research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and photoluminescence properties of catena-poly[[bis­­(1-benzyl-1H-imidazole-κN3)cadmium(II)]-di-μ-azido-κ4N1:N3]

aDepartment of Chemistry, Faculty of Science and Technology, Thammasat University, Klong Luang, Pathum Thani 12121, Thailand, bDepartment of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand, and cMaterials and Textile Technology, Faculty of Science and Technology, Thammasat University, Klong Luang, Pathum Thani 12121, Thailand
*Correspondence e-mail: nwan0110@tu.ac.th

Edited by M. Weil, Vienna University of Technology, Austria (Received 2 October 2019; accepted 17 October 2019; online 29 October 2019)

The new title one-dimensional CdII coordination polymer, [Cd(C10H10N2)2(μ1,3-N3)2]n, has been synthesized and structurally characterized by single-crystal X-ray diffraction. The asymmetric unit consists of a CdII ion, one azide and one 1-benzyl­imidazole (bzi) ligand. The CdII ion is located on an inversion centre and is surrounded in a distorted octa­hedral coordination sphere by six N atoms from four symmetry-related azide ligands and two symmetry-related bzi ligands. The CdII ions are linked by double azide bridging ligands within a μ1,3-N3 end-to-end (EE) coordination mode, leading to a one-dimensional linear structure extending parallel to [100]. The supra­molecular framework is stabilized by the presence of weak C—H⋯N inter­actions, ππ stacking [centroid-to-centroid distance of 3.832 (2) Å] and C—H⋯π inter­actions between neighbouring chains.

1. Chemical context

Coordination polymers (CPs) have been receiving significant attention because of their inter­esting topologies (Zhang et al., 2013[Zhang, S.-Y., Zhang, Z. & Zaworotko, M. J. (2013). Chem. Commun. 49, 9700-9703.]), properties (Kitagawa et al., 2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]) and potential applications (He et al., 2018[He, Y., Chen, F., Li, B., Qian, G., Zhou, W. & Chen, B. (2018). Coord. Chem. Rev. 373, 167-198.]; Gao et al., 2019[Gao, Q., Xu, J. & Bu, X.-H. (2019). Coord. Chem. Rev. 378, 17-31.]). Among various transition metal CPs, cadmium(II) coordination polymers containing nitro­gen-donor ligands have been widely investigated because of their potential applications in photoluminescence (PL) (Wang et al., 2012[Wang, X.-L., Mu, B., Lin, H.-Y., Yang, S., Liu, G.-C., Tian, A.-X. & Zhang, J.-W. (2012). Dalton Trans. 41, 11074-11084.]) or photocatalysis (Wu et al., 2017[Wu, Z., Yuan, X., Zhang, J., Wang, H., Jiang, L. & Zeng, G. (2017). ChemCatChem, 9, 41-64.]). Generally, the CdII ion adopts the stable [Kr]4d10 electron configuration and its crystal chemistry is dominated by coordination numbers of four to six (Liu et al., 2016[Liu, B., Zhou, H.-F., Hou, L., Wang, J.-P., Wang, Y.-Y. & Zhu, Z. (2016). Inorg. Chem. 55, 8871-8880.]). As for the choice of nitro­gen-donor ligands, pseudohalides in the form of azide (N3), thio­cyanate (NCS) or dicyanamide (N(CN)2) are good candidates as anionic linkers (Mautner et al., 2019[Mautner, F. A., Fischer, R. C., Reichmann, K., Gullett, E., Ashkar, K. & Massoud, S. S. (2019). J. Mol. Struct. 1175, 797-803.]). In particular, the azide ligand is an attractive bridging ligand due to the variability of its coordination modes, such as the common μ1,1 (end-on, EO) and μ1,3 (end-to-end, EE) mode with single or double azide bridges (Ribas et al., 1999[Ribas, J., Escuer, A., Monfort, M., Vicente, R., Cortés, R., Lezama, L. & Rojo, T. (1999). Coord. Chem. Rev. 193-195, 1027-1068.]). Therefore, such ligands are used for studying magnetochemistry and for the construction of coordination frameworks. Imidazole-based derivatives with aromatic substituents, for example, 1-benzyl­imidazole (bzi) (Krinchampa et al., 2016[Krinchampa, P., Chainok, K., Phengthaisong, S., Youngme, S., Kielar, F. & Wannarit, N. (2016). Acta Cryst. C72, 960-965.]) or 1,4-bis­(imidazol-1-ylmeth­yl)benzene (bix) (Adarsh et al., 2016[Adarsh, N. N., Novio, F. & Ruiz-Molina, D. (2016). Dalton Trans. 45, 11233-11255.]), are usually selected for extending the structural dimensions and increasing the photoluminescence properties of their CPs due to the existence of supra­molecular inter­actions in terms of hydrogen bonds, ππ stacking and/or C—H⋯π to increase the rigidity and framework stabilities. To the best of our knowledge, the number of CdII coordination polymers with mixed nitro­gen-donor ligands, e.g. azide and bzi ligands, is still limited. As part of our ongoing exploration of new members of d10 CPs and investigation of their properties (Krinchampa et al., 2016[Krinchampa, P., Chainok, K., Phengthaisong, S., Youngme, S., Kielar, F. & Wannarit, N. (2016). Acta Cryst. C72, 960-965.]; Sangsawang et al., 2017[Sangsawang, M., Chainok, K. & Wannarit, N. (2017). Acta Cryst. E73, 1599-1602.]), a family of CdII coordination polymers containing mixed nitro­gen-donor ligands, i.e. bzi and pseudohalide ligands, such as azide (N3), thio­cyanate (NCS) and dicyanamide (N(CN)2), have been designed and prepared. In this work, a new one-dimensional CdII coordination polymer, [Cd(bzi)2(μ1,3-N3)2]n, was synthesized and characterized. Details of the synthesis, crystal structure determination and photoluminescence properties of this com­pound are reported herein.

