 0.0517 (19) | 0.0446 (17) | 0.059 (2) | −0.0005 (14) | −0.0086 (15) | −0.0009 (15) |
C6 | 0.061 (2) | 0.0389 (17) | 0.071 (2) | 0.0010 (15) | −0.0111 (18) | −0.0091 (17) |
C17 | 0.060 (2) | 0.0491 (19) | 0.061 (2) | 0.0023 (16) | −0.0075 (17) | −0.0020 (17) |
C11 | 0.060 (2) | 0.0422 (18) | 0.064 (2) | 0.0032 (15) | −0.0006 (17) | −0.0027 (16) |
C5 | 0.070 (2) | 0.0454 (18) | 0.078 (3) | 0.0046 (17) | 0.000 (2) | −0.0051 (18) |
C7 | 0.063 (2) | 0.0433 (18) | 0.079 (3) | 0.0013 (16) | −0.0172 (19) | −0.0063 (18) |
C19 | 0.079 (2) | 0.0544 (19) | 0.062 (2) | −0.0015 (17) | −0.0175 (17) | 0.0069 (17) |
C12 | 0.079 (2) | 0.0496 (19) | 0.062 (2) | 0.0016 (18) | −0.0031 (19) | −0.0021 (17) |
C18 | 0.067 (2) | 0.068 (2) | 0.061 (2) | 0.0009 (19) | −0.0169 (19) | 0.0138 (19) |
C1 | 0.068 (3) | 0.059 (2) | 0.079 (3) | 0.0023 (18) | −0.005 (2) | −0.0094 (19) |
C16 | 0.093 (3) | 0.048 (2) | 0.068 (2) | 0.0014 (19) | −0.012 (2) | 0.0026 (19) |
C13 | 0.097 (3) | 0.066 (3) | 0.064 (2) | 0.004 (2) | −0.005 (2) | −0.013 (2) |
C14 | 0.097 (3) | 0.054 (2) | 0.082 (3) | −0.003 (2) | −0.001 (2) | −0.017 (2) |
C15 | 0.115 (4) | 0.044 (2) | 0.090 (3) | −0.003 (2) | −0.001 (3) | −0.004 (2) |
C4 | 0.087 (3) | 0.079 (3) | 0.089 (3) | 0.017 (2) | −0.022 (3) | 0.004 (2) |
C2 | 0.063 (3) | 0.093 (3) | 0.111 (4) | 0.000 (2) | 0.000 (3) | −0.010 (3) |
C3 | 0.060 (3) | 0.105 (4) | 0.122 (4) | 0.011 (3) | −0.025 (3) | −0.009 (3) |
O3A | 0.075 (2) | 0.068 (3) | 0.072 (2) | −0.011 (2) | −0.025 (2) | 0.011 (2) |
C20A | 0.087 (3) | 0.083 (5) | 0.105 (5) | −0.025 (4) | −0.008 (4) | 0.018 (4) |
O3B | 0.080 (3) | 0.074 (4) | 0.070 (3) | −0.009 (3) | −0.023 (3) | 0.005 (3) |
C20B | 0.072 (5) | 0.102 (6) | 0.100 (6) | 0.003 (5) | 0.001 (4) | 0.024 (6) |
Cl2—C5 | 1.734 (4) | C12—C13 | 1.384 (5) |
Cl1—C1 | 1.731 (4) | C12—H12 | 0.9300 |
O1—C17 | 1.228 (4) | C18—H18A | 0.9700 |
O2—C19 | 1.189 (5) | C18—H18B | 0.9700 |
N2—N1 | 1.353 (4) | C1—C2 | 1.380 (6) |
N2—C17 | 1.388 (4) | C16—C15 | 1.387 (5) |
N2—C18 | 1.447 (4) | C16—H16 | 0.9300 |
N1—C10 | 1.299 (4) | C13—C14 | 1.363 (6) |
C10—C9 | 1.430 (4) | C13—H13 | 0.9300 |
C10—C11 | 1.484 (4) | C14—C15 | 1.384 (6) |
C9—C8 | 1.338 (4) | C14—H14 | 0.9300 |
C9—H9 | 0.9300 | C15—H15 | 0.9300 |
C8—C17 | 1.444 (5) | C4—C3 | 1.359 (7) |
C8—C7 | 1.503 (4) | C4—H4 | 0.9300 |
C6—C5 | 1.381 (5) | C2—C3 | 1.378 (7) |
C6—C1 | 1.392 (6) | C2—H2 | 0.9300 |
C6—C7 | 1.504 (5) | C3—H3 | 0.9300 |
C11—C12 | 1.376 (5) | O3A—C20A | 1.569 (6) |
C11—C16 | 1.395 (5) | C20A—H20A | 0.9600 |
C5—C4 | 1.384 (6) | C20A—H20B | 0.9600 |
C7—H7A | 0.9700 | C20A—H20C | 0.9600 |
C7—H7B | 0.9700 | O3B—C20B | 1.576 (7) |
C19—O3A | 1.344 (5) | C20B—H20D | 0.9600 |
C19—O3B | 1.347 (5) | C20B—H20E | 0.9600 |
C19—C18 | 1.505 (6) | C20B—H20F | 0.9600 |
N1—N2—C17 | 126.3 (3) | N2—C18—H18B | 109.1 |
