research communications
a]pyridine
DFT calculation, Hirshfeld surface analysis and energy framework study of 6-bromo-2-(4-bromophenyl)imidazo[1,2-aDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysuru 570 006, Karnataka, India, bDepartment of Chemistry, Mangalore University, Mangalagangothri, Mangaluru 574 199, Karnataka, India, and cDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: mahendra@physics.uni-mysore.ac.in
The title imidazo[1,2-a] pyridine derivative, C13H8Br2N2, was synthesized via a method. The title molecule is planar, showing a dihedral angle of 0.62 (17)° between the phenyl and the imidazo[1,2-a] pyridine rings. An intramolecular C—H⋯N hydrogen bond with an S(5) ring motif is present. In the crystal, a short H⋯H contact links adjacent molecules into inversion-related dimers. The dimers are linked in turn by weak C—H⋯π and slipped π–π stacking interactions, forming layers parallel to (110). The layers are connected into a three-dimensional network by short Br⋯H contacts. Two-dimensional fingerprint plots and three-dimensional Hirshfeld surface analysis of the intermolecular contacts reveal that the most important contributions for the crystal packing are from H⋯Br/Br⋯H (26.1%), H⋯H (21.7%), H⋯C/C⋯H (21.3%) and C⋯C (6.5%) interactions. Energy framework calculations suggest that the contacts formed between molecules are largely dispersive in nature. Analysis of HOMO–LUMO energies from a DFT calculation reveals the pure π character of the aromatic rings with the highest electron density on the phenyl ring, and σ character of the electron density on the Br atoms. The HOMO–LUMO gap was found to be 4.343 eV.
1. Chemical context
Five-membered i.e. nitrogen, sulfur, or oxygen) as part of the ring are known as azoles. To date, numerous azoles have found a wide range of applications in various fields, including agriculture (Berger et al., 2017), and because of their biological activities (Pozharskii et al., 2011; Kumbar et al., 2018). Among the various classes of azoles, the imidazole moiety with two nitrogen atoms is extremely common in nature and forms the core of many biomolecules (Chopra & Sahu, 2019) and synthetic drugs (Pozharskii et al., 2011). Furthermore, pyridine and its derivatives are present in many important compounds, including pharmaceuticals, vitamins (Al-Ghorbani et al., 2016) and drugs, acting as antimicrobial, antiviral, antioxidants, antidiabetic, anti-malarial, anti-inflammatory or antiamoebic agents, as well as psychopharmacological antagonists (Altaf et al., 2015). Hence, the combination of pyridine and imidazole derivatives has been proven to result in highly active agents in diverse biological fields that include anticancer (Kamal et al., 2014; Mantu et al., 2016), anti-HIV (Bode et al., 2011), antibacterial (Rival et al., 1992) and anti-inflammatory (Rupert et al., 2003) properties. In addition, such a combination showed significant activity against the human cytomegalo virus and the varicella-zoster virus (Gueiffier et al., 1998; Mavel et al., 2002).
comprising a nitrogen atom and at least one other non-carbon atom (In this context, we synthesized a new imidazo[1,2-a] pyridine derivative, C13H8Br2N2, and report herein its molecular and as well as the quantification of supramolecular interactions by Hirshfeld surface analysis. This study is supplemented by DFT calculations and a comparison of structural details with related compounds.
2. Structural commentary
The molecular structure of the title compound is depicted in Fig. 1. The molecular system is planar, showing a dihedral angle of 0.62 (17)° between the phenyl ring (C1–C6) and the imidazo[1,2-a] pyridine ring system (C7–C13,N1,N2). The torsion angles about the terminal bromine atoms, Br1 and Br2, are 177.3 (3)° (Br1—C1—C6—C5) and −178.9 (4)° (Br2—C11—C12—C13), respectively. The planar arrangement between the two rings enables an intramolecular C—H⋯N interaction (Fig. 1, Table 1) forming an S(5) ring motif (Tan & Tiekink, 2019). The Br1—C1 and Br2—C11 bond lengths are 1.886 (4) Å and 1.880 (4) Å, respectively, in good agreement with structures comprising bromophenyl moieties (Zhang & Hu, 2005; Arif Tawfeeq et al., 2019). The N1=C9 bond is slightly longer than similar bonds of reported imidazo[1,2-a] pyridine structures (see §7 for a listing of these structures), which may be attributed to the presence of the intramolecular bond (H5⋯N1). Overall, the bond lengths and angles of the phenyl ring and the imidazo[1,2-a]pyridine ring system are in normal ranges and compare well with those of other imidazo[1,2-a]pyridine derivatives (Zhang et al., 2005; Dhanalakshmi et al., 2018).
3. Supramolecular features
The crystal packing is mainly based on short contacts and weak π–π interactions, similar to reported structures with the same kind of terminal bromine atoms (Arif Tawfeeq et al., 2019). In the title compound, two inversion-related molecules are linked by a short H5⋯H5(1 − x, 2 − y, z) contact (Fig. 2). These dimers are connected to each other through C—H⋯π interactions (Table 1), forming sheets propagating parallel to (110). Slipped π–π stacking interactions [Cg3⋯Cg1(−x, 1 − y, −z) = 3.655 (2) Å, slippage of 0.885 Å; Cg3⋯Cg2(−x, 1 − y, −z) = 3.819 (2) Å, slippage of 1.473 Å], where Cg1, Cg2 and Cg3 are the centroids of the imidazole, pyridine and phenyl rings, respectively, are also present within these sheets (Fig. 2). Adjacent sheets are linked along [001] into a three-dimensional network through short contacts of 3.01 Å between Br1 and H12(x, − y, + z), forming S(11) chain motifs (Fig. 3).