2. Structural commentary

The asymmetric unit of the title com­pound consists of a CdII ion (site symmetry [\overline{1}]), one azide ligand and one bzi ligand (Fig. 1[link]). The distorted octa­hedral coordination environment of the CdII ion is defined by six N atoms. Two are from two symmetry-related bzi ligands in the axial positions with the shortest Cd—N distance, and four are from four symmetry-related azide ligands in equatorial positions with slightly larger distances; angular distortions are small (Table 1[link]). Neighbouring CdII ions are linked by doubly end-to-end (EE) binding azide bridges, resulting in a one-dimensional linear chain-like structure extending along [100] (Fig. 2[link]). The Cd⋯Cd distance in the chain is 5.5447 (3) Å, which is longer than in a previously reported one-dimensional zigzag chain-like structure of a CdII coordination polymer, [Cd(N3)2(3,5-DMP)2] (Goher et al., 2003[Goher, M. A. S., Mautner, F. A., Hafez, A. K., Abu-Youssef, M. A. M., Gspan, C. & Badr, A. M.-A. (2003). Polyhedron, 22, 975-979.]).

Table 1
Selected geometric parameters (Å, °)

Cd1—N1 2.2834 (19) Cd1—N5i 2.400 (2)
Cd1—N3 2.346 (2)    
       
N1ii—Cd1—N3 92.30 (8) N3—Cd1—N5iii 91.87 (9)
N1—Cd1—N3 87.70 (8) N3—Cd1—N5i 88.13 (9)
N1—Cd1—N5iii 90.74 (8) N1—Cd1—N5i 89.26 (8)
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x+1, -y+2, -z+1; (iii) x+1, y, z.
[Figure 1]
Figure 1
The coordination environment of CdII, with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) −x, −y + 2, −z + 1; (ii) −x + 1, −y + 2, −z + 1; (iii) x + 1, +y, +z.]
[Figure 2]
Figure 2
Views of the crystal structure of the title com­pound, emphasizing (a) the one-dimensional linear doubly-bridged chain-like structure and (b) the doubly-bridged (EE) azide coordination mode (bzi ligands have been omitted for clarity). [Symmetry codes: (i) −x, −y + 2, −z + 1; (ii) −x + 1, −y + 2, −z + 1; (iii) x + 1, +y, +z.]