N1—N2—C18 | 114.1 (3) | C19—C18—H18B | 109.1 |
C17—N2—C18 | 119.6 (3) | H18A—C18—H18B | 107.8 |
C10—N1—N2 | 117.9 (3) | C2—C1—C6 | 122.7 (4) |
N1—C10—C9 | 120.9 (3) | C2—C1—Cl1 | 117.6 (4) |
N1—C10—C11 | 115.7 (3) | C6—C1—Cl1 | 119.7 (3) |
C9—C10—C11 | 123.3 (3) | C15—C16—C11 | 119.6 (4) |
C8—C9—C10 | 121.5 (3) | C15—C16—H16 | 120.2 |
C8—C9—H9 | 119.3 | C11—C16—H16 | 120.2 |
C10—C9—H9 | 119.3 | C14—C13—C12 | 119.9 (4) |
C9—C8—C17 | 118.9 (3) | C14—C13—H13 | 120.1 |
C9—C8—C7 | 125.6 (3) | C12—C13—H13 | 120.1 |
C17—C8—C7 | 115.5 (3) | C13—C14—C15 | 119.7 (4) |
C5—C6—C1 | 115.8 (3) | C13—C14—H14 | 120.2 |
C5—C6—C7 | 123.9 (4) | C15—C14—H14 | 120.2 |
C1—C6—C7 | 120.2 (3) | C14—C15—C16 | 120.7 (4) |
O1—C17—N2 | 119.6 (3) | C14—C15—H15 | 119.7 |
O1—C17—C8 | 126.0 (3) | C16—C15—H15 | 119.7 |
N2—C17—C8 | 114.4 (3) | C3—C4—C5 | 120.1 (4) |
C12—C11—C16 | 118.5 (3) | C3—C4—H4 | 120.0 |
C12—C11—C10 | 122.1 (3) | C5—C4—H4 | 120.0 |
C16—C11—C10 | 119.4 (3) | C3—C2—C1 | 119.2 (5) |
C6—C5—C4 | 122.3 (4) | C3—C2—H2 | 120.4 |
C6—C5—Cl2 | 120.1 (3) | C1—C2—H2 | 120.4 |
C4—C5—Cl2 | 117.6 (4) | C4—C3—C2 | 119.9 (4) |
C8—C7—C6 | 115.2 (3) | C4—C3—H3 | 120.1 |
C8—C7—H7A | 108.5 | C2—C3—H3 | 120.1 |
C6—C7—H7A | 108.5 | C19—O3A—C20A | 118.9 (4) |
C8—C7—H7B | 108.5 | O3A—C20A—H20A | 109.5 |
C6—C7—H7B | 108.5 | O3A—C20A—H20B | 109.5 |
H7A—C7—H7B | 107.5 | H20A—C20A—H20B | 109.5 |
O2—C19—O3A | 124.0 (4) | O3A—C20A—H20C | 109.5 |
O2—C19—O3B | 123.0 (4) | H20A—C20A—H20C | 109.5 |
O2—C19—C18 | 126.5 (3) | H20B—C20A—H20C | 109.5 |
O3A—C19—C18 | 108.6 (4) | C19—O3B—C20B | 118.9 (5) |
O3B—C19—C18 | 108.6 (4) | O3B—C20B—H20D | 109.5 |
C11—C12—C13 | 121.6 (3) | O3B—C20B—H20E | 109.5 |
C11—C12—H12 | 119.2 | H20D—C20B—H20E | 109.5 |
C13—C12—H12 | 119.2 | O3B—C20B—H20F | 109.5 |
N2—C18—C19 | 112.6 (3) | H20D—C20B—H20F | 109.5 |
N2—C18—H18A | 109.1 | H20E—C20B—H20F | 109.5 |
C19—C18—H18A | 109.1 | ||
C17—N2—N1—C10 | 1.9 (5) | C16—C11—C12—C13 | 1.6 (6) |
C18—N2—N1—C10 | 179.5 (3) | C10—C11—C12—C13 | −177.3 (4) |
N2—N1—C10—C9 | −1.2 (5) | N1—N2—C18—C19 | 102.0 (4) |
N2—N1—C10—C11 | −178.0 (3) | C17—N2—C18—C19 | −80.2 (4) |
N1—C10—C9—C8 | −0.7 (6) | O2—C19—C18—N2 | −4.0 (6) |
C11—C10—C9—C8 | 176.0 (3) | O3A—C19—C18—N2 | −173.8 (4) |
C10—C9—C8—C17 | 1.8 (5) | O3B—C19—C18—N2 | 160.7 (6) |
C10—C9—C8—C7 | −176.9 (4) | C5—C6—C1—C2 | −0.2 (6) |
N1—N2—C17—O1 | 179.1 (3) | C7—C6—C1—C2 | 177.1 (4) |
C18—N2—C17—O1 | 1.7 (5) | C5—C6—C1—Cl1 | −177.9 (3) |
N1—N2—C17—C8 | −0.8 (5) | C7—C6—C1—Cl1 | −0.6 (5) |
C18—N2—C17—C8 | −178.2 (3) | C12—C11—C16—C15 | −0.7 (6) |
C9—C8—C17—O1 | 179.0 (4) | C10—C11—C16—C15 | 178.2 (4) |
C7—C8—C17—O1 | −2.1 (6) | C11—C12—C13—C14 | −1.0 (7) |
C9—C8—C17—N2 | −1.1 (5) | C12—C13—C14—C15 | −0.5 (7) |
C7—C8—C17—N2 | 177.8 (3) | C13—C14—C15—C16 | 1.3 (7) |
N1—C10—C11—C12 | −160.9 (3) | C11—C16—C15—C14 | −0.7 (7) |
C9—C10—C11—C12 | 22.3 (6) | C6—C5—C4—C3 | −0.4 (7) |
N1—C10—C11—C16 | 20.2 (5) | Cl2—C5—C4—C3 | −178.8 (4) |
C9—C10—C11—C16 | −156.6 (4) | C6—C1—C2—C3 | 1.7 (7) |
C1—C6—C5—C4 | −0.4 (5) | Cl1—C1—C2—C3 | 179.4 (4) |
C7—C6—C5—C4 | −177.6 (4) | C5—C4—C3—C2 | 1.9 (7) |
C1—C6—C5—Cl2 | 178.0 (3) | C1—C2—C3—C4 | −2.5 (7) |
C7—C6—C5—Cl2 | 0.8 (5) | O2—C19—O3A—C20A | 6.9 (8) |
C9—C8—C7—C6 | 29.2 (6) | C18—C19—O3A—C20A | 177.1 (5) |
C17—C8—C7—C6 | −149.6 (3) | O2—C19—O3B—C20B | −3.6 (13) |
C5—C6—C7—C8 | −116.0 (4) | C18—C19—O3B—C20B | −168.9 (8) |
C1—C6—C7—C8 | 66.9 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9···O2i | 0.93 | 2.50 | 3.337 (4) | 150 |
C12—H12···O2i | 0.93 | 2.40 | 3.326 (4) | 174 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Funding information
Funding for this research was provided by: Ondokuz Mayıs University under project No. PYO·FEN.1906.19.001.
References
Akhtar, W., Shaquiquzzaman, M., Akhter, M., Verma, G., Khan, M. F. & Alam, M. M. (2016). Eur. J. Med. Chem. 123, 256–281. Web of Science CrossRef CAS PubMed Google Scholar
Asif, M. (2014). Mini-Rev. Med. Chem. 14, 1093–1103. CrossRef CAS Google Scholar
Barberot, C., Moniot, A., Allart-Simon, I., Malleret, L., Yegorova, T., Laronze-Cochard, M., Bentaher, A., Médebielle, M., Bouillon, J. P., Hénon, E., SAPI, J., Velard, F. & Gérard, S. (2018). Eur. J. Med. Chem. 146, 139–146. CrossRef CAS PubMed Google Scholar
Boukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494–500. Web of Science CrossRef CAS Google Scholar
Dubey, S. & Bhosle, P. A. (2015). Med. Chem. Res. 24, 3579–3598. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Ilmi, R., Kansız, S., Dege, N. & Khan, M. S. (2019). J. Photochem. Photobiol. Chem. 377, 268–281. CSD CrossRef CAS Google Scholar
Livermore, D., Bethell, R. C., Cammack, N., Hancock, A. P., Hann, M. M., Green, D., Lamont, R. B., Noble, S. A., Orr, D. C. & Payne, J. J. (1993). J. Med. Chem. 36, 3784–3794. CSD CrossRef CAS PubMed Web of Science Google Scholar
Oubair, A., Daran, J.-C., Fihi, R., Majidi, L. & Azrour, M. (2009). Acta Cryst. E65, o1350–o1351. Web of Science CSD CrossRef IUCr Journals Google Scholar
Pita, B., Sotelo, E., Suárez, M., Raviña, E., Ochoa, E., Verdecia, Y., Novoa, H. N., Blaton, N., de Ranter, C. & Peeters, O. M. (2000). Tetrahedron, 56, 2473–2479. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siddiqui, A. A., Mishra, R., Shaharyar, M., Husain, A., Rashid, M. & Pal, P. (2011). Bioorg. Med. Chem. Lett. 21, 1023–1026. Web of Science CrossRef CAS PubMed Google Scholar
Sönmez, M., Berber, I. & Akbaş, E. (2006). Eur. J. Med. Chem. 41, 101–105. Web of Science PubMed Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer. Version 17.5. University of Western Australia. https://hirshfeldsurface.net. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.