4. DFT study and FMOs
Density functional theory (DFT) calculations were carried out by using the B3LYP basis set (Becke, 1993) at the highest basis set level of 6-311 ++G(d,p) in the GAUSSIAN09 program (Frisch et al., 2009). The DFT-optimized structure of the title compound is generally found to be in good agreement with the experimental data for all bond lengths and angles.
Frontier molecular orbitals (FMOs) are useful to specify the distribution of electronic densities and other quantum chemical parameters including hardness (η), softness (ζ), (μ), (ψ) and (χ) by foreseeing the highest occupied molecular orbitals (HOMO) and the lowest-unoccupied molecular orbitals (LUMO), as well as the energy gap (Eg = EH - EL) (Khamees et al., 2018). The results of these calculations are compiled in Table 2, and plots of (EH, EH-1) and (EL, EL+1) are depicted in Fig. 4. The HOMO (ground state) manifests the highest π characterization for phenyl ring (C1–C6) that displays bifurcated π–π stacking interactions as well as C—H⋯π interactions in the supramolecular network, as discussed in Section 3. Pronounced σ character of the electron density is located on the two Br atoms, with the higher amount located on Br1. The other FMOs orbitals, i.e. HOMO-1, LUMO and LUMO+1, exhibit a mix of π and σ character on the rings with variations of the electron density distribution (Fig. 4). The HOMO–LUMO gap is 4.343 eV for the title compound.
|
5. Hirshfeld surface analysis
The nature of intermolecular interactions in the title compound has been computed by CrystalExplorer17.5 (Turner et al., 2017), using Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and two-dimensional fingerprint plots (McKinnon et al., 2007). The dnorm plot was estimated via calculations of the external (de) and internal (di) distances to the nearest nucleus and built over the volume of 363.34 Å3 and an area of 339.81 Å2, with scaled colour of −0.1544 (red) a.u. to 1.0479 (blue) a.u. (Fig. 5a). The plots of shape-index and curvedness were generated in the range of −4.0 to 4.0 a.u. and −1.00 to 1.00 a.u., respectively, (Fig. 5b,c). The medium dark and side pale-red spots on the Hirshfeld surface (Fig. 5a) symbolize the H5⋯H5 and Br1⋯H12 short contacts, respectively. The two-dimensional fingerprint plot for all contacts is depicted in Fig. 6a. The H⋯Br/Br⋯H contacts make the largest contribution (26.1%) to the Hirshfeld surface (Fig. 6b). These contacts also make a significant contribution to the crystal packing as the distance between the atoms involved is slightly less than their van der Waals radii (di + de ≃ 3.01 Å). The interatomic contacts of H⋯H interactions generated 22.7% of the Hirshfeld surface (Fig. 6c), showing a short spike at diagonal axes di + de ≃ 2.24 Å < 2.4 Å, denoting H⋯H short contacts with another significant effect on the molecular packing. The two symmetrical broad wings in Fig. 6d belong to H⋯C/C⋯H contacts that represent 21.3% of total surface and indicate the presence of C—H⋯π interactions in the crystal packing, where di + de ≃ 2.77 Å < 2.90 Å. The proportion of H⋯N/N⋯H contacts is 7.9% of the Hirshfeld surface (Fig. 6e) and they appear as two close wings pointing at a distance greater than the van der Waals radii of N and H atoms (di + de > 2.75Å), with no significant contribution towards the crystal packing of the title molecule. The small contribution of the C⋯C contacts (6.5%) to the Hirshfeld surface appears as an intense triangle (Fig. 6f) at di + de ≃ 3.6 Å, indicating π–π stacking interactions in the crystal packing. This type of stacking interaction appears as a flat region on the curvedness (Fig. 5c) and also on the shape-index as red and blue triangles on the rings (Fig. 5b), in particular on the phenyl ring (C1–C6). The contributions from other contacts have negligible effects on the packing.
6. Energy framework
Quantification of energy framework energies is considered a powerful method for understanding the topology of the overall interactions of molecules in the crystal. This method allowed us to calculate and compare different energy components, i.e. repulsion (E_rep), electric (E_ele), dispersion (E_dis), polarization (E_pol) and total (E_tot) energy based on the anisotropy of the topology of pairwise intermolecular interaction energies. CrystalExplorer17.5 (Turner et al., 2017) was used to calculate the energy framework of the title compound by generating new wave functions using the DFT method under 3-21G basis set with exchange and potential functions (B3LYP) for a molecular cluster environment for a 1×1×1 The thickness of the cylinder radius indicates the grade of interactions and is directly related to the energy magnitude and offers information about the stabilization of the crystal packing. In order to avoid the crowdedness of less significant interaction energies, we set the cylindrical radii with a cut-off value of 5 kJ mol−1 and a scale factor of 50 to all energy components. The benchmarked energies were scaled according to Mackenzie et al. (2017) while E_rep, E_ele, E_dis and E_pol were scaled as 0.618, 1.057, 0.740, 0.871, respectively (Edwards et al., 2017). The results of the calculations revealed that dispersion interactions exhibit approximately chair-shaped energy topologies through the rings, having a maximum energy value of −180.558 kJ mol−1 (Fig. 7). The other energy components have values of 62.232 kJ mol−1, −29.38 kJ mol−1 and −9.176 kJ mol−1 for repulsion, electrostatic and polarization energies, respectively. The small value of electrostatic energy is attributed to the absence of classical hydrogen bonds. The total interaction energy that resulted from all four main components is −156.886 kJ mol−1 (Fig. 7d).