3. Supra­molecular features

The crystal structure of the title com­pound is stabilized by various weak inter­actions, including C—H⋯N hydrogen bonding, ππ stacking and inter­molecular C—H⋯π inter­actions between adjacent chains (Fig. 3[link]a). Hydrogen-bonding inter­actions are found between the C—H groups of the phenyl rings and the N atoms of the azide bridging ligands (Table 2[link] and Fig. 3[link]b); ππ stacking between adjacent chains is associated with the symmetry-related imidazole rings of the bzi ligands [Cg1⋯Cg1(−x + 1, −y + 1, −z + 1) = 3.832 (2) Å; slippage = 1.477 Å; inter­planar distance = 3.536 (3) Å; Cg1 is the centroid of the imidazole N1/C1/N2/C2/C3 ring], as shown in Fig. 3[link](b). Moreover, C—H⋯π inter­actions between the phenyl rings of the bzi ligands of different chains are observed (Fig. 3[link]c and Table 2[link]).

[Scheme 1]

Table 2
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C5–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N5iv 0.93 2.49 (1) 3.313 (4) 148 (1)
C7—H7⋯N3v 0.93 2.62 (1) 3.368 (4) 138 (1)
C6—H6⋯Cg2vi 0.93 3.17 (1) 3.890 (3) 135 (1)
C9—H9⋯Cg2vii 0.93 3.10 (1) 3.833 (3) 138 (1)
Symmetry codes: (iv) x+1, y-1, z; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Views of (a) the crystal packing, (b) the C—H⋯N hydrogen bonding and ππ inter­actions, and (c) the weak inter­molecular C—H⋯π inter­actions between adjacent chains of the title com­pound. [Symmetry codes (iv) x + 1, y − 1, +z; (v) −x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}]; (vi) −x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (vii) −x + [{3\over 2}], y − [{1\over 2}], −z + [{1\over 2}]; (viii) −x + 1, −y + 1, −z + 1; (ix) −x + [{3\over 2}], y + [{1\over 2}], −z + [{1\over 2}].]

4. Characterization

The FT–IR spectrum (Fig. S1 in the supporting information) of the title com­pound presents the characteristic bands of the N3 ligand at 2058 cm−1 and the characteristic bands of the bzi ligand including C—H aromatic stretching at 3113–3028 cm−1, C=N and C=C stretching at 1602–1506 cm−1, C—C stretching at 1396 cm−1 and C—N stretching at 1233 cm−1. The IR spectrum also reveals a band at 3365 cm−1, indicating the N⋯H hydrogen-bonding inter­action in this com­pound.

Plots of the experimental and simulated powder X-ray diffraction (PXRD) patterns of the title com­pound are shown in Fig. S2 of the supporting information, revealing a good match and thus phase purity and repeatable synthesis.

The thermal stability of the title com­pound has been investigated by means of thermogravimetric analysis from room temperature to 1073 K under a nitro­gen atmosphere. Based on the results (Fig. S3 in the supporting information), the structure of the title com­pound is stable up to around 470 K. Above this temperature, the structure starts to collapse by losing a mass percentage of 57.7%, which corresponds to the loss of two bzi ligands. The second step of mass loss by about 30.6% corresponds to the loss of the remaining azide ligands. Further increasing the temperature leads only to a slight increase of the mass loss until CdO was formed as the final product.

5. Photoluminescence (PL) properties

Fig. 4[link] presents the solid-state PL emission spectra of the free bzi ligand and the title com­pound. It should be noted that the signal in the emission spectra below 330 nm belongs to the tail of the scattered excitation light. The PL spectrum of the free bzi ligand reveals a broad band with the centre at 384 nm (λex = 305 nm), which is assigned to the ππ* and nπ* transitions of the delocalized electrons within the aromatic phenyl and imidazole rings. Inter­estingly, the emission spectrum of the title com­pound exhibits a red shift with a λmax of 429 nm (λex = 305 nm) and a higher emission intensity in com­parison with that of free bzi. Furthermore, the emission peak of the title com­pound is less broad than that of the bzi ligand. The PL features of the title com­pound can be attributed to ligand-to-metal charge transfer (LMCT). The increased intensity is presumably caused by the increased rigidity for the bzi ligands due to the presence of numerous weak supra­molecular inter­actions between the chains in the crystal structure. This increased rigidity likely enhances the emission properties of the title com­pound due to limiting the probability of non­radiative decay of the excited state.

[Figure 4]
Figure 4
The solid-state PL spectra of the title com­pound (red line) and free bzi (black line).

