research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of (E)-1,2-bis­­[2-(methyl­sulfan­yl)phen­yl]diazene

aInstitute for Organic and Analytic Chemistry, University Bremen, Leobener Strasse 7, 28359 Bremen, Germany, bMAPEX, Center for Materials and Processes, University of Bremen, Bibliothekstr. 1, 28359 Bremen, Germany, and cInstitute for Inorganic Chemistry and Crystallography, University of Bremen, Leobener Strasse 7, 28359 Bremen, Germany
*Correspondence e-mail: staubitz@uni-bremen.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 11 September 2019; accepted 28 October 2019; online 31 October 2019)

The title compound, C14H14N2S2, was obtained by transmetallation of 2,2′-bis­(tri­methyl­stann­yl)azo­benzene with methyl lithium, and subsequent quenching with dimethyl di­sulfide. The asymmetric unit comprises two half-mol­ecules, the other halves being completed by inversion symmetry at the midpoint of the azo group. The two mol­ecules show only slight differences with respect to N=N, S—N and aromatic C=C bonds or angles. Hirshfeld surface analysis reveals that except for one weak H⋯S inter­action, inter­molecular inter­actions are dominated by van der Waals forces only.

1. Chemical context

The mol­ecular switch azo­benzene can undergo isomerization from its thermodynamically stable trans form to the metastable cis form using external stimuli such as light, temperature or pressure. Azo­benzenes are common motifs in dyes because of their high thermal and photochemical stability (Yesodha et al., 2004[Yesodha, S. K., Sadashiva Pillai, C. K. & Tsutsumi, N. (2004). Prog. Polym. Sci. 29, 45-74.]; Lagrasta et al., 1997[Lagrasta, C., Bellobono, I. R. & Bonardi, M. (1997). J. Photochem. Photobiol. Chem. 110, 201-205.]). We recently presented methods to substitute azo­benzenes in the ortho, meta and para-positions with tri­methyl­tin as a novel functionalization method, giving rise to a dual tin–lithium exchange (Strüben et al., 2014[Strüben, J., Gates, P. J. & Staubitz, A. (2014). J. Org. Chem. 79, 1719-1728.], 2015[Strüben, J., Lipfert, M., Springer, J.-O., Gould, C. A., Gates, P. J., Sönnichsen, F. D. & Staubitz, A. (2015). Chem. Eur. J. 21, 11165-11173.]; Hoffmann et al., 2019[Hoffmann, J., Kuczmera, T. J., Lork, E. & Staubitz, A. (2019). Molecules, 24, 303.]). In particular, we described the effect on the diortho-substitution on azo­benzenes with trimethyl-tetrels and the resulting effects on the switching properties (Hoffmann et al., 2019[Hoffmann, J., Kuczmera, T. J., Lork, E. & Staubitz, A. (2019). Molecules, 24, 303.]). In this context, we present here a novel diortho-substituted azo­benzene, (C7H7NS)2, (I)[link], bearing two methyl­sulfide groups.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound consists of two half-mol­ecules (Ia and Ib), the other halves being completed by application of inversion symmetry. The midpoints of the N=N bonds are located on inversion centres, resulting in a trans-configuration for the central N=N bonds (Fig. 1[link]). As indicated by the C6A—C1A—N1A—N1Ai and C6B—C1B—N1B—N1Bii [symmetry codes: (i) −x, 1 − y, −z; (ii) 1 − x, 1 − y, 1 − z] torsion angles of 13.2 (2) and −5.3 (2)°, respectively, in both mol­ecules the phenyl rings are twisted slightly with respect to the azo unit. A weak distortion is also found for the N1—C1—C2—S1 torsion angles of −3.06 (16)° for Ia and −2.06 (15)° for Ib. The N=N bond lengths differ marginally [1.255 (2) Å for Ia, 1.264 (2) Å for Ib], as do comparable C—C bonds. For example, the C1—C2 bond in Ia is at 1.408 (2) Å slightly shorter than Ib [1.415 (2) Å]. In comparison, this bond is longer than all other C—C distances in the ring because of repulsion of the nitro­gen and the sulfur atoms attached to C1 and C2, respectively. In both mol­ecules, the S⋯N distances [2.8625 (13) Å for Ia, 2.8761 (11) Å for Ib] are too long to be considered as attractive inter­actions. Fig. 2[link] represents an overlay plot of the two mol­ecules, showing there are only slight conformational differences.