7. Database survey
36 structures containing the 2-phenylimidazo[1,2-a]pyridine moiety with different substituents were found in a search of the Cambridge Structural Database (CSD, version 5.40, last update May 2019; Groom et al., 2016). The different substituents R1 (on the imidazo[1,2-a]pyridinyl ring) and R2 (on the phenyl ring) together with the dihedral angles between the mean planes of the corresponding imidazo[1,2-a]pyridinyl and phenyl rings (dihedral angle 1) are compiled in Table 3. By comparing the substitution positions, the structures can be divided into `3-(substituted)imidazo[1,2-a]pyridinyl' compounds and `non-3-(substituted)imidazo[1,2-a]pyridinyl' compounds. In general, the 3-(substituted)imidazo[1,2-a]pyridinyl compounds have a greater dihedral angle 1 values (12.0–47.5°). This may arise from steric repulsion between the 3-(substituted) group and the phenyl ring. However, there are four outliers (KABMIM, MIXZOJ, MONREO and ZUSSAJ) whose dihedral angle 1 values are lower than 10°. Most of the non-3-(substituted)imidazo[1,2-a]pyridinyl compounds have dihedral angle 1 values between 0.7 and 12.5°, which indicates that the imidazo[1,2-a]pyridinyl rings are close to coplanar to their attached phenyl rings. Here, the outlier is JEBZEY where the imidazo[1,2-a]pyridinyl ring is attached to a di-ortho-substituted isophthalonitrile ring. The dihedral angle 1 is 46.4° in this structure.
8. Synthesis and crystallization
5-Bromopyridin-2-amine (1.211 g, 0.007 mol) and phenacyl bromide (0.007 mol) were refluxed for 14 h in 50 ml of absolute ethanol. The progress of the reaction was monitored by thin layer −1): 3080 (Ar C—H stretch), 2918 (aliphatic C—H stretch, 4-bromophenyl moiety), 1587 (C=N stretch), 1332 (C—N), 792 and 595 (C—Br). 1H NMR (400 MHz, DMSO, δ ppm): 7.37 (d, 1H, 5-bromopyridine moiety), 7.55 (d, 2H, 4-bromophenyl moiety), 7.56 (d, 1H, 5-bromopyridine moiety), 7.78 (d, 2H, 4-bromophenyl moiety), 8.37 (s, 1H, imidazole ring), 8.87 (s, 1H, 5-bromopyridine moiety).13C NMR (400 MHz, δ ppm): 145.13 (imidazopyridine carbon atom), 110.24, 119.82, 125.12 and 132.14 (four carbon atoms of 5-bromopyridine moiety), 123.12, 128.30, 132.11, and 132.32 (six carbon atoms of 4-bromophenyl moiety), 113.13 and 130.10 (two carbon atoms of imidazole ring). LC–Mass m/z 350 [M+], 352 [M+2], 354 [M+4]. Analysis calculated for C13H8Br2N2 (350): C, 44.36; H, 2.29; N, 7.96. Found: C, 44.31; H, 2.23; N, 7.92%.
using Merck alumina backed silica gel 60 F254. After completion of the reaction, the resulting product was poured into crushed ice to obtain a fine grained solid product that was filtered off, separated and dried. The crude product was then recrystallized from hot ethanol with a yield of ∼70%. The melting point of 345 K was determined in an open capillary and is uncorrected. IR (KBr, cm9. Refinement
Crystal data, data collection and structure . Hydrogen atoms were placed in calculated positions (C—H = 0.93 Å) and were included in the in the riding-model approximation, with Uiso(H) set to 1.2Ueq(C). The reflection (002) was affected by the beam-stop and was removed from the refinement
details are summarized in Table 4
|
Supporting information
https://doi.org/10.1107/S2056989019013410/wm5525sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019013410/wm5525Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019013410/wm5525Isup3.cml
Data collection: APEX2 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).C13H8Br2N2 | Dx = 1.967 Mg m−3 |
Mr = 352.03 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 3485 reflections |
a = 14.1711 (4) Å | θ = 2.1–30.1° |
b = 6.0546 (2) Å | µ = 6.80 mm−1 |
c = 27.7102 (8) Å | T = 293 K |
V = 2377.54 (12) Å3 | Block, colourless |
Z = 8 | 0.15 × 0.14 × 0.14 mm |
F(000) = 1360 |
Bruker Kappa APEXII CCD diffractometer | Rint = 0.100 |
ω and φ scan | θmax = 30.1°, θmin = 2.1° |
41143 measured reflections | h = −19→19 |
3485 independent reflections | k = −8→8 |
1726 reflections with I > 2σ(I) | l = −39→38 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.047 | H-atom parameters constrained |
wR(F2) = 0.118 | w = 1/[σ2(Fo2) + (0.0442P)2 + 2.6166P] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max = 0.002 |
3485 reflections | Δρmax = 0.88 e Å−3 |
154 parameters | Δρmin = −0.49 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br2 | 0.15325 (4) | 0.05914 (9) | 0.27691 (2) | 0.0700 (2) | |
Br1 | 0.12673 (4) | 0.88905 (10) | 0.68410 (2) | 0.0740 (2) | |
N2 | 0.1377 (2) | 0.3517 (6) | 0.40975 (12) | 0.0449 (8) | |
N1 | 0.0885 (2) | 0.6735 (6) | 0.44091 (12) | 0.0484 (9) | |
C7 | 0.1238 (3) | 0.5400 (6) | 0.47646 (14) | 0.0401 (9) | |
C1 | 0.1234 (3) | 0.7762 (8) | 0.62067 (15) | 0.0482 (11) | |
C11 | 0.1297 (3) | 0.2554 (7) | 0.32808 (15) | 0.0498 (11) | |
C4 | 0.1241 (3) | 0.6173 (7) | 0.52687 (15) | 0.0424 (9) | |
C12 | 0.0872 (3) | 0.4597 (8) | 0.31737 (16) | 0.0571 (12) | |
H12 | 0.070603 | 0.493692 | 0.285760 | 0.069* | |
C8 | 0.1549 (3) | 0.3438 (8) | 0.45819 (15) | 0.0479 (10) | |
H8 | 0.182324 | 0.228190 | 0.475266 | 0.058* | |
C3 | 0.1597 (3) | 0.4933 (7) | 0.56424 (16) | 0.0495 (10) | |
H3 | 0.185335 | 0.355055 | 0.557750 | 0.059* | |
C6 | 0.0866 (3) | 0.9064 (7) | 0.58414 (16) | 0.0539 (11) | |
H6 | 0.061410 | 1.044944 | 0.590752 | 0.065* | |
C13 | 0.0707 (3) | 0.6058 (8) | 0.35300 (15) | 0.0561 (12) | |
H13 | 0.041977 | 0.740195 | 0.346048 | 0.067* | |
C2 | 0.1582 (3) | 0.5687 (8) | 0.61068 (16) | 0.0532 (11) | |
H2 | 0.180652 | 0.480001 | 0.635558 | 0.064* | |
C5 | 0.0885 (3) | 0.8244 (7) | 0.53745 (15) | 0.0479 (10) | |
H5 | 0.065063 | 0.911265 | 0.512485 | 0.057* | |
C9 | 0.0968 (3) | 0.5559 (7) | 0.40055 (15) | 0.0442 (10) | |
C10 | 0.1555 (3) | 0.2005 (7) | 0.37352 (15) | 0.0492 (11) | |
H10 | 0.184202 | 0.065712 | 0.380142 | 0.059* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br2 | 0.0853 (4) | 0.0701 (4) | 0.0545 (3) | 0.0001 (3) | 0.0150 (3) | −0.0104 (2) |
Br1 | 0.0737 (4) | 0.1022 (4) | 0.0460 (3) | −0.0056 (3) | 0.0062 (2) | −0.0110 (3) |
N2 | 0.039 (2) | 0.047 (2) | 0.049 (2) | −0.0024 (16) | 0.0010 (15) | 0.0053 (16) |
N1 | 0.051 (2) | 0.050 (2) | 0.044 (2) | 0.0047 (17) | 0.0001 (16) | 0.0062 (17) |
C7 | 0.032 (2) | 0.042 (2) | 0.045 (2) | 0.0013 (19) | −0.0038 (17) | 0.0074 (18) |
C1 | 0.041 (2) | 0.063 (3) | 0.040 (2) | −0.008 (2) | 0.0008 (18) | 0.004 (2) |
C11 | 0.051 (3) | 0.052 (3) | 0.046 (2) | −0.002 (2) | 0.007 (2) | −0.002 (2) |
C4 | 0.030 (2) | 0.047 (2) | 0.051 (2) | −0.0038 (18) | −0.0002 (18) | 0.005 (2) |
C12 | 0.070 (3) | 0.060 (3) | 0.041 (2) | 0.002 (2) | 0.007 (2) | 0.013 (2) |
C8 | 0.043 (2) | 0.055 (3) | 0.046 (2) | 0.002 (2) | −0.0061 (19) | 0.006 (2) |
C3 | 0.046 (2) | 0.045 (2) | 0.058 (3) | 0.008 (2) | −0.001 (2) | 0.008 (2) |
C6 | 0.051 (3) | 0.049 (3) | 0.062 (3) | 0.003 (2) | 0.004 (2) | −0.001 (2) |
C13 | 0.067 (3) | 0.057 (3) | 0.044 (2) | 0.009 (2) | 0.005 (2) | 0.008 (2) |
C2 | 0.047 (3) | 0.066 (3) | 0.046 (2) | 0.007 (2) | −0.0042 (19) | 0.008 (2) |
C5 | 0.044 (2) | 0.051 (3) | 0.048 (2) | 0.006 (2) | −0.0076 (19) | 0.013 (2) |
C9 | 0.044 (2) | 0.041 (2) | 0.048 (2) | 0.0035 (19) | 0.0013 (18) | 0.0050 (19) |
C10 | 0.047 (3) | 0.042 (2) | 0.059 (3) | 0.002 (2) | 0.002 (2) | 0.000 (2) |
Br2—C11 | 1.880 (4) | C4—C5 | 1.383 (6) |
Br1—C1 | 1.886 (4) | C12—C13 | 1.346 (6) |
N2—C8 | 1.365 (5) | C12—H12 | 0.9300 |
N2—C10 | 1.382 (5) | C8—H8 | 0.9300 |
N2—C9 | 1.389 (5) | C3—C2 | 1.366 (6) |
N1—C9 | 1.331 (5) | C3—H3 | 0.9300 |
N1—C7 | 1.369 (5) | C6—C5 | 1.386 (6) |
C7—C8 | 1.364 (6) | C6—H6 | 0.9300 |
C7—C4 | 1.473 (6) | C13—C9 | 1.401 (6) |
C1—C2 | 1.378 (6) | C13—H13 | 0.9300 |
C1—C6 | 1.385 (6) | C2—H2 | 0.9300 |
C11—C10 | 1.353 (6) | C5—H5 | 0.9300 |
C11—C12 | 1.407 (6) | C10—H10 | 0.9300 |
C4—C3 | 1.375 (6) | ||
C8—N2—C10 | 131.2 (4) | C2—C3—C4 | 121.4 (4) |
C8—N2—C9 | 106.6 (3) | C2—C3—H3 | 119.3 |
C10—N2—C9 | 122.2 (4) | C4—C3—H3 | 119.3 |
C9—N1—C7 | 104.8 (3) | C1—C6—C5 | 118.1 (4) |
C8—C7—N1 | 111.4 (4) | C1—C6—H6 | 120.9 |
C8—C7—C4 | 128.9 (4) | C5—C6—H6 | 120.9 |
N1—C7—C4 | 119.7 (4) | C12—C13—C9 | 120.1 (4) |
C2—C1—C6 | 120.5 (4) | C12—C13—H13 | 119.9 |
C2—C1—Br1 | 120.6 (3) | C9—C13—H13 | 119.9 |
C6—C1—Br1 | 119.0 (4) | C3—C2—C1 | 120.0 (4) |
C10—C11—C12 | 121.9 (4) | C3—C2—H2 | 120.0 |
C10—C11—Br2 | 119.9 (3) | C1—C2—H2 | 120.0 |
C12—C11—Br2 | 118.2 (3) | C4—C5—C6 | 122.0 (4) |
C3—C4—C5 | 118.0 (4) | C4—C5—H5 | 119.0 |
C3—C4—C7 | 122.8 (4) | C6—C5—H5 | 119.0 |
C5—C4—C7 | 119.2 (4) | N1—C9—N2 | 111.0 (3) |
C13—C12—C11 | 119.8 (4) | N1—C9—C13 | 130.6 (4) |
C13—C12—H12 | 120.1 | N2—C9—C13 | 118.3 (4) |
C11—C12—H12 | 120.1 | C11—C10—N2 | 117.6 (4) |
C7—C8—N2 | 106.1 (4) | C11—C10—H10 | 121.2 |
C7—C8—H8 | 127.0 | N2—C10—H10 | 121.2 |
N2—C8—H8 | 127.0 | ||
C9—N1—C7—C8 | 0.9 (5) | C6—C1—C2—C3 | 2.4 (7) |
C9—N1—C7—C4 | −178.9 (4) | Br1—C1—C2—C3 | −176.7 (3) |
C8—C7—C4—C3 | 1.1 (6) | C3—C4—C5—C6 | −1.0 (6) |
N1—C7—C4—C3 | −179.1 (4) | C7—C4—C5—C6 | 179.9 (4) |
C8—C7—C4—C5 | −179.8 (4) | C1—C6—C5—C4 | 1.2 (6) |
N1—C7—C4—C5 | 0.0 (6) | C7—N1—C9—N2 | −0.7 (4) |
C10—C11—C12—C13 | −0.5 (7) | C7—N1—C9—C13 | 178.7 (5) |
Br2—C11—C12—C13 | −178.9 (4) | C8—N2—C9—N1 | 0.3 (5) |
N1—C7—C8—N2 | −0.8 (5) | C10—N2—C9—N1 | −178.8 (4) |
C4—C7—C8—N2 | 179.0 (4) | C8—N2—C9—C13 | −179.2 (4) |
C10—N2—C8—C7 | 179.3 (4) | C10—N2—C9—C13 | 1.7 (6) |
C9—N2—C8—C7 | 0.3 (4) | C12—C13—C9—N1 | 179.3 (5) |
C5—C4—C3—C2 | 1.5 (6) | C12—C13—C9—N2 | −1.4 (7) |
C7—C4—C3—C2 | −179.4 (4) | C12—C11—C10—N2 | 0.8 (6) |
C2—C1—C6—C5 | −1.8 (6) | Br2—C11—C10—N2 | 179.2 (3) |
Br1—C1—C6—C5 | 177.3 (3) | C8—N2—C10—C11 | 179.8 (4) |
C11—C12—C13—C9 | 0.8 (7) | C9—N2—C10—C11 | −1.4 (6) |
C4—C3—C2—C1 | −2.2 (7) |
Cg3 is the centroid of C1–C6 ring |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···N1 | 0.93 | 2.47 | 2.827 (5) | 103 |
C3—H3···Cg3i | 0.93 | 2.91 | 3.5670 (1) | 129 |
Symmetry code: (i) x, −y−3/2, z−1/2. |
Property | Symbol and formula | Value |
HOMO energy | EH (eV) | -6.234 |
LUMO energy | EL (eV) | -1.891 |
HOMO-1 energy | EH-1 (eV) | -6.552 |
LUMO+1 energy | EL+1 (eV) | -1.156 |
Energy gap 1 | Eg1 = (EH - EL) (eV) | 4.343 |
Energy gap 2 | Eg2 = (EH-1 - EL+1) (eV) | 5.397 |
Global hardness | η = (EL - EH)/2 | 2.172 |
Softness | ζ = 1/ 2η | 0.230 |
Chemical potential | µ = (EL + EH)/2 | 4.062 |
Electrophilicity | ψ = µ2/2η | 3.799 |
Electronegativity | χ = -µ | -4.062 |
Dihedral angle 1 is the angle between the mean planes of imidazo[1,2-a]pyridinyl and phenyl rings. Two sets of dihedral angles 1 are stated for compounds HURZOL, MONREO, OMIDEV, RUJNEQ, TUZYEU, ZUSSAJ and VEGKAU because there are two molecules in their asymmetric units. |
Compound | R1 | R2 | Dihedral angle 1 |
3-(Substituted)imidazo[1,2-a]pyridinyl | |||
AHOMIV (Liu et al., 2015) | 6-iodo-3-(methylsulfanyl)-imidazo[1,2-a]pyridinyl | phenyl | 27.0 |
BEGTUE (Nair et al., 2012) | ethyl (imidazo[1,2-a]pyridin-3-yl)acetate | phenyl | 38.6 |
DABTEI (Koudad et al., 2015) | 6-nitroimidazo[1,2-a]pyridinyl-3-carbaldehyde | 4-methoxyphenyl | 34.0 |
DIDZUO (Dey et al., 2018) | 3-chloro-7-methyl-imidazo[1,2-a]pyridinyl | phenyl | 28.0 |
ECEGEA (Ma et al., 2011) | ethyl 8-methyl-imidazo[1,2-a]pyridinyl-3-carboxylate | phenyl | 44.2 |
HUPWIZ01 (Vega et al., 2011) | N,N-dimethyl-2-(6-methyl-imidazo[1,2-a]pyridin-3-yl)acetamide | 4-methylphenyl | 24.6 |
HURZOL (Yang et al., 2015) | 6-methylimidazo[1,2-a]pyridin-3-yl thiocyanate | 3-chlorophenyl | 33.8, 27.7 |
KABMIM (Yang et al., 2016) | 6-methyl-3-nitrosoimidazo[1,2-a]pyridinyl | 3-chlorophenyl | 6.8 |
MIXZOJ (Anaflous et al., 2008a) | N-(imidazo[1,2-a]pyridin-3-yl)acetamide | phenyl | 9.0 |
MIXZUP (Anaflous et al., 2008b) | imidazo[1,2-a]pyridinyl-3-carbaldehyde | phenyl | 28.6 |
MONREO (Velázquez-Ponce et al., 2013) | 3-nitrosoimidazo[1,2-a]pyridinyl | phenyl | 17.4, 4.9 |
NOGRIM (Marandi et al., 2014) | 3-(t-butylamino)-imidazo[1,2-a]pyridinyl-8-carboxylic acid | 3-nitrophenyl | 16.8 |
OMIDEV (Samanta et al., 2016) | 3-iodo-8-methyl-imidazo[1,2-a]pyridinyl | phenyl | 36.1, 34.4 |
QUQSEC (Ravi et al., 2016) | 6-methyl-3-(methylsulfanyl)imidazo[1,2-a]pyridinyl | 4-chlorophenyl | 38.1 |
RELQUW (Yan et al., 2012) | 8-methyl-3-nitroimidazo[1,2-a]pyridinyl | phenyl | 47.5 |
RUJNEQ (Li et al., 2009) | imidazo[1,2-a]pyridinyl-3-carbaldehyde | 4-chlorophenyl | 34.6, 33.5 |
TUZYEU (Zhang et al., 2016) | 6-fluoro-3-nitro-imidazo[1,2-a]pyridinyl | phenyl | 43.8, 37.9 |
UTITEX (Chunavala et al., 2011) | ethyl 7-methylimidazo[1,2-a]pyridinyl-3-carboxylate | phenyl | 39.6 |
YEDHIY (Georges et al., 1993) | 6-chloro-N,N-dipropylimidazo[1,2-a] pyridinyl-3-acetamide | 4-chlorophenyl | 15.2 |
ZUSSAJ (Xiao et al., 2015) | 3-chloro-imidazo[1,2-a]pyridinyl | 4-methylphenyl | 12.0, 0.3 |
Non-3-(substituted)imidazo[1,2-a]pyridinyl | |||
BISDUF (Kutniewska et al., 2018) | imidazo[1,2-a]pyridinyl | 2-hydroxy-5-methoxyphenyl | 6.0 |
BISFAN (Kutniewska et al., 2018) | imidazo[1,2-a]pyridinyl | 2-hydroxy-4-bromophenyl | 4.2 |
CAJTIQ (Aslanov et al., 1983) | 6-nitro-imidazo[1,2-a]pyridinyl | phenyl | 3.3 |
FEMQOF (Kurteva et al. 2012) | imidazo[1,2-a]pyridinyl | 4-methoxyphenyl | 12.5 |
JEBZEY (Zhu et al., 2017) | imidazo[1,2-a]pyridinyl | isophthalonitrile | 46.4 |
MIQSUD (Jin et al., 2019) | 2-(imidazo[1,2-a]pyridin-5-yl)propan-2-ol | phenyl | 2.7 |
NAGGEH (Tafeenko et al., 1996) | imidazo[1,2-a]pyridinyl | phenyl | 4.4 |
NONFOM (Mutai et al., 2008) | imidazo[1,2-a]pyridinyl | 2-hydroxyphenyl | 6.7 |
NUBVUD (Seferoğlu et al., 2015) | 7-methylimidazo[1,2-a]pyridinyl | 4-methoxyphenyl | 0.7 |
NUBWAK (Seferoğlu et al., 2015) | 7-methyl-imidazo[1,2-a]pyridinyl | phenyl | 5.3 |
QODZUG (Mutai et al., 2014) | imidazo[1,2-a]pyridinyl-6-carbonitrile | 2-hydroxyphenyl | 2.8 |
TIDVIN (Donohoe et al., 2012) | 6-bromo-imidazo[1,2-a]pyridinyl | phenyl | 2.4 |
VEGKAU (Duan et al., 2006) | imidazo[1,2-a]pyridinyl | 3-bromo-4-methoxyphenyl | 12.2, 2.7 |
WUHKER (Aydıner et al., 2015) | 7-methylimidazo[1,2-a]pyridinyl | 4-chlorophenyl | 9.1 |
ZUNVOV (Stasyuk et al., 2016) | imidazo[1,2-a]pyridinyl | 2-hydroxy-4-florophenyl | 3.2 |
ZUPCOE (Stasyuk et al., 2016) | imidazo[1,2-a]pyridinyl | 2-hydroxy-4-methoxyphenyl | 5.8 |
Contact | Distance | symmetry |
H5···H5 | 2.24 | 1-x,2-y,-z |
Br1···H12 | 3.01 | x,3/2-y,-1/2+z |
Acknowledgements
The authors thank the Sophisticated Analytical Instruments Facility (SAIF), IIT Madras, for providing single-crystal and spectroscopic data.
References
Al-Ghorbani, M., Thirusangu, P., Gurupadaswamy, H. D., Girish, V., Shamanth Neralagundi, H. G., Prabhakar, B. T. & Khanum, S. A. (2016). Bioorg. Chem. 65, 73–81. Web of Science CAS PubMed Google Scholar
Altaf, A. A., Shahzad, A., Gul, Z., Rasool, N., Badshah, A., Lal, B. & Khan, E. (2015). J. Drug Des. Med. Chem. 1, 1–11. Google Scholar
Anaflous, A., Albay, H., Benchat, N., El Bali, B., Dušek, M. & Fejfarová, K. (2008a). Acta Cryst. E64, o926. Web of Science CSD CrossRef IUCr Journals Google Scholar
Anaflous, A., Albay, H., Benchat, N., El Bali, B., Dušek, M. & Fejfarová, K. (2008b). Acta Cryst. E64, o927. Web of Science CSD CrossRef IUCr Journals Google Scholar
Arif Tawfeeq, N., Kwong, H. C., Mohamed Tahir, M. I. & Ravoof, T. B. S. A. (2019). Acta Cryst. E75, 774–779. Web of Science CSD CrossRef IUCr Journals Google Scholar
Aslanov, L. A., Tafeenko, V. A., Paseshnichenko, K. A., Bundel, Y. G., Gromov, S. P. & Gerasimov, B. G. (1983). Zh. Strukt. Khim. 24, 115–123. CAS Google Scholar
Aydıner, B., Yalçın, E., Ihmels, H., Arslan, L., Açık, L. & Seferoğlu, Z. (2015). J. Photochem. Photobiol. Chem. 310, 113–121. Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Berger, S., El Chazli, Y., Babu, A. F. & Coste, A. T. (2017). Front. Microbiol. 8, 1–6. Web of Science CrossRef PubMed Google Scholar
Bode, M. L., Gravestock, D., Moleele, S. S., van der Westhuyzen, C. W., Pelly, S. C., Steenkamp, P. A., Hoppe, H. C., Khan, T. & Nkabinde, L. A. (2011). Bioorg. Med. Chem. 19, 4227–4237. Web of Science CrossRef CAS PubMed Google Scholar
Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chopra, P. N. & Sahu, J. K. (2019). Curr. Drug Discov. Technol. 1, 1570–1638. Google Scholar
Chunavala, K. C., Joshi, G., Suresh, E. & Adimurthy, S. (2011). Synthesis, 2011, 635–641. Google Scholar
Dey, A., Singsardar, M., Sarkar, R. & Hajra, A. (2018). ACS Omega 3, 3513–3521. Web of Science CSD CrossRef CAS PubMed Google Scholar
Dhanalakshmi, G., Ramanjaneyulu, M., Thennarasu, S. & Aravindhan, S. (2018). Acta Cryst. E74, 1913–1918. Web of Science CSD CrossRef IUCr Journals Google Scholar
Donohoe, T. J., Kabeshov, M. A., Rathi, A. H. & Smith, I. E. D. (2012). Org. Biomol. Chem. 10, 1093–1101. Web of Science CSD CrossRef CAS PubMed Google Scholar
Duan, G.-Y., Tu, C.-B., Sun, Y.-W., Zhang, D.-T. & Wang, J.-W. (2006). Acta Cryst. E62, o1141–o1142. Web of Science CSD CrossRef IUCr Journals Google Scholar
Edwards, A. J., Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Faraday Discuss. 203, 93–112. Web of Science CrossRef CAS PubMed Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Georges, G. J., Vercauteren, D. P., Evrard, G. H., Durant, F. V., George, P. G. & Wick, A. E. (1993). Eur. J. Med. Chem. 28, 323–335. CSD CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gueiffier, A., Mavel, S., Lhassani, M., Elhakmaoui, A., Snoeck, R., Andrei, G., Chavignon, O., Teulade, J. C., Witvrouw, M., Balzarini, J., De Clercq, E. & Chapat, J. (1998). J. Med. Chem. 41, 5108–5112. Web of Science CrossRef CAS PubMed Google Scholar
Jin, S., Xie, B., Lin, S., Min, C., Deng, R. & Yan, Z. (2019). Org. Lett. 21, 3436–3440. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kamal, A., Reddy, V. S., Santosh, K., Bharath Kumar, G., Shaik, A. B., Mahesh, R., Chourasiya, S. S., Sayeed, I. B. & Kotamraju, S. (2014). Med. Chem. Commun. 5, 1718–1723. Web of Science CrossRef CAS Google Scholar
Khamees, H. A., Jyothi, M., Khanum, S. A. & Madegowda, M. (2018). J. Mol. Struct. 1161, 199–217. Web of Science CSD CrossRef CAS Google Scholar
Koudad, M., Elaatiaoui, A., Benchat, N., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o979–o980. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kumbar, M. N., Kamble, R. R., Dasappa, J. P., Bayannavar, P. K., Khamees, H. A., Mahendra, M., Joshi, S. D., Dodamani, S., Rasal, V. P. & Jalalpure, S. (2018). J. Mol. Struct. 1160, 63–72. Web of Science CSD CrossRef CAS Google Scholar
Kurteva, V. B., Lubenov, L. A., Nedeltcheva, D. V., Nikolova, R. P. & Shivachev, B. L. (2012). Arkivoc, 13, 282–294. Google Scholar
Kutniewska, S. E., Jarzembska, K. N., Kamiński, R., Stasyuk, A. J., Gryko, D. T. & Cyrański, M. K. (2018). Acta Cryst. B74, 725–737. Web of Science CSD CrossRef IUCr Journals Google Scholar
Li, Y.-H., Liu, W.-Y., Gao, Y. & Wang, Y.-P. (2009). Acta Cryst. E65, o3192. Web of Science CSD CrossRef IUCr Journals Google Scholar
Liu, S., Xi, H., Zhang, J., Wu, X., Gao, Q. & Wu, A. (2015). Org. Biomol. Chem. 13, 8807–8811. Web of Science CSD CrossRef CAS PubMed Google Scholar
Ma, L., Wang, X., Yu, W. & Han, B. (2011). Chem. Commun. 47, 11333–11335. Web of Science CSD CrossRef CAS Google Scholar
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mantu, D., Antoci, V., Moldoveanu, C., Zbancioc, G. & Mangalagiu, I. I. (2016). J. Enzyme Inhib. Med. Chem. 31, 96–103. Web of Science CrossRef CAS PubMed Google Scholar
Marandi, G., Saghatforoush, L., Mendoza-Meroño, R. & García-Granda, S. (2014). Tetrahedron Lett. 55, 3052–3054. Web of Science CSD CrossRef CAS Google Scholar
Mavel, S., Renou, J. L., Galtier, C., Allouchi, H., Snoeck, R., Andrei, G., De Clercq, E., Balzarini, J. & Gueiffier, A. (2002). Bioorg. Med. Chem. 10, 941–946. Web of Science CSD CrossRef PubMed CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Mutai, T., Shono, H., Shigemitsu, Y. & Araki, K. (2014). CrystEngComm, 16, 3890–3895. Web of Science CSD CrossRef CAS Google Scholar
Mutai, T., Tomoda, H., Ohkawa, T., Yabe, Y. & Araki, K. (2008). Angew. Chem. Int. Ed. 47, 9522–9524. Web of Science CSD CrossRef CAS Google Scholar
Nair, D. K., Mobin, S. M. & Namboothiri, I. N. N. (2012). Org. Lett. 14, 4580–4583. Web of Science CSD CrossRef CAS PubMed Google Scholar
Pozharskii, A. F., Soldatenkov, A. T. & Katritzky, A. R. (2011). Heterocycles in Life and Society. John Wiley & Sons. Google Scholar
Ravi, C., Chandra Mohan, D. & Adimurthy, S. (2016). Org. Biomol. Chem. 14, 2282–2290. Web of Science CSD CrossRef CAS PubMed Google Scholar
Rival, Y., Grassy, G. & Michel, G. (1992). Chem. Pharm. Bull. 40, 1170–1176. CrossRef PubMed CAS Google Scholar
Rupert, K. C., Henry, J. R., Dodd, J. H., Wadsworth, S. A., Cavender, D. E., Olini, G. C., Fahmy, B. & Siekierka, J. J. (2003). Bioorg. Med. Chem. Lett. 13, 347–350. Web of Science CrossRef PubMed CAS Google Scholar
Samanta, S., Jana, S., Mondal, S., Monir, K., Chandra, S. K. & Hajra, A. (2016). Org. Biomol. Chem. 14, 5073–5078. Web of Science CSD CrossRef CAS PubMed Google Scholar
Seferoğlu, Z., Ihmels, H. & Şahin, E. (2015). Dyes Pigments, 113, 465–473. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stasyuk, A. J., Bultinck, P., Gryko, D. T. & Cyrański, M. K. (2016). J. Photochem. Photobiol. Chem. 314, 198–213. Web of Science CSD CrossRef CAS Google Scholar
Tafeenko, V., Paseshnichenko, K. & Schenk, H. (1996). Z. Kristallogr. 211, 457–263. CAS Google Scholar
Tan, S. L. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 1–7. Web of Science CSD CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface. net. Google Scholar
Vega, D. R., Baggio, R., Roca, M. & Tombari, D. (2011). J. Pharm. Sci. 100, 1377–1386. Web of Science CSD CrossRef CAS PubMed Google Scholar
Velázquez-Ponce, M., Salgado-Zamora, H., Jiménez-Vázquez, H. A., Campos-Aldrete, M. E., Jiménez, R., Cervantes, H. & Hadda, T. B. (2013). Chem. Cent. J. 7: 20. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xiao, X., Xie, Y., Bai, S., Deng, Y., Jiang, H. & Zeng, W. (2015). Org. Lett. 17, 3998–4001. Web of Science CSD CrossRef CAS PubMed Google Scholar
Yan, R.-L., Yan, H., Ma, C., Ren, Z.-Y., Gao, X.-A., Huang, G.-S. & Liang, Y.-M. (2012). J. Org. Chem. 77, 2024–2028. Web of Science CSD CrossRef CAS PubMed Google Scholar
Yang, D., Yan, K., Wei, W., Li, G., Lu, S., Zhao, C., Tian, L. & Wang, H. (2015). J. Org. Chem. 80, 11073–11079. Web of Science CSD CrossRef CAS PubMed Google Scholar
Yang, D., Yan, K., Wei, W., Liu, Y., Zhang, M., Zhao, C., Tian, L. & Wang, H. (2016). Synthesis, 48, 122–130. CAS Google Scholar
Zhang, M., Lu, J., Zhang, J.-N. & Zhang, Z.-H. (2016). Catal. Commun. 78, 26–32. Web of Science CSD CrossRef CAS Google Scholar
Zhang, R. & Hu, Y. (2005). Acta Cryst. E61, o4037–o4038. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhu, X., Shen, X.-J., Tian, Z.-Y., Lu, S., Tian, L.-L., Liu, W.-B., Song, B. & Hao, X.-Q. (2017). J. Org. Chem. 82, 6022–6031. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.