6. Database survey

One-dimensional linear chain-like CdII coordination polymers constructed by one type of doubly end-to-end (EE) bound azide bridges and ligands based on imidazole derivatives are rare in the literature. To the best of our knowledge, there are only a few first-row transition metal coordination polymers constructed by μ1,3-N3 and differently substituted pyridine derivatives: [Cu(N3)2(L1)2]n [Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) refcode LOYROG; Dalai et al., 2002[Dalai, S., Mukherjee, P. S., Mallah, T., Drew, M. G. B. & Chaudhuri, N. R. (2002). Inorg. Chem. Commun. 5, 472-474.]], [Co(N3)2(bepy)2]n (TUJCEI; Zhao et al., 2015[Zhao, J.-P., Zhao, C., Song, W.-C., Wang, L., Xie, Y., Li, J.-R. & Bu, X.-H. (2015). Dalton Trans. 44, 10289-10296.]) and [Mn(N3)2(L2)2]n (CEMTOG; Khani et al., 2018[Khani, S., Montazerozohori, M., Masoudiasl, A. & White, J. M. (2018). J. Mol. Struct. 1153, 239-247.]) {where L1 = 4-(di­methyl­amino)­pyridine, bepy = 4-benzyl­pyridine and L2 = N′-[4-(di­methyl­amino)­benzyl­idene]isonicotinohydrazide}. On the other hand, previously reported CPs containing μ1,3-N3 and 3,5-di­methyl­pyridine (3,5-DMP) ligands in [M(N3)2(3,5-DMP)2] [M = Cd (EHEYIZ; Goher et al., 2003[Goher, M. A. S., Mautner, F. A., Hafez, A. K., Abu-Youssef, M. A. M., Gspan, C. & Badr, A. M.-A. (2003). Polyhedron, 22, 975-979.]) and Ni (LEWMAD; Lu et al., 2012[Lu, Z., Gamez, P., Kou, H.-Z., Fan, C., Zhang, H. & Sun, G. (2012). CrystEngComm, 14, 5035-5041.])] exhibit one-dimensional structures with zigzag chains.

7. Synthesis and crystallization

A methano­lic solution (5 ml) of bzi (1.0 mmol) was introduced slowly to a methano­lic solution (5 ml) of Cd(NO3)2·4H2O (1.0 mmol). A DMSO solution (5 ml) of NaN3 (2.0 mmol) was then added slowly to the mixed solution, resulting in the immediate formation of a white precipitate. The precipitate was dropped slowly into a DMSO–DMF (1:2 v/v) mixture (9 ml) under continuous stirring at 333 K over a period of 30 min, and was kept stirring until the solution became clear. Finally, the solution was filtered and allowed to slowly evaporate in air at room temperature. Colourless crystals of the title com­pound were obtained within 3 d (yield 23.36%, 119.80 mg, based on the CdII salt). Elemental analysis calculated (found) (%) for C20H20CdN10: C 46.84 (46.83), H 3.9 3(3.62), N 27.31 (27.05). IR (KBr, cm−1): 3370 (m), 3109 (s), 2062 (s, broad), 1612 (w), 1510 (m), 1440 (m), 1395 (w), 1355 (m), 1280 (m), 1233 (m), 1098 (s), 1030 (m), 942 (m), 822 (m), 767 (m), 712 (s), 652 (m, 625 (m), 462 (w).

8. Refinement

The crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were generated geometrically and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula [Cd(C10H10N2)2(N3)2]
Mr 512.86
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 5.5447 (3), 8.4301 (4), 22.9517 (11)
β (°) 90.351 (2)
V3) 1072.80 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.05
Crystal size (mm) 0.32 × 0.3 × 0.22
 