[Figure 1]
Figure 1
Mol­ecular structures (Ia left, Ib right) of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) x, 1 − y, − z; (ii) 1 − x, 1 − y, 1 − z.]
[Figure 2]
Figure 2
Overlay presentation of mol­ecules Ia and Ib.

3. Supra­molecular features and Hirshfeld surface analysis

The packing of Ia and Ib in the crystal is shown in Fig. 3[link]. Despite the presence of phenyl rings and a parallel arrangement of the mol­ecules, only weak offset ππ inter­actions are observed; the shortest centroid-to-centroid distance is Cg2⋯Cg2(1 − x, 1 − y, −z) = 3.7525 (8) Å with a slippage of 1.422 Å. To further investigate the inter­molecular inter­actions, Hirshfeld surfaces (Hirshfeld, 1977[Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129-138.]) and fingerprint plots were generated for both mol­ecules using CrystalExplorer17.5 (McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]). Hirshfeld surface analysis depicts inter­molecular inter­actions by different colors, representing short or long contacts and further the relative strength of the inter­action. The generated Hirshfeld surfaces mapped over dnorm and the shape index are shown in Fig. 4[link] for Ia and in Fig. 5[link] for Ib. Whereas in Ia a significant inter­molecular inter­action is not apparent, characteristic red spots near S1B and H5B indicate weak S⋯H inter­actions in Ib. The respective supra­molecular arrangement is shown in Fig. 6[link]. The sulfur atom S1B inter­acts with a phenyl proton (H4B) of another mol­ecule of Ib (S⋯H distance = 2.811 Å). The two-dimensional fingerprint plots for mol­ecule Ib for qu­anti­fication of the contributions of each type of non-covalent inter­action to the Hirshfeld surface (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackmann, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are given in Fig. 7[link]. The packing is dominated by H⋯H contacts, representing van der Waals inter­actions (44.5% contribution to the surface), followed by C⋯H and S⋯H inter­actions, which contribute with 24.0% and 18.1%, respectively. The contributions of the N⋯H (8.6%) and C⋯C (4.8%) inter­actions are less significant.

[Figure 3]
Figure 3
Crystal packing in a view along the b axis. To distinguish the different mol­ecules, all sulfur atoms within the unit cell are labelled.
[Figure 4]
Figure 4
Hirshfeld surface of Ia mapped with dnorm (top) and shape index (bottom), displaying no significant inter­molecular inter­actions.
[Figure 5]
Figure 5
Hirshfeld surface of Ib mapped with dnorm (top) and shape index (bottom) with indication of an S⋯H inter­action.
[Figure 6]
Figure 6
Hirshfeld surface of Ib mapped with dnorm (left) and shape index (right), together with the inter­action of a neighbouring mol­ecule.
[Figure 7]
Figure 7
Two-dimensional fingerprint plots for Ib, delineated into H⋯H, C⋯H, S⋯H, N⋯H, C⋯C inter­actions.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.4.0; update August 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed no azo­benzene-based structures that contain methyl thio­ethers. However, some general ortho-substituted azo­benzenes have been deposited (Yamamura et al., 2008[Yamamura, M., Kano, N., Kawashima, T., Matsumoto, T., Harada, J. & Ogawa, K. (2008). J. Org. Chem. 73, 8244-8249.]; Kano et al., 2001[Kano, N., Komatsu, F. & Kawashima, T. (2001). Chem. Lett. 30, 338-339.]; Hoffmann et al., 2019[Hoffmann, J., Kuczmera, T. J., Lork, E. & Staubitz, A. (2019). Molecules, 24, 303.]). Additionally, some diortho-substituted thio­azoxybenzenes were reported previously (Szczygelska-Tao et al., 1999[Szczygelska-Tao, J., Biernat, J. F., Kravtsov, V. C. & Simonov, Y. A. (1999). Tetrahedron, 55, 8433-8442.]; Kertmen et al., 2013[Kertmen, A., Szczygelska-Tao, J. & Chojnacki, J. (2013). Tetrahedron, 69, 10662-10668.]). For the structure of an azo­benzene compound with an inversion centre at the N=N bond, see: Bohle et al. (2007[Bohle, D. S., Dorans, K. S. & Fotie, J. (2007). Acta Cryst. E63, o889-o890.]).

5. Synthesis and crystallization

The synthesis of 2,2′-bis(tri­methyl­stann­yl)azo­benzene was recently described (Hoffmann et al., 2019[Hoffmann, J., Kuczmera, T. J., Lork, E. & Staubitz, A. (2019). Molecules, 24, 303.]). For further details of a similar transmetallation of a stannylated azo­benzene, see: Strüben et al. (2015[Strüben, J., Lipfert, M., Springer, J.-O., Gould, C. A., Gates, P. J., Sönnichsen, F. D. & Staubitz, A. (2015). Chem. Eur. J. 21, 11165-11173.]). Dimethyl di­sulfide (99%) was purchased from Acros Organics and was used without further purification. Methyl lithium (1.88 M in diethyl ether, titrated against 2,2′-bi­pyridine) was purchased from Acros Organics. THF was purchased from VWR and was dried and degassed with a solvent purification system by Inert Technology.

2,2′-bis­(Methyl­thio)­azo­benzene

In an inert reaction tube, 2,2-bis(tri­methyl­stann­yl)azo­benzene (200 mg, 0.39 mmol) was dissolved under Schlenk conditions in THF (12.5 ml) and cooled to 195 K. Then MeLi (1.88 M in diethyl ether, 0.63 ml, 1.18 mmol) was added within 5 min and after 1.5 h at this temperature, dimethyl di­sulfide (0.35 ml, 3.94 mmol) was added in one ration. The reaction mixture was warmed to 298 K over 14 h and the solvent was removed under reduced pressure. The obtained orange solid was purified in a silica column (Merck, 0.015–0.40 mm) with a gradient of eluents from n-pentane to di­chloro­methane giving dark-orange crystals (31 mg, 0.11 mmol; yield 29%). Single crystals suitable for X-ray analysis were obtained by slow evaporation from a saturated n-heptane solution.

1H NMR (500 MHz, CDCl3): δ = 7.76 (dd, 3J = 8.1 Hz, 4J = 1.4 Hz, 2H, H6), 7.40 (td, 3J = 8.0, 7.3 Hz, 4J = 1.4 Hz, 2H, H4), 7.32 (dd, 3J = 8.0 Hz, 4J = 1.1 Hz, 2H, H3), 7.20 (td, 3J = 8.1, 7.3Hz, 4J = 1.1 Hz, 2H, H5), 2.53 (s, 6H, H7) ppm.

13C{1H} NMR (125 MHz, CDCl3): δ = 149.08 (C1), 141.00 (C2), 131.56 (C4), 124.81 (C3), 124.75 (C5), 118.02 (C6), 15.02 (C7) ppm.

HRMS (EI, 70 eV, MAT95, direct): m/z: calculated for C14H14N2S2+ 274.05929 found 274.05944.

MS (EI): m/z 273.9 (5%) [M]+, 258.9 (100%) [M − CH3]+, 243.9 (5%) [M − C2H6]+, 107.9 (13%) [M − C8H10N2S]+.

IR (ATR): ν = 3059 (w), 2986 (w), 2961 (w), 2918 (w), 2852 (w), 1575 (m), 1561 (w), 1457 (m), 1433 (s), 1298 (w), 1249 (w), 1217 (m), 1162 (m), 1065 (s), 1035 (m), 951 (m), 863 (w), 803 (w), 761 (s), 726 (s), 674 (s) cm−1.

M.p.: 429 K

Rf: (n-penta­ne: di­chloro­methane 3:1): 0.55.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. All H atoms were positioned geometrically and refined using a riding model: C—H = 0.95–0.98 Å with Uiso(H) = 1.5Ueq (C-meth­yl) and 1.2Ueq(C) (C-phen­yl).

Table 1
Experimental details

Crystal data
Chemical formula C14H14N2S2
Mr 274.39
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 13.0656 (5), 12.1787 (4), 8.3471 (3)
β (°) 96.154 (1)
V3) 1320.55 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.39
Crystal size (mm) 0.21 × 0.18 × 0.17
 
Data collection
Diffractometer Bruker D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.580, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 21000, 3292, 2842
Rint 0.065
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.089, 1.04
No. of reflections 3292
No. of parameters 165
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.44, −0.38
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(E)-1,2-Bis[2-(methylsulfanyl)phenyl]diazene top
Crystal data top
C14H14N2S2F(000) = 576
Mr = 274.39Dx = 1.380 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.0656 (5) ÅCell parameters from 9874 reflections
b = 12.1787 (4) Åθ = 2.3–28.3°
c = 8.3471 (3) ŵ = 0.39 mm1
β = 96.154 (1)°T = 100 K
V = 1320.55 (8) Å3Block, dark orange
Z = 40.21 × 0.18 × 0.17 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
3292 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs2842 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.065
Detector resolution: 7.9 pixels mm-1θmax = 28.3°, θmin = 2.3°
ω and φ scansh = 1717
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1616
Tmin = 0.580, Tmax = 0.746l = 1110
21000 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0401P)2 + 0.6716P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3292 reflectionsΔρmax = 0.44 e Å3
165 parametersΔρmin = 0.38 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.03738 (3)0.22038 (3)0.07109 (4)0.01750 (10)
N1A0.00557 (9)0.45111 (10)0.02308 (14)0.0144 (2)
C1A0.09596 (10)0.43239 (11)0.13020 (16)0.0133 (3)
C2A0.12139 (10)0.32133 (11)0.15962 (16)0.0136 (3)
C3A0.21227 (10)0.29785 (12)0.25937 (17)0.0163 (3)
H3A0.2328730.2237330.2780650.020*
C4A0.27191 (10)0.38209 (12)0.33050 (17)0.0175 (3)
H4A0.3333630.3648840.3971790.021*
C5A0.24372 (10)0.49160 (12)0.30637 (17)0.0170 (3)
H5A0.2843850.5485380.3584320.020*
C6A0.15556 (10)0.51642 (12)0.20540 (16)0.0153 (3)
H6A0.1357170.5908240.1874110.018*
C7A0.09736 (12)0.09607 (12)0.15119 (19)0.0212 (3)
H7AA0.1082960.1008740.2689850.032*
H7AB0.1637490.0863470.1084050.032*
H7AC0.0526900.0333320.1198050.032*
S1B0.68646 (3)0.36826 (3)0.29648 (4)0.01522 (10)
N1B0.53057 (8)0.47643 (9)0.45728 (13)0.0111 (2)
C1B0.54712 (9)0.53356 (10)0.31394 (15)0.0107 (2)
C2B0.62096 (9)0.48706 (11)0.22188 (15)0.0109 (2)
C3B0.63884 (10)0.53770 (11)0.07713 (16)0.0135 (3)
H3B0.6880840.5074810.0137150.016*
C4B0.58521 (10)0.63170 (11)0.02550 (16)0.0149 (3)
H4B0.5972710.6645860.0739660.018*
C5B0.51371 (10)0.67861 (11)0.11794 (16)0.0141 (3)
H5B0.4783730.7439230.0829000.017*
C6B0.49478 (10)0.62917 (11)0.26090 (16)0.0121 (3)
H6B0.4457490.6604640.3236990.015*
C7B0.77056 (12)0.33890 (13)0.1449 (2)0.0230 (3)
H7BA0.7294770.3271710.0410430.035*
H7BB0.8106130.2726180.1749840.035*
H7BC0.8174180.4009220.1361020.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.01446 (17)0.01894 (19)0.01851 (19)0.00155 (13)0.00094 (13)0.00187 (13)
N1A0.0110 (5)0.0196 (6)0.0125 (5)0.0009 (4)0.0008 (4)0.0003 (4)
C1A0.0098 (6)0.0203 (7)0.0100 (6)0.0002 (5)0.0022 (5)0.0005 (5)
C2A0.0102 (6)0.0199 (7)0.0111 (6)0.0010 (5)0.0032 (5)0.0020 (5)
C3A0.0129 (6)0.0205 (7)0.0155 (7)0.0018 (5)0.0011 (5)0.0019 (5)
C4A0.0112 (6)0.0267 (7)0.0139 (6)0.0008 (5)0.0013 (5)0.0017 (6)
C5A0.0136 (6)0.0250 (7)0.0124 (6)0.0033 (5)0.0013 (5)0.0021 (5)
C6A0.0141 (6)0.0194 (7)0.0128 (6)0.0005 (5)0.0029 (5)0.0000 (5)
C7A0.0238 (7)0.0182 (7)0.0215 (7)0.0003 (6)0.0026 (6)0.0015 (6)
S1B0.01542 (17)0.01406 (17)0.01718 (18)0.00275 (12)0.00642 (13)0.00248 (12)
N1B0.0103 (5)0.0140 (5)0.0090 (5)0.0019 (4)0.0012 (4)0.0012 (4)
C1B0.0097 (5)0.0135 (6)0.0088 (6)0.0028 (5)0.0008 (5)0.0014 (5)
C2B0.0096 (5)0.0112 (6)0.0115 (6)0.0013 (5)0.0001 (5)0.0013 (5)
C3B0.0124 (6)0.0176 (6)0.0111 (6)0.0014 (5)0.0042 (5)0.0018 (5)
C4B0.0160 (6)0.0180 (7)0.0108 (6)0.0030 (5)0.0020 (5)0.0019 (5)
C5B0.0142 (6)0.0146 (6)0.0130 (6)0.0002 (5)0.0000 (5)0.0011 (5)
C6B0.0109 (6)0.0148 (6)0.0106 (6)0.0011 (5)0.0011 (5)0.0020 (5)
C7B0.0229 (7)0.0210 (7)0.0276 (8)0.0061 (6)0.0144 (6)0.0013 (6)
Geometric parameters (Å, º) top
S1A—C2A1.7574 (14)S1B—C2B1.7605 (13)
S1A—C7A1.8002 (15)S1B—C7B1.7983 (15)
N1A—N1Ai1.255 (2)N1B—N1Bii1.264 (2)
N1A—C1A1.4211 (17)N1B—C1B1.4205 (16)
C1A—C2A1.4080 (19)C1B—C2B1.4145 (18)
C1A—C6A1.3940 (19)C1B—C6B1.3981 (18)
C2A—C3A1.4046 (18)C2B—C3B1.3983 (18)
C3A—H3A0.9500C3B—H3B0.9500
C3A—C4A1.383 (2)C3B—C4B1.3866 (19)
C4A—H4A0.9500C4B—H4B0.9500
C4A—C5A1.393 (2)C4B—C5B1.3961 (19)
C5A—H5A0.9500C5B—H5B0.9500
C5A—C6A1.3857 (19)C5B—C6B1.3824 (19)
C6A—H6A0.9500C6B—H6B0.9500
C7A—H7AA0.9800C7B—H7BA0.9800
C7A—H7AB0.9800C7B—H7BB0.9800
C7A—H7AC0.9800C7B—H7BC0.9800
C2A—S1A—C7A101.82 (7)C2B—S1B—C7B103.00 (7)
N1Ai—N1A—C1A113.98 (14)N1Bii—N1B—C1B114.53 (14)
C2A—C1A—N1A115.37 (12)C2B—C1B—N1B115.83 (11)
C6A—C1A—N1A123.50 (13)C6B—C1B—N1B124.14 (11)
C6A—C1A—C2A121.11 (12)C6B—C1B—C2B120.02 (12)
C1A—C2A—S1A118.27 (10)C1B—C2B—S1B118.09 (10)
C3A—C2A—S1A123.84 (11)C3B—C2B—S1B123.24 (10)
C3A—C2A—C1A117.89 (12)C3B—C2B—C1B118.67 (12)
C2A—C3A—H3A119.8C2B—C3B—H3B119.8
C4A—C3A—C2A120.33 (13)C4B—C3B—C2B120.46 (12)
C4A—C3A—H3A119.8C4B—C3B—H3B119.8
C3A—C4A—H4A119.3C3B—C4B—H4B119.6
C3A—C4A—C5A121.35 (13)C3B—C4B—C5B120.79 (12)
C5A—C4A—H4A119.3C5B—C4B—H4B119.6
C4A—C5A—H5A120.4C4B—C5B—H5B120.3
C6A—C5A—C4A119.12 (13)C6B—C5B—C4B119.42 (13)
C6A—C5A—H5A120.4C6B—C5B—H5B120.3
C1A—C6A—H6A119.9C1B—C6B—H6B119.7
C5A—C6A—C1A120.10 (13)C5B—C6B—C1B120.63 (12)
C5A—C6A—H6A119.9C5B—C6B—H6B119.7
S1A—C7A—H7AA109.5S1B—C7B—H7BA109.5
S1A—C7A—H7AB109.5S1B—C7B—H7BB109.5
S1A—C7A—H7AC109.5S1B—C7B—H7BC109.5
H7AA—C7A—H7AB109.5H7BA—C7B—H7BB109.5
H7AA—C7A—H7AC109.5H7BA—C7B—H7BC109.5
H7AB—C7A—H7AC109.5H7BB—C7B—H7BC109.5
S1A—C2A—C3A—C4A177.02 (11)S1B—C2B—C3B—C4B179.51 (10)
N1Ai—N1A—C1A—C2A168.19 (14)N1Bii—N1B—C1B—C2B175.48 (13)
N1Ai—N1A—C1A—C6A13.2 (2)N1Bii—N1B—C1B—C6B5.3 (2)
N1A—C1A—C2A—S1A3.06 (16)N1B—C1B—C2B—S1B2.06 (15)
N1A—C1A—C2A—C3A177.45 (12)N1B—C1B—C2B—C3B178.30 (11)
N1A—C1A—C6A—C5A178.94 (12)N1B—C1B—C6B—C5B178.56 (12)
C1A—C2A—C3A—C4A2.4 (2)C1B—C2B—C3B—C4B0.11 (19)
C2A—C1A—C6A—C5A2.5 (2)C2B—C1B—C6B—C5B0.61 (19)
C2A—C3A—C4A—C5A0.3 (2)C2B—C3B—C4B—C5B1.1 (2)
C3A—C4A—C5A—C6A1.8 (2)C3B—C4B—C5B—C6B1.4 (2)
C4A—C5A—C6A—C1A0.4 (2)C4B—C5B—C6B—C1B0.54 (19)
C6A—C1A—C2A—S1A175.63 (10)C6B—C1B—C2B—S1B178.71 (10)
C6A—C1A—C2A—C3A3.86 (19)C6B—C1B—C2B—C3B0.94 (18)
C7A—S1A—C2A—C1A176.89 (11)C7B—S1B—C2B—C1B179.91 (10)
C7A—S1A—C2A—C3A2.57 (13)C7B—S1B—C2B—C3B0.28 (13)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1.
 

Funding information

The authors would like to thank Special Research Area 677 `Function by Switching' of the Deutsche Forschungsgemeinschaft (DFG), Project C14, for financial support. This research has been supported by the Institutional Strategy of the University of Bremen, funded by the German Excellence Initiative.

References

First citationBohle, D. S., Dorans, K. S. & Fotie, J. (2007). Acta Cryst. E63, o889–o890.  CrossRef IUCr Journals Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationHoffmann, J., Kuczmera, T. J., Lork, E. & Staubitz, A. (2019). Molecules, 24, 303.  CrossRef Google Scholar
First citationKano, N., Komatsu, F. & Kawashima, T. (2001). Chem. Lett. 30, 338–339.  Web of Science CSD CrossRef Google Scholar
First citationKertmen, A., Szczygelska-Tao, J. & Chojnacki, J. (2013). Tetrahedron, 69, 10662–10668.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLagrasta, C., Bellobono, I. R. & Bonardi, M. (1997). J. Photochem. Photobiol. Chem. 110, 201–205.  CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackmann, M. A. (2007). Chem. Commun. pp. 3814–3816.  CrossRef Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStrüben, J., Gates, P. J. & Staubitz, A. (2014). J. Org. Chem. 79, 1719–1728.  Web of Science PubMed Google Scholar
First citationStrüben, J., Lipfert, M., Springer, J.-O., Gould, C. A., Gates, P. J., Sönnichsen, F. D. & Staubitz, A. (2015). Chem. Eur. J. 21, 11165–11173.  PubMed Google Scholar
First citationSzczygelska-Tao, J., Biernat, J. F., Kravtsov, V. C. & Simonov, Y. A. (1999). Tetrahedron, 55, 8433–8442.  CAS Google Scholar
First citationYamamura, M., Kano, N., Kawashima, T., Matsumoto, T., Harada, J. & Ogawa, K. (2008). J. Org. Chem. 73, 8244–8249.  CrossRef PubMed CAS Google Scholar
First citationYesodha, S. K., Sadashiva Pillai, C. K. & Tsutsumi, N. (2004). Prog. Polym. Sci. 29, 45–74.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds