research communications
E)-6-(4-hydroxy-3-methoxystyryl)-4,5-dihydropyridazin-3(2H)-one
and Hirshfeld surface analysis of (aLaboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, Mohamed I University, 60000 Oujda, Morocco, bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey, cLaboratory for Organic Synthesis, Extraction and Valorization, Faculty of Sciences, Ain Chok, University Hassan II, Casablanca, Rabat, Morocco, and dLaboratory of Plant Chemistry, Organic and Bioorganic Synthesis, URAC23, Faculty of Science, BP 1014, GEOPAC Research Center, Mohammed V University, Rabat, Morocco
*Correspondence e-mail: saiddaoui26@gmail.com
In the title compound, C13H14N2O3, the dihydropyridazine ring (r.m.s. deviation = 0.166 Å) has a screw-boat conformation. The dihedral angle between its mean plane and the benzene ring is 0.77 (12)°. In the crystal, intermolecular O—H⋯O hydrogen bonds generate C(5) chains and N—H⋯O hydrogen bonds produce R22(8) motifs. These types of interactions lead to the formation of layers parallel to (12). The three-dimensional network is achieved by C—H⋯O interactions, including R24(8) motifs. Intermolecular interactions were additionally investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots. The most significant contributions to the crystal packing are by H⋯H (43.3%), H⋯C/C⋯H (19.3%), H⋯O/H⋯O (22.6%), C⋯N/N⋯C (3.0%) and H⋯N/N⋯H (5.8%) contacts. C—H⋯π interactions and aromatic π–π stacking interactions are not observed.
1. Chemical context
For decades the chemistry of pyridazinones has been an interesting field. This nitrogen heterocycle became a scaffold of choice for the development of potential drug candidates (Akhtar et al., 2016; Dubey & Bhosle, 2015) because pyridazinone and its substituted derivatives are important pharmacophores possessing many different biological applications (Asif, 2014). Such compounds are used as anti-HIV (Livermore et al., 1993), antimicrobial (Sönmez et al., 2006), anticonvulsant (Partap et al., 2018), antihypertensive (Siddiqui et al., 2011), antidepressant (Boukharsa et al., 2016), analgesic (Gökçe et al., 2009), anti-inflammatory (Barberot et al., 2018), antihistaminic (Tao et al. 2012), cardiotonic (Wang et al., 2008) and herbicidal agents (Asif, 2013) or as glucan synthase inhibitors (Zhou et al., 2011).
In continuation of our studies related to molecular structures and Hirshfeld surface analysis of new heterocyclic derivatives (Daoui et al., 2019a,b; El Kalai et al., 2019; Karrouchi et al., 2015), we report herein on the synthesis, molecular and crystal structures of (E)-6-(4-hydroxy-3-methoxystyryl)-4,5-dihydropyridazin-3(2H)-one, as well as an analysis of the Hirshfeld surfaces.
2. Structural commentary
In the title molecule (Fig. 1), the configuration relative to the double bond at C5 and C6 is E. The dihydropyridazine ring has a screw-boat conformation, with an r.m.s. deviation of 0.166 Å for the ring atoms, with the maximum deviation from the ring being 0.178 (3) Å for the C3 atom; the C2 atom lies −0.177 (3) Å out of the plane in the opposite direction relative to the C3 atom. The dihedral angle between the dihydropyridazine ring mean plane and the benzene ring (C7–C12) is 0.77 (12)°, indicating an almost planar conformation of the molecule favouring delocalization over the C4—C5=C6—C7 bridge.
3. Supramolecular features
In the crystal, molecules are stacked in rows parallel to [100]. Notably, no significant C—H⋯π or π–π interactions are observed. O2—H2⋯O1i hydrogen bonds between the phenolic OH group and the carbonyl O atom of a neighbouring molecule generate C(5) chains extending parallel to [101]. Likewise, N1—H1⋯O1ii hydrogen bonds between the N—H function of the dihydropyridazine ring and the carbonyl O atom generate centrosymmetric dimers with an R22(8) motif. The two types of hydrogen bonding result in the formation of layers parallel to (12). A three-dimensional supramolecular network is eventually formed through intermolecular C13—H13A⋯O2iii and C13—H13C⋯O2iv hydrogen bonds with R24(8) motifs (Fig. 2 and Table 1).
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, update November 2018; Groom et al., 2016) revealed two structures containing a similar pyridazinone moiety as in the title structure but with different substituents, viz. 6-phenyl-4,5-dihydropyridazin-3(2H)-one (CSD refcode TADQUL; Abourichaa et al., 2003) and (R)-(−)-6-(4-aminophenyl)-5-methyl-4,5-dihydropyridazin-3(2H)-one (ADIGOK; Zhang et al., 2006). In the structure of TADQUL, the dihydropyridazine ring adopts a half-chair conformation, with atoms C1, N2, N3 and C4 in a common plane, with C5 0.222 (2) Å and C6 0.262 (2) Å on opposite sides of this plane. The plane is almost coplanar with the 4-aminophenyl ring, the dihedral angle between the two planes being 1.73 (9) Å. In the crystal, hydrogen-bonded centrosymmetric dimers are observed. The O1=C1 bond length is 1.2316 (14) Å. The N3—C4, N2—N3 and N2—C1 bond lengths are 1.3464 (15), 1.3877 (14) and 1.2830 (15) Å, respectively. In the structure of ADIGOK, the consists of two molecules of the same enantiomer, and the crystal packing is stabilized by intermolecular N—H⋯O hydrogen bonds.
5. Hirshfeld surface analysis
Hirshfeld surface analysis was used to quantify the intermolecular interactions of the title compound, using CrystalExplorer17.5 (Turner et al., 2017). The Hirshfeld surface analysis was planned using a standard (high) surface resolution with the three-dimensional dnorm surfaces plotted over a fixed colour scale of −0.7021 (red) to 2.2382 a.u. (blue). The surfaces mapped over relevant intermolecular contacts are illustrated in Fig. 3. The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, C⋯N/N⋯C and H⋯N/N⋯H interactions in Figs. 4(a)–(e), respectively. The overall two-dimensional fingerprint plot and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, C⋯N/N⋯C and H⋯N/N⋯H contacts are illustrated in Figs. 5(a)–(f), respectively. The largest interaction is that of H⋯H, contributing 43.3% to the overall crystal packing. H⋯C/C⋯H contacts add a 19.3% contribution to the Hirshfeld surface, with the tips at de + di ∼ 2.72 Å. H⋯O/O⋯H contacts make a 22.6% contribution to the Hirshfeld surface and are represented by a pair of sharp spikes in the region de + di ∼ 2.70 Å in the fingerprint plot. H⋯O/O⋯H interactions arise from intermolecular O—H⋯O hydrogen bonding and C—H⋯O contacts. The contributions of the other contacts to the Hirshfeld surface are negligible, i.e. C⋯N/N⋯C of 3.0% and H⋯N/N⋯H of 5.8%.
6. Synthesis and crystallization
To a solution of 6-(4-hydroxy-3-methoxyphenyl)-4-oxohex-5-enoic acid (0.25 g, 1 mmol) in 20 ml of ethanol, an equimolar amount of hydrazine hydrate was added. The mixture was maintained under reflux until
(TLC) indicated the end of the reaction. After cooling, the precipitate which formed was filtered off, washed with ethanol and recrystallized from ethanol. Slow evaporation at room temperature led to the formation of single crystals of the title compound.7. Refinement
Crystal data, data collection and structure . H atoms on C atoms were placed in idealized positions and refined as riding, with C—H = 0.93–0.97 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) otherwise. The NH and OH hydrogens were located in a difference Fourier map and were constrained with N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N), and O—H = 0.86 Å and Uiso(H) = 1.5Ueq(O), using a riding model.
details are summarized in Table 2Supporting information
https://doi.org/10.1107/S2056989019014130/wm5521sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019014130/wm5521Isup3.hkl
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2017 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012), SHELXL2018 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).C13H14N2O3 | Z = 2 |
Mr = 246.26 | F(000) = 260 |
Triclinic, P1 | Dx = 1.330 Mg m−3 |
a = 6.0828 (9) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.4246 (13) Å | Cell parameters from 13077 reflections |
c = 11.1724 (16) Å | θ = 2.2–30.7° |
α = 75.838 (11)° | µ = 0.10 mm−1 |
β = 83.099 (12)° | T = 293 K |
γ = 84.059 (11)° | Prism, yellow |
V = 614.70 (16) Å3 | 0.72 × 0.39 × 0.16 mm |
Stoe IPDS 2 diffractometer | 1506 reflections with I > 2σ(I) |
Detector resolution: 6.67 pixels mm-1 | Rint = 0.054 |
rotation method scans | θmax = 26.0°, θmin = 2.2° |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | h = −7→7 |
Tmin = 0.944, Tmax = 0.989 | k = −11→11 |
6563 measured reflections | l = −13→13 |
2426 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.056 | H-atom parameters constrained |
wR(F2) = 0.147 | w = 1/[σ2(Fo2) + (0.0747P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max < 0.001 |
2426 reflections | Δρmax = 0.17 e Å−3 |
165 parameters | Δρmin = −0.17 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.7518 (3) | 0.88682 (19) | 0.99156 (15) | 0.0601 (5) | |
O3 | 0.4960 (3) | 0.58008 (19) | 0.11563 (16) | 0.0614 (5) | |
O2 | 0.1290 (3) | 0.7317 (2) | 0.05778 (16) | 0.0636 (5) | |
H2 | 0.016474 | 0.786724 | 0.044599 | 0.095* | |
N1 | 0.4947 (3) | 0.9323 (2) | 0.85757 (17) | 0.0525 (5) | |
H1 | 0.429651 | 0.995567 | 0.896673 | 0.063* | |
N2 | 0.3918 (3) | 0.9139 (2) | 0.75870 (17) | 0.0519 (5) | |
C9 | 0.3982 (4) | 0.6576 (2) | 0.1986 (2) | 0.0497 (6) | |
C5 | 0.3927 (4) | 0.8291 (3) | 0.5807 (2) | 0.0506 (6) | |
H5 | 0.252921 | 0.878478 | 0.572201 | 0.061* | |
C1 | 0.6829 (4) | 0.8631 (3) | 0.8987 (2) | 0.0492 (6) | |
C4 | 0.5043 (4) | 0.8412 (2) | 0.6851 (2) | 0.0472 (6) | |
C8 | 0.4803 (4) | 0.6645 (3) | 0.3066 (2) | 0.0521 (6) | |
H8 | 0.616062 | 0.614251 | 0.326018 | 0.062* | |
C11 | 0.0780 (4) | 0.8118 (3) | 0.2494 (2) | 0.0538 (6) | |
H11 | −0.059111 | 0.860442 | 0.230853 | 0.065* | |
C7 | 0.3664 (4) | 0.7445 (2) | 0.3875 (2) | 0.0496 (6) | |
C10 | 0.1954 (4) | 0.7364 (2) | 0.1681 (2) | 0.0487 (6) | |
C6 | 0.4707 (4) | 0.7544 (3) | 0.4962 (2) | 0.0549 (6) | |
H6 | 0.607897 | 0.702171 | 0.507391 | 0.066* | |
C12 | 0.1607 (4) | 0.8164 (3) | 0.3580 (2) | 0.0552 (6) | |
H12 | 0.078822 | 0.867751 | 0.411814 | 0.066* | |
C13 | 0.7007 (4) | 0.4965 (3) | 0.1419 (3) | 0.0614 (7) | |
H13A | 0.745228 | 0.441469 | 0.079994 | 0.092* | |
H13B | 0.682204 | 0.430200 | 0.222071 | 0.092* | |
H13C | 0.812721 | 0.561367 | 0.141331 | 0.092* | |
C2 | 0.7972 (5) | 0.7565 (3) | 0.8299 (3) | 0.0694 (8) | |
H2A | 0.761992 | 0.658432 | 0.875007 | 0.083* | |
H2B | 0.956271 | 0.761159 | 0.827335 | 0.083* | |
C3 | 0.7375 (4) | 0.7807 (3) | 0.7002 (2) | 0.0673 (8) | |
H3A | 0.836608 | 0.847839 | 0.645178 | 0.081* | |
H3B | 0.760060 | 0.688125 | 0.675416 | 0.081* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0632 (11) | 0.0804 (12) | 0.0479 (10) | 0.0136 (8) | −0.0292 (8) | −0.0331 (8) |
O3 | 0.0642 (11) | 0.0739 (11) | 0.0579 (10) | 0.0218 (8) | −0.0273 (9) | −0.0392 (9) |
O2 | 0.0633 (12) | 0.0859 (13) | 0.0537 (10) | 0.0146 (9) | −0.0326 (9) | −0.0349 (9) |
N1 | 0.0536 (12) | 0.0686 (13) | 0.0448 (11) | 0.0094 (9) | −0.0204 (9) | −0.0299 (10) |
N2 | 0.0510 (12) | 0.0670 (13) | 0.0450 (11) | 0.0068 (9) | −0.0213 (9) | −0.0237 (10) |
C9 | 0.0569 (14) | 0.0515 (13) | 0.0479 (13) | 0.0029 (11) | −0.0190 (11) | −0.0217 (11) |
C5 | 0.0550 (14) | 0.0602 (14) | 0.0422 (12) | 0.0029 (11) | −0.0196 (11) | −0.0185 (11) |
C1 | 0.0539 (14) | 0.0552 (14) | 0.0427 (12) | 0.0056 (11) | −0.0182 (11) | −0.0172 (11) |
C4 | 0.0524 (14) | 0.0522 (13) | 0.0416 (12) | 0.0007 (10) | −0.0152 (11) | −0.0168 (10) |
C8 | 0.0533 (14) | 0.0584 (14) | 0.0511 (14) | 0.0074 (11) | −0.0248 (12) | −0.0207 (11) |
C11 | 0.0495 (13) | 0.0675 (15) | 0.0506 (14) | 0.0090 (11) | −0.0211 (11) | −0.0237 (12) |
C7 | 0.0579 (14) | 0.0565 (14) | 0.0412 (12) | 0.0011 (11) | −0.0181 (11) | −0.0204 (11) |
C10 | 0.0540 (14) | 0.0560 (14) | 0.0432 (13) | −0.0004 (11) | −0.0192 (11) | −0.0202 (11) |
C6 | 0.0601 (15) | 0.0640 (15) | 0.0467 (13) | 0.0033 (12) | −0.0229 (12) | −0.0197 (12) |
C12 | 0.0558 (15) | 0.0681 (15) | 0.0490 (14) | 0.0056 (12) | −0.0149 (12) | −0.0274 (12) |
C13 | 0.0656 (16) | 0.0634 (15) | 0.0600 (16) | 0.0144 (12) | −0.0203 (13) | −0.0248 (13) |
C2 | 0.0734 (18) | 0.0867 (19) | 0.0599 (16) | 0.0316 (14) | −0.0365 (14) | −0.0406 (14) |
C3 | 0.0576 (16) | 0.098 (2) | 0.0593 (16) | 0.0136 (14) | −0.0231 (13) | −0.0423 (15) |
O1—C1 | 1.241 (3) | C8—H8 | 0.9300 |
O3—C9 | 1.362 (3) | C11—C10 | 1.377 (3) |
O3—C13 | 1.424 (3) | C11—C12 | 1.379 (3) |
O2—C10 | 1.355 (2) | C11—H11 | 0.9300 |
O2—H2 | 0.8200 | C7—C12 | 1.396 (3) |
N1—C1 | 1.331 (3) | C7—C6 | 1.462 (3) |
N1—N2 | 1.387 (2) | C6—H6 | 0.9300 |
N1—H1 | 0.8600 | C12—H12 | 0.9300 |
N2—C4 | 1.288 (3) | C13—H13A | 0.9600 |
C9—C8 | 1.378 (3) | C13—H13B | 0.9600 |
C9—C10 | 1.406 (3) | C13—H13C | 0.9600 |
C5—C6 | 1.327 (3) | C2—C3 | 1.493 (3) |
C5—C4 | 1.451 (3) | C2—H2A | 0.9700 |
C5—H5 | 0.9300 | C2—H2B | 0.9700 |
C1—C2 | 1.480 (3) | C3—H3A | 0.9700 |
C4—C3 | 1.486 (3) | C3—H3B | 0.9700 |
C8—C7 | 1.394 (3) | ||
C9—O3—C13 | 117.98 (17) | O2—C10—C11 | 124.3 (2) |
C10—O2—H2 | 109.5 | O2—C10—C9 | 116.1 (2) |
C1—N1—N2 | 127.3 (2) | C11—C10—C9 | 119.54 (19) |
C1—N1—H1 | 116.4 | C5—C6—C7 | 127.7 (2) |
N2—N1—H1 | 116.4 | C5—C6—H6 | 116.1 |
C4—N2—N1 | 117.42 (18) | C7—C6—H6 | 116.1 |
O3—C9—C8 | 126.0 (2) | C11—C12—C7 | 120.5 (2) |
O3—C9—C10 | 115.23 (18) | C11—C12—H12 | 119.8 |
C8—C9—C10 | 118.8 (2) | C7—C12—H12 | 119.8 |
C6—C5—C4 | 126.4 (2) | O3—C13—H13A | 109.5 |
C6—C5—H5 | 116.8 | O3—C13—H13B | 109.5 |
C4—C5—H5 | 116.8 | H13A—C13—H13B | 109.5 |
O1—C1—N1 | 120.4 (2) | O3—C13—H13C | 109.5 |
O1—C1—C2 | 123.3 (2) | H13A—C13—H13C | 109.5 |
N1—C1—C2 | 116.36 (19) | H13B—C13—H13C | 109.5 |
N2—C4—C5 | 115.5 (2) | C1—C2—C3 | 114.4 (2) |
N2—C4—C3 | 122.97 (19) | C1—C2—H2A | 108.7 |
C5—C4—C3 | 121.5 (2) | C3—C2—H2A | 108.7 |
C9—C8—C7 | 122.0 (2) | C1—C2—H2B | 108.7 |
C9—C8—H8 | 119.0 | C3—C2—H2B | 108.7 |
C7—C8—H8 | 119.0 | H2A—C2—H2B | 107.6 |
C10—C11—C12 | 121.0 (2) | C4—C3—C2 | 113.3 (2) |
C10—C11—H11 | 119.5 | C4—C3—H3A | 108.9 |
C12—C11—H11 | 119.5 | C2—C3—H3A | 108.9 |
C8—C7—C12 | 118.02 (19) | C4—C3—H3B | 108.9 |
C8—C7—C6 | 118.9 (2) | C2—C3—H3B | 108.9 |
C12—C7—C6 | 123.1 (2) | H3A—C3—H3B | 107.7 |
C1—N1—N2—C4 | −12.5 (4) | O3—C9—C10—O2 | −3.3 (3) |
C13—O3—C9—C8 | 0.8 (3) | C8—C9—C10—O2 | 176.6 (2) |
C13—O3—C9—C10 | −179.3 (2) | O3—C9—C10—C11 | 176.6 (2) |
N2—N1—C1—O1 | −177.3 (2) | C8—C9—C10—C11 | −3.5 (4) |
N2—N1—C1—C2 | 1.2 (4) | C4—C5—C6—C7 | −177.5 (2) |
N1—N2—C4—C5 | −177.97 (19) | C8—C7—C6—C5 | 177.4 (3) |
N1—N2—C4—C3 | −1.5 (3) | C12—C7—C6—C5 | 0.0 (4) |
C6—C5—C4—N2 | −176.7 (3) | C10—C11—C12—C7 | 0.2 (4) |
C6—C5—C4—C3 | 6.8 (4) | C8—C7—C12—C11 | −2.2 (4) |
O3—C9—C8—C7 | −178.7 (2) | C6—C7—C12—C11 | 175.2 (2) |
C10—C9—C8—C7 | 1.4 (4) | O1—C1—C2—C3 | −159.6 (3) |
C9—C8—C7—C12 | 1.4 (4) | N1—C1—C2—C3 | 21.9 (4) |
C9—C8—C7—C6 | −176.1 (2) | N2—C4—C3—C2 | 23.8 (4) |
C12—C11—C10—O2 | −177.4 (2) | C5—C4—C3—C2 | −160.0 (2) |
C12—C11—C10—C9 | 2.7 (4) | C1—C2—C3—C4 | −32.7 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1i | 0.82 | 1.86 | 2.671 (2) | 168 |
N1—H1···O1ii | 0.86 | 2.02 | 2.875 (3) | 170 |
C13—H13A···O2iii | 0.96 | 2.51 | 3.465 (3) | 172 |
C13—H13C···O2iv | 0.96 | 2.57 | 3.489 (4) | 159 |
Symmetry codes: (i) x−1, y, z−1; (ii) −x+1, −y+2, −z+2; (iii) −x+1, −y+1, −z; (iv) x+1, y, z. |
Acknowledgements
The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).
References
Abourichaa, S., Benchat, N., Anaflous, A., Melhaoui, A., Ben-Hadda, T., Oussaid, B., El Bali, B. & Bolte, M. (2003). Acta Cryst. E59, o802–o803. CrossRef IUCr Journals Google Scholar
Akhtar, W., Shaquiquzzaman, M., Akhter, M., Verma, G., Khan, M. F. & Alam, M. M. (2016). Eur. J. Med. Chem. 123, 256–281. Web of Science CrossRef CAS PubMed Google Scholar
Asif, M. (2013). Mini-Rev. Org. Chem. 10, 113–122. Web of Science CrossRef CAS Google Scholar
Asif, M. (2014). Rev. Med. Chem. 14, 1093–1103. CrossRef CAS Google Scholar
Barberot, C., Moniot, A., Allart-Simon, I., Malleret, L., Yegorova, T., Laronze-Cochard, M., Bentaher, A., Médebielle, M., Bouillon, J. P., Hénon, E., SAPI, J., Velard, F. & Gérard, S. (2018). Eur. J. Med. Chem. 146, 139–146. CrossRef CAS PubMed Google Scholar
Boukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494–500. Web of Science CrossRef CAS Google Scholar
Daoui, S., Cinar, E. B., El Kalai, F., Saddik, R., Karrouchi, K., Benchat, N., Baydere, C. & Dege, N. (2019b). Acta Cryst. E75, 1352–1356. CrossRef IUCr Journals Google Scholar
Daoui, S., Faizi, M. S. H., Kalai, F. E., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019a). Acta Cryst. E75, 1030–1034. CrossRef IUCr Journals Google Scholar
Dubey, S. & Bhosle, P. A. (2015). Med. Chem. Res. 24, 3579–3598. Web of Science CrossRef CAS Google Scholar
El Kalai, F., Baydere, C., Daoui, S., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019). Acta Cryst. E75, 892–895. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gökçe, M., Utku, S. & Küpeli, E. (2009). Eur. J. Med. Chem. 44, 3760–3764. Web of Science PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Karrouchi, K., Ansar, M., Radi, S., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o890–o891. Web of Science CSD CrossRef IUCr Journals Google Scholar
Livermore, D., Bethell, R. C., Cammack, N., Hancock, A. P., Hann, M. M., Green, D., Lamont, R. B., Noble, S. A., Orr, D. C. & Payne, J. J. (1993). J. Med. Chem. 36, 3784–3794. CSD CrossRef CAS PubMed Web of Science Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Partap, S., Akhtar, M. J., Yar, M. S., Hassan, M. Z. & Siddiqui, A. A. (2018). Bioorg. Chem. 77, 74–83. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siddiqui, A. A., Mishra, R., Shaharyar, M., Husain, A., Rashid, M. & Pal, P. (2011). Bioorg. Med. Chem. Lett. 21, 1023–1026. Web of Science CrossRef CAS PubMed Google Scholar
Sönmez, M., Berber, I. & Akbaş, E. (2006). Eur. J. Med. Chem. 41, 101–105. Web of Science PubMed Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Tao, M., Aimone, L. D., Gruner, J. A., Mathiasen, J. R., Huang, Z., Lyons, J., Raddatz, R. & Hudkins, R. L. (2012). Bioorg. Med. Chem. Lett. 22, 1073–1077. Web of Science CrossRef CAS PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net. Google Scholar
Wang, T., Dong, Y., Wang, L.-C., Xiang, B.-R., Chen, Z. & Qu, L.-B. (2008). Arzneimittelforschung, 58, 569–573. Web of Science PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, C.-T., Wu, J.-H., Zhou, L.-N., Wang, Y.-L. & Wang, J.-K. (2006). Acta Cryst. E62, o2999–o3000. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhou, G., Ting, P. C., Aslanian, R., Cao, J., Kim, D. W., Kuang, R., Lee, J. F., Schwerdt, J., Wu, H., Jason Herr, R., Zych, A. J., Yang, J., Lam, S., Wainhaus, S., Black, T. A., McNicholas, P. M., Xu, Y. & Walker, S. S. (2011). Bioorg. Med. Chem. Lett. 21, 2890–2893. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.