Data collection
Diffractometer Bruker D8 QUEST CMOS PHOTON II
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.712, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 42354, 3817, 2858
Rint 0.072
(sin θ/λ)max−1) 0.751
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.080, 1.12
No. of reflections 3817
No. of parameters 143
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.49, −0.43
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madaison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madaison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

catena-Poly[[bis(1-benzyl-1H-imidazole-κN3)cadmium(II)]-di-µ-azido-κ4N1:N3] top
Crystal data top
[Cd(C10H10N2)2(N3)2]F(000) = 516
Mr = 512.86Dx = 1.588 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.5447 (3) ÅCell parameters from 9996 reflections
b = 8.4301 (4) Åθ = 3.0–32.3°
c = 22.9517 (11) ŵ = 1.05 mm1
β = 90.351 (2)°T = 296 K
V = 1072.80 (9) Å3Block, colourless
Z = 20.32 × 0.3 × 0.22 mm
Data collection top
Bruker D8 QUEST CMOS PHOTON II
diffractometer
3817 independent reflections
Radiation source: sealed x-ray tube, Mo2858 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
Detector resolution: 7.39 pixels mm-1θmax = 32.3°, θmin = 3.0°
ω and φ scansh = 88
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1212
Tmin = 0.712, Tmax = 0.746l = 3434
42354 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0237P)2 + 0.7897P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.080(Δ/σ)max < 0.001
S = 1.12Δρmax = 0.49 e Å3
3817 reflectionsΔρmin = 0.43 e Å3
143 parametersExtinction correction: SHELXL2017 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0043 (7)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.5000001.0000000.5000000.03071 (9)
N10.5662 (4)0.7657 (2)0.45279 (9)0.0364 (4)
N20.4732 (4)0.5441 (2)0.40781 (9)0.0361 (5)
N30.1837 (4)1.0467 (3)0.43386 (10)0.0495 (6)
N40.0153 (4)1.0885 (2)0.43738 (8)0.0293 (4)
N50.2152 (4)1.1320 (3)0.43834 (10)0.0442 (5)
C10.4075 (5)0.6938 (3)0.41923 (11)0.0391 (5)
H10.2671750.7409560.4051590.047*
C20.7433 (5)0.6557 (3)0.46316 (11)0.0417 (6)
H20.8806140.6724940.4858060.050*
C30.6881 (5)0.5197 (3)0.43559 (12)0.0451 (6)
H30.7788800.4269080.4354790.054*
C40.3379 (5)0.4268 (4)0.37310 (12)0.0481 (7)
H4A0.1686570.4559170.3727460.058*
H4B0.3519630.3238220.3916340.058*
C50.4247 (5)0.4141 (3)0.31116 (10)0.0366 (5)
C60.3045 (6)0.4900 (4)0.26668 (14)0.0563 (7)
H60.1684440.5503390.2748800.068*
C70.3837 (8)0.4777 (4)0.20985 (14)0.0694 (10)
H70.3006870.5296530.1801240.083*
C80.5824 (7)0.3901 (4)0.19727 (13)0.0618 (9)
H80.6373970.3837240.1591400.074*
C90.7007 (6)0.3116 (4)0.24067 (14)0.0605 (8)
H90.8350530.2502460.2318950.073*
C100.6230 (6)0.3221 (4)0.29772 (12)0.0503 (7)
H100.7042490.2673040.3270120.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02939 (12)0.03079 (13)0.03194 (13)0.00640 (11)0.00134 (8)0.00695 (11)
N10.0393 (11)0.0338 (11)0.0359 (10)0.0070 (9)0.0021 (8)0.0085 (9)
N20.0453 (12)0.0304 (10)0.0328 (10)0.0014 (8)0.0040 (9)0.0062 (8)
N30.0389 (12)0.0709 (16)0.0385 (11)0.0148 (11)0.0086 (9)0.0046 (11)
N40.0399 (11)0.0245 (9)0.0236 (9)0.0024 (8)0.0025 (8)0.0007 (7)
N50.0389 (12)0.0437 (13)0.0501 (13)0.0104 (10)0.0068 (10)0.0092 (10)
C10.0395 (13)0.0402 (14)0.0376 (13)0.0078 (11)0.0021 (10)0.0057 (11)
C20.0405 (14)0.0421 (14)0.0425 (14)0.0103 (11)0.0040 (11)0.0093 (11)
C30.0550 (15)0.0334 (15)0.0469 (14)0.0140 (12)0.0008 (12)0.0056 (11)
C40.0564 (17)0.0459 (16)0.0420 (14)0.0187 (13)0.0112 (13)0.0122 (12)
C50.0431 (13)0.0329 (13)0.0337 (12)0.0083 (10)0.0004 (10)0.0065 (10)
C60.0616 (18)0.0559 (18)0.0513 (16)0.0155 (16)0.0086 (13)0.0052 (15)
C70.101 (3)0.064 (2)0.0436 (16)0.009 (2)0.0145 (17)0.0064 (15)
C80.085 (2)0.066 (2)0.0339 (14)0.0078 (19)0.0064 (15)0.0049 (14)
C90.0557 (19)0.072 (2)0.0537 (18)0.0121 (16)0.0060 (14)0.0170 (16)
C100.0584 (18)0.0533 (17)0.0393 (14)0.0120 (14)0.0068 (12)0.0048 (13)
Geometric parameters (Å, º) top
Cd1—N12.2834 (19)C3—H30.9300
Cd1—N1i2.2834 (19)C4—H4A0.9700
Cd1—N32.346 (2)C4—H4B0.9700
Cd1—N3i2.346 (2)C4—C51.507 (3)
Cd1—N5ii2.400 (2)C5—C61.374 (4)
Cd1—N5iii2.400 (2)C5—C101.382 (4)
N1—C11.314 (3)C6—H60.9300
N1—C21.371 (3)C6—C71.383 (5)
N2—C11.340 (3)C7—H70.9300
N2—C31.364 (4)C7—C81.359 (5)
N2—C41.472 (3)C8—H80.9300
N3—N41.161 (3)C8—C91.361 (5)
N4—N51.168 (3)C9—H90.9300
C1—H10.9300C9—C101.384 (4)
C2—H20.9300C10—H100.9300
C2—C31.344 (4)
N1—Cd1—N1i180.0C3—C2—H2125.2
N1i—Cd1—N3i87.70 (8)N2—C3—H3126.7
N1i—Cd1—N392.30 (8)C2—C3—N2106.7 (2)
N1—Cd1—N3i92.30 (8)C2—C3—H3126.7
N1—Cd1—N387.70 (8)N2—C4—H4A108.9
N1i—Cd1—N5ii90.73 (8)N2—C4—H4B108.9
N1i—Cd1—N5iii89.27 (8)N2—C4—C5113.2 (2)
N1—Cd1—N5iii90.74 (8)H4A—C4—H4B107.8
N1—Cd1—N5ii89.26 (8)C5—C4—H4A108.9
N3i—Cd1—N3180.0C5—C4—H4B108.9
N3—Cd1—N5iii91.87 (9)C6—C5—C4120.8 (3)
N3i—Cd1—N5iii88.13 (9)C6—C5—C10118.6 (3)
N3—Cd1—N5ii88.13 (9)C10—C5—C4120.6 (3)
N3i—Cd1—N5ii91.87 (9)C5—C6—H6119.6
N5ii—Cd1—N5iii180.0C5—C6—C7120.7 (3)
C1—N1—Cd1124.62 (16)C7—C6—H6119.6
C1—N1—C2105.4 (2)C6—C7—H7119.9
C2—N1—Cd1128.34 (17)C8—C7—C6120.2 (3)
C1—N2—C3106.8 (2)C8—C7—H7119.9
C1—N2—C4126.9 (2)C7—C8—H8120.1
C3—N2—C4126.3 (2)C7—C8—C9119.8 (3)
N4—N3—Cd1135.45 (18)C9—C8—H8120.1
N3—N4—N5177.0 (2)C8—C9—H9119.7
N4—N5—Cd1iv119.56 (17)C8—C9—C10120.7 (3)
N1—C1—N2111.6 (2)C10—C9—H9119.7
N1—C1—H1124.2C5—C10—C9120.0 (3)
N2—C1—H1124.2C5—C10—H10120.0
N1—C2—H2125.2C9—C10—H10120.0
C3—C2—N1109.6 (2)
Cd1—N1—C1—N2166.25 (16)C4—N2—C1—N1178.4 (2)
Cd1—N1—C2—C3165.85 (18)C4—N2—C3—C2178.3 (2)
N1—C2—C3—N20.3 (3)C4—C5—C6—C7179.7 (3)
N2—C4—C5—C699.6 (3)C4—C5—C10—C9180.0 (3)
N2—C4—C5—C1082.3 (3)C5—C6—C7—C80.0 (5)
C1—N1—C2—C30.1 (3)C6—C5—C10—C91.8 (4)
C1—N2—C3—C20.4 (3)C6—C7—C8—C91.3 (6)
C1—N2—C4—C598.1 (3)C7—C8—C9—C101.0 (5)
C2—N1—C1—N20.2 (3)C8—C9—C10—C50.5 (5)
C3—N2—C1—N10.4 (3)C10—C5—C6—C71.5 (5)
C3—N2—C4—C583.3 (4)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z+1; (iii) x+1, y, z; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N5v0.932.49 (1)3.313 (4)148 (1)
C7—H7···N3vi0.932.62 (1)3.368 (4)138 (1)
C6—H6···Cg2vii0.933.17 (1)3.890 (3)135 (1)
C9—H9···Cg2viii0.933.10 (1)3.833 (3)138 (1)
Symmetry codes: (v) x+1, y1, z; (vi) x+1/2, y1/2, z+1/2; (vii) x+1/2, y+1/2, z+1/2; (viii) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Department of Chemistry, Faculty of Science and Technology, Thammasat University, for financial support and the Central Scientific Instrument Center (CSIC), Faculty of Science and Technology, Thammasat University, for funds to purchase the X-ray diffractometer. The authors also thank the Science Lab Center, Faculty of Science, Naresuan University, for the use of the spectro­fluoro­meter.

References

First citationAdarsh, N. N., Novio, F. & Ruiz-Molina, D. (2016). Dalton Trans. 45, 11233–11255.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madaison, Wisconsin, USA.  Google Scholar
First citationDalai, S., Mukherjee, P. S., Mallah, T., Drew, M. G. B. & Chaudhuri, N. R. (2002). Inorg. Chem. Commun. 5, 472–474.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGao, Q., Xu, J. & Bu, X.-H. (2019). Coord. Chem. Rev. 378, 17–31.  CrossRef CAS Google Scholar
First citationGoher, M. A. S., Mautner, F. A., Hafez, A. K., Abu-Youssef, M. A. M., Gspan, C. & Badr, A. M.-A. (2003). Polyhedron, 22, 975–979.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHe, Y., Chen, F., Li, B., Qian, G., Zhou, W. & Chen, B. (2018). Coord. Chem. Rev. 373, 167–198.  CrossRef CAS Google Scholar
First citationKhani, S., Montazerozohori, M., Masoudiasl, A. & White, J. M. (2018). J. Mol. Struct. 1153, 239–247.  CrossRef CAS Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKrinchampa, P., Chainok, K., Phengthaisong, S., Youngme, S., Kielar, F. & Wannarit, N. (2016). Acta Cryst. C72, 960–965.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, B., Zhou, H.-F., Hou, L., Wang, J.-P., Wang, Y.-Y. & Zhu, Z. (2016). Inorg. Chem. 55, 8871–8880.  CrossRef CAS PubMed Google Scholar
First citationLu, Z., Gamez, P., Kou, H.-Z., Fan, C., Zhang, H. & Sun, G. (2012). CrystEngComm, 14, 5035–5041.  Web of Science CSD CrossRef CAS Google Scholar
First citationMautner, F. A., Fischer, R. C., Reichmann, K., Gullett, E., Ashkar, K. & Massoud, S. S. (2019). J. Mol. Struct. 1175, 797–803.  CrossRef CAS Google Scholar
First citationRibas, J., Escuer, A., Monfort, M., Vicente, R., Cortés, R., Lezama, L. & Rojo, T. (1999). Coord. Chem. Rev. 193–195, 1027–1068.  Web of Science CrossRef CAS Google Scholar
First citationSangsawang, M., Chainok, K. & Wannarit, N. (2017). Acta Cryst. E73, 1599–1602.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, X.-L., Mu, B., Lin, H.-Y., Yang, S., Liu, G.-C., Tian, A.-X. & Zhang, J.-W. (2012). Dalton Trans. 41, 11074–11084.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWu, Z., Yuan, X., Zhang, J., Wang, H., Jiang, L. & Zeng, G. (2017). ChemCatChem, 9, 41–64.  Web of Science CrossRef CAS Google Scholar
First citationZhang, S.-Y., Zhang, Z. & Zaworotko, M. J. (2013). Chem. Commun. 49, 9700–9703.  CrossRef CAS Google Scholar
First citationZhao, J.-P., Zhao, C., Song, W.-C., Wang, L., Xie, Y., Li, J.-R. & Bu, X.-H. (2015). Dalton Trans. 44, 10289–10296.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds