research communications
μ4-benzene-1,4-dicarboxylato)tetrakis(dimethylformamide)trinickel(II)]: a two-dimensional coordination network
and Hirshfeld surface analysis of poly[tris(aDepartament of Inorganic Chemistry and Materials Science/Advanced Materials, IIQ Chemical Research Institute, UMSA Universidad Mayor de San Andres, La Paz, Bolivia, bCryssmat-Lab/DETEMA, Facultad de Quimica, Universidad de la Republica, Montevideo, Uruguay, cDivision of Safety and Transport/Electronics, RISE, Research Institutes of Sweden, SE-50462 Borås, Sweden, and dDepartment of Chemical Engineering, Applied Electrochemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
*Correspondence e-mail: cesario.ajpi@gmail.com, leopoldo@fq.edu.uy, saulcabreram@hotmail.com
The 3(C8H4O4)3(C3H7NO)4], is a two-dimensional coordination network formed by trinuclear linear Ni3(tp)3(DMF)4 units (tp = terephthalate = benzene-1,4-dicarboxylate and DMF = dimethylformamide) displaying a characteristic coordination mode of acetate groups in polynuclear metal–organic compounds. Individual trinuclear units are connected through tp anions in a triangular network that forms layers. One of the DMF ligands points outwards and provides interactions with equivalent planes above and below, leaving the second ligand in a structural void much larger than the DMF molecule, which shows positional disorder. Parallel planes are connected mainly through weak C—H⋯O, H⋯H and H⋯C interactions between DMF molecules, as shown by Hirshfeld surface analysis.
of the title compound, [Ni1. Chemical context
Extended hybrid organic–inorganic materials composed by transition metals and bridging carboxylates are interesting compounds that include the well-known metal–organic frameworks (MOFs), coordination polymers (CP) and coordination networks (CN) (Batten et al., 2013). In the last decade, much of the research into this kind of compounds has focused in the design of materials looking for tunability of potential industrial applications such as lithium-ion batteries (Shin et al., 2015; Maiti et al., 2015; Tian et al., 2016), substitutes for dye-sensitized solar cells (DSSCs) (Zhang et al., 2018; Yan et al., 2018; Jeevadason et al., 2014), luminescent compounds (Kara et al., 2018; Igoa et al., 2019) and magnetic materials (Mesbah et al., 2014) among others. In the search for new extended hybrid materials based on Ni and terephthalate (terephthalate = tp = benzene-1,4-dicarboxylate), the title compound [Ni3(C8H4O4)3(C3H7NO)4] was synthesized by a solvothermal process in dimethylformamide (DMF) and is currently under study for application as an anode material in lithium-ion batteries. In order to perform an adequate structure–property correlation, the of the compound was determined and supramolecular features of potential interest for understanding Li-ion intercalation and migration were analysed using the Hirshfeld surface (HS).
2. Structural commentary
The title compound is a two-dimensional coordination polymer formed by linear trinuclear centrosymmetric Ni3(tp)3(DMF)4 units connected through tp anions, which crystallizes in the monoclinic P21/c Two distinct hexacoordinated Ni2+ cations (Ni1 in a special position with occupancy factor 0.5), two DMF ligands and two tp anions (anion B in a special position with occupancy factor 0.5) exist in the (Fig. 1). The central Ni atom, located on an inversion centre, displays an octahedral coordination to O atoms from three pairs of carboxylate units belonging to three symmetry-related tp anions with Ni1—O bond distances in the range 2.0205 (14)–2.0868 (14) Å and a maximum deviation of 4.85° from the expected O—Ni1—O octahedral bond angles. The two terminal Ni2 cations also coordinate the carboxylate units of three symmetry-related tp units, one of them in bidentate mode, and two independent dimethylformamide ligands (one of them showing positional disorder) in a significantly distorted octahedron (Fig. 2). Ni2—O bond distances are in the range 2.0090 (15)–2.0791 (15) Å for terephthalate and 2.042 (12)–2.1853 (16) Å for DMF oxygen atoms respectively (including the lower occupancy disordered ligands). The O1B—Ni2—O2B angle of 61.52 (6)° corresponding to a tridentate carboxylate, acting as bidentate towards Ni2, is very far away for the expected octahedral 90° angle. However, the coordination is still octahedral since O1B, O2B, O1C and O3A form a clear equatorial plane with Ni deviating by just 0.1202 (7) Å from the plane and the rest of the equatorial bond angles [O2B—Ni2—O3A = 99.18 (6), O3A—Ni2—O1C = 99.13 (7) and O1C—Ni2—O1B = 98.91 (7)°] are increased by about 10° to compensate for the very small angle from the bidentate ligand (O3A is in position + x, − y, + z). Additionally the two apical atoms O1A and O1D lie 2.026 (6) and 2.1269 (16) Å, respectively, from the equatorial plane, forming an O1BD—Ni2—O1A angle of 176.0 (6)°. The carboxylate that is bidentate towards Ni2 is also monodentate towards Ni1, with the O2B atom being the link between corner-sharing Ni1 and Ni2 octahedra, which explains the longer Ni—O2B bond distances of 2.0868 (14) and 2.0791 (15) Å to Ni1 and Ni2 respectively, compared with all other Ni—Otp bond distances (see Fig. 2). The trinuclear octahedral arrangement with the three Ni atoms coordinated exclusively by O has only been observed in one 1,3-benzenedicarboxylate catena-[bis(μ4-isophthalato)bis(μ3-isophthalato)trinickel(II) bis(3-ethyl-1-methyl-1H-imidazol-3-ium)] (Chen et al., 2011) where the Ni cations are connected through the same number and coordination modes of carboxylate moieties. In that compound, however, two additional carboxylates complete the coordination spheres of the terminal Ni cations, instead of DMF molecules, giving a three-dimensional connected network. Ni1⋯Ni2 distances of 3.4414 (4) Å are observed, also found in the 1,2-benzenedicarboxylate (Nicentral⋯Niterminal = 3.442 Å). This coordination mode is frequently found in other trinuclear transition metal carboxylates, with and without different ligands bonded to the terminal cations.
Each terephthalate ion links two nearby trinuclear units forming a slightly distorted two-dimensional hexagonal arrangement along the crystallographic (10) plane as shown in Fig. 3. Since the central Ni atom (Ni1) of the trinuclear arrangement is located at (0, 0, 0) and equivalent (½, ½, ½) coordinates, the hexagonal arrangement shows a 2 + 4 distance pattern with two opposite nearby units at 9.6335 (11) Å (equal to the b-axis length) and four at 10.1407 (9) Å (equal to half of the short body diagonal of the unit cell) defining isosceles triangles with one small [56.718 (8)°] and two larger [(61.641 (4)°] angles. The tp anions link nearby units in two different modes. The longest interunit distance corresponds to tp anions connecting the top or bottom parts of the unit, parallel to the plane (terephthalate anion A), while the shorter distance corresponds to a tp unit that is located over a centre of symmetry (anion B), which connects the top/bottom part of one unit to the bottom/top part of the next unit. This diagonal connection produces a tilt in the linear trinuclear units that are rotated by 11.82° from the normal to the plane of the network, in a direction slightly away from the b axis.
The ordered DMF molecules (labelled C) point outwards at both sides of the planes providing a polar surface that allows for the interaction of parallel planes of the coordination polymer. The disordered DMF ligands (labelled D) occupy part of the void space between consecutive planes (see Section 3) and were modelled over three different positions rotated by 180° and displaced respectively, which strongly suggests that both static and dynamic disorder are present.
3. Supramolecular features and Hirshfeld surface analysis
Parallel planes do not stack in a typical hexagonal arrangement, where a layer projects over the voids of the poly[tris(μ4-benzene-1,4-dicarboxylato)tetrakis(dimethylformamide)trinickel(II)], but in this case one layer projects over the center of the short inter-unit distance of the next layer, or is shifted by half of the b-axis length. This is again a consequence of the position of the Ni1 atoms at the corners and the centre of the forming planes along (10). Fig. 4a shows two parallel planes along the [10] direction (compare with Fig. 3) where it is shown that the projection of one plane falls away from the voids in the next one. Fig. 4b shows the same two planes along the [010] direction where the relative position of the ordered DMF ligands in consecutive layers is shown.
In order to visualize the interplanar interactions, Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was performed by using Crystal Explorer 17.5 (Turner et al., 2017). In the HS plotted over dnorm (Fig. 5), the white surfaces indicate contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distant contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). Since bonds from Ni1 to O atoms and from C2B and C4B to C atoms are not included in the bright-red spots appear over them. The following stronger short contacts shown as light-red spots correspond to weak C—H⋯O hydrogen bonds shown in Table 1. It is interesting to note that the ordered DMF-C molecule shows one intramolecular C1C—H1C⋯O1A and one interplanar C2C—H2CB⋯O1Bi hydrogen bond [symmetry code: (i) −x + , y + , −z + ]. The former limits the rotation of the DMF group and the latter the orientation. This fixes the DMF-C molecules and provides the main interaction between parallel network planes. The DMF-D molecule, disordered over three positions, participates in no hydrogen bonds to the aldehyde carbon (C1D, C1AD or C1BD) but only to methyl H atoms, giving the molecule rotational freedom. Additionally, the DMF molecule is smaller than the void in which it sits, allowing for additional positional freedom. Removing DMF-C and DMF-D from the structural model, allowed the volume these molecules occupy in the to be calculated. The void-calculation routine in PLATON (Spek, 2009) was used, with a probe radius of 1.2 Å (enough to place small monoatomic ions). Voids arising from removing DMF-C and DMF-D are 110.18 and 167.93 Å3 per molecule, respectively (two of the voids are connected around , −0.07, and , −0.02, for DMF-C and 1/2,0.003,0 and 0,0.496,1/2 for DMF-D), again showing that the DMF-D molecule is located over a much larger void than its own size, justifying the observation of positional disorder. Moreover, performing the same void calculation procedure using each of the DMF-D positions individually (as is the real case for each appearance of the molecule in the crystal), it is observed that the highest occupied position of DMF-D leaves only 21.75 Å3 free volume per molecule (in two smaller 10.88 Å3 voids) while DMF-AD and DMF-BD leave larger 53.1 and 37.7 Å3 voids, respectively. Besides the described hydrogen-bond interactions, contacts between H atoms from both DMF molecules and neighbouring H, O and C atoms from surrounding DMF and tp anions dominate the interactions in the as depicted in Fig. 6, where the two-dimensional fingerprint plots (McKinnon et al., 2007) are shown. H⋯H interactions from the DMF ligands are the most relevant, covering 45% of the Hirshfeld surface The presence of voids and a significant number of weak interlayer interactions may well explain the possibility of using this material for Li-ion batteries, as will be discussed elsewhere.
4. Database survey
The May 2019 update of the CSD (Groom et al., 2016) contains six coordination networks comprising Ni and a terephthalate anion as the sole linker; however, none of them contains only O in the coordination sphere. Additionally, there are eight trinuclear linear Ni compounds formed by carboxylates and other oxygenated ligands, none of them coordination networks except for DAFHID (Chen et al., 2011), which is discussed above.
5. Synthesis and crystallization
The compound was synthesized by solvothermal method via reaction between NiCl2·6H2O (0.6143 g, 2.58 mmol), terephthalic acid (0.8587 g, 5.20 mmol) and N,N-dimethylformamide (DMF)(50 ml) as a solvent; the reactants were dissolved in DMF and transferred to a steel autoclave at 423 K for 24 h.
The green crystals were collected by filtration, washed several times with DMF and dried at 373 K (yield 0.7 mg, 70%). Elemental Analysis for Ni3(C8H4O4)3(C3H7NO)4 (Mr = 960.81). Calculated (%): C 45.00, H 4.20, N 5.83, Ni 18.33. Found: C44.95, H 4.21, N 5.85, Ni 18.22.
6. Refinement
Crystal data, data collection and structure . All hydrogen atoms were placed at geometrically suitable positions and refined riding with Uiso(H) = 1.2 or 1.5 times the Ueq of the parent C atom. There are two sites occupied with N,N-dimethylformamide (DMF) molecules; one of them showing disorder that was modelled in three different positions with relative occupancies of 0.502, 0.286 and 0.212. This causes C atoms from the DMF methyl groups to have very large thermal displacement parameters that required the use of similarity restraints to converge to reasonable values.
details are summarized in Table 2Supporting information
https://doi.org/10.1107/S2056989019014658/ex2025sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019014658/ex2025Isup2.hkl
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008) and VESTA (Momma & Izumi, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).[Ni3(C8H4O4)3(C3H7NO)4] | F(000) = 992 |
Mr = 960.85 | Dx = 1.508 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54178 Å |
a = 14.0309 (16) Å | Cell parameters from 9446 reflections |
b = 9.6335 (11) Å | θ = 3.6–72.4° |
c = 16.5804 (19) Å | µ = 2.18 mm−1 |
β = 109.230 (5)° | T = 298 K |
V = 2116.1 (4) Å3 | Plate, green |
Z = 2 | 0.18 × 0.14 × 0.08 mm |
Bruker D8 Venture diffractometer | 4170 independent reflections |
Radiation source: Incoatec microsource | 3539 reflections with I > 2σ(I) |
Detector resolution: 10.25 pixels mm-1 | Rint = 0.040 |
/j and /w scans | θmax = 72.5°, θmin = 3.6° |
Absorption correction: multi-scan (SADABS; Krause, et al., 2015) | h = −16→17 |
Tmin = 0.657, Tmax = 0.754 | k = −11→9 |
21976 measured reflections | l = −20→20 |
Refinement on F2 | 353 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.092 | w = 1/[σ2(Fo2) + (0.0499P)2 + 0.8233P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
4170 reflections | Δρmax = 0.28 e Å−3 |
339 parameters | Δρmin = −0.52 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ######################### VOID CALCULATED AFTER REMOVAL OF DMF-C (FROM PLATON) ========================================================================== Search for and Analysis of Solvent Accessible Voids in the Structure - Grid = 0.20 Ang., Probe Radius = 1.20 Ang., NStep = 6 =============================================================================== :: Total Potential Solvent Area Vol 440.3 Ang**3 per Unit Cell Vol 2116.1 Ang**3 [20.8%] Area #GridPoint VolPerc. Vol(A**3) X(av) Y(av) Z(av) Eigenvector(frac) Sig(Ang) ——————————————————————————- 1 30203[ 5658] 10 220[ 41.2] 0.250-0.068 0.750 1 0.125 1.000-0.231 3.00 2 0.245 0.677 1.000 1.85 3 1.000-0.310 0.187 1.20 2 30205[ 5658] 10 220[ 41.2] 0.750-0.018 0.250 1 0.158 1.000 0.025 2.91 2 -0.042 0.068 1.000 2.08 3 1.000-0.297 0.312 1.17 x y z Shortest Contacts within 4.5 Ang. (Excl. H) =============================================================================== 1 0.250-0.068 0.750 C2D 2.97; O1A 3.18; Ni2 3.31; O1B 3.66; O3A 3.72; C3BD 3.99; C2BD 4.06; C3A 4.29; O1AD 4.30; 2 0.750-0.018 0.250 Ni2 3.06; O1A 3.19; C2D 3.23; O3A 3.86; O1AD 3.89; O1D 4.02; O1BD 4.07; O1B 4.07; C2BD 4.31; ######################### VOID CALCULATED AFTER REMOVAL OF DMF-D (FROM PLATON) ============================================================================== Search for and Analysis of Solvent Accessible Voids in the Structure - Grid = 0.20 Ang., Probe Radius = 1.20 Ang., NStep = 6 =============================================================================== :: Total Potential Solvent Area Vol 671.7 Ang**3 per Unit Cell Vol 2116.1 Ang**3 [31.7%] Area #GridPoint VolPerc. Vol(A**3) X(av) Y(av) Z(av) Eigenvector(frac) Sig(Ang) ——————————————————————————- 1 46072[ 11117] 16 336[ 81.0] 0.500 0.003 0.000 1 -0.393 1.000 0.491 3.56 2 0.059-1.000 0.603 1.59 3 1.000 0.423 0.458 1.49 2 46084[ 11117] 16 336[ 81.0] 1.000 0.496 0.500 1 0.393 1.000-0.490 3.56 2 0.037 1.000 0.589 1.59 3 1.000-0.401 0.471 1.49 x y z Shortest Contacts within 4.5 Ang. (Excl. H) =============================================================================== 1 0.500 0.003 0.000 O3A 3.66; C4A 3.72; O1C 3.86; Ni2 4.37; C3A 4.46; 2 1.000 0.496 0.500 O3A 3.66; C4A 3.72; O1C 3.86; Ni2 4.37; C3A 4.46; ######################### VOID AROUND DMF-D (EXCLUDING DISORDERED POSITIONS AD AND BD) :: Total Potential Solvent Area Vol 43.5 Ang**3 per Unit Cell Vol 2116.1 Ang**3 [ 2.1%] Area #GridPoint VolPerc. Vol(A**3) X(av) Y(av) Z(av) Eigenvector(frac) Sig(Ang) ——————————————————————————- 1 1492[ 5] 1 11[ 0.0] 0.368 0.018 0.206 1 -0.079-0.096 1.000 0.63 2 0.359 1.000 0.150 0.62 3 -1.000 0.684-0.306 0.59 2 1492[ 5] 1 11[ 0.0] 0.632-0.018 0.794 1 -0.082-0.079 1.000 0.63 2 0.358 1.000 0.144 0.62 3 -1.000 0.681-0.312 0.59 3 1492[ 5] 1 11[ 0.0] 0.868 0.482 0.706 1 -0.062 0.034 1.000 0.63 2 -0.381 1.000-0.132 0.62 3 -1.000-0.722-0.310 0.59 4 1491[ 5] 1 11[ 0.0] 0.132 0.518 0.294 1 -0.038-0.048 1.000 0.63 2 -0.394 1.000-0.103 0.62 3 -1.000-0.744-0.315 0.59 x y z Shortest Contacts within 4.5 Ang. (Excl. H) =============================================================================== 1 0.368 0.018 0.206 N1D 2.91; C5A 3.04; C4A 3.14; C3D 3.23; C7A 3.24; C2D 3.25; C1D 3.30; C6A 3.31; C4B 3.33; 2 0.632-0.018 0.794 N1D 2.91; C5A 3.04; C4A 3.15; C3D 3.23; C7A 3.24; C2D 3.24; C1D 3.30; C6A 3.31; C4B 3.33; 3 0.868 0.482 0.706 N1D 2.91; C5A 3.04; C4A 3.15; C3D 3.23; C7A 3.23; C2D 3.25; C1D 3.30; C6A 3.31; C4B 3.33; =========================================================================== 4 0.132 0.518 0.294 N1D 2.91; C5A 3.04; C4A 3.14; C3D 3.23; C7A 3.24; C2D 3.25; C1D 3.30; C6A 3.31; C4B 3.33; ######################### VOIDS AROUND DMF-AD (EXCLUDING DISORDERED POSITIONS D AND BD) :: Total Potential Solvent Area Vol 106.2 Ang**3 per Unit Cell Vol 2116.1 Ang**3 [ 5.0%] Area #GridPoint VolPerc. Vol(A**3) X(av) Y(av) Z(av) Eigenvector(frac) Sig(Ang) ——————————————————————————- 1 5282[ 133] 2 39[ 1.0] 0.500 0.000 1.000 1 0.349-0.255 1.000 1.55 2 1.000-0.019 0.030 0.81 3 0.043 1.000 0.097 0.68 2 998[ 1] 0 7[ 0.0] 0.750 0.042 0.571 1 1.000-0.023-0.164 0.55 2 0.580-0.051 1.000 0.54 3 -0.020-1.000-0.017 0.52 3 5291[ 133] 2 39[ 1.0] 1.000 0.500 0.500 1 0.349 0.255 1.000 1.55 2 1.000 0.007 0.031 0.81 3 -0.037 1.000-0.097 0.68 4 998[ 1] 0 7[ 0.0] 0.250 0.458 0.071 1 1.000-0.017-0.170 0.55 2 0.587-0.046 1.000 0.54 3 -0.017-1.000-0.016 0.52 5 998[ 1] 0 7[ 0.0] 0.750 0.542 0.929 1 1.000-0.032-0.157 0.55 2 0.571-0.119 1.000 0.54 3 -0.038-1.000-0.042 0.52 6 998[ 1] 0 7[ 0.0] 0.250 0.958 0.429 1 1.000-0.024-0.169 0.55 2 0.587-0.002 1.000 0.54 3 -0.010-1.000 0.001 0.52 =============================================================================== x y z Shortest Contacts within 4.5 Ang. (Excl. H) =============================================================================== 1 0.500 0.000 1.000 C3AD 3.20; O1AD 3.26; N1AD 3.29; C1AD 3.37; O3A 3.66; C4A 3.74; O1C 3.87; C2AD 4.26; Ni2 4.37; 2 0.750 0.042 0.571 C3B 2.91; C1AD 2.92; C6A 2.98; C2B 3.02; C2C 3.02; C5A 3.03; N1AD 3.08; C7A 3.13; C4A 3.21; 3 1.000 0.500 0.500 C3AD 3.20; O1AD 3.26; N1AD 3.29; C1AD 3.37; O3A 3.66; C4A 3.74; O1C 3.87; C2AD 4.26; Ni2 4.37; 4 0.250 0.458 0.071 C3B 2.91; C1AD 2.91; C6A 2.98; C2B 3.02; C2C 3.02; C5A 3.03; N1AD 3.08; C7A 3.13; C4A 3.21; 5 0.750 0.542 0.929 C3B 2.91; C1AD 2.92; C6A 2.98; C2B 3.02; C2C 3.02; C5A 3.03; N1AD 3.08; C7A 3.13; C4A 3.21; 6 0.250 0.958 0.429 C3B 2.91; C1AD 2.91; C6A 2.98; C2B 3.02; C2C 3.02; C5A 3.03; N1AD 3.07; C7A 3.13; C4A 3.21; ######################### VOIDS AROUND DMF-BD (EXCLUDING DISORDERED POSITIONS D AND BD) :: Total Potential Solvent Area Vol 75.4 Ang**3 per Unit Cell Vol 2116.1 Ang**3 [ 3.6%] Area #GridPoint VolPerc. Vol(A**3) X(av) Y(av) Z(av) Eigenvector(frac) Sig(Ang) ——————————————————————————- 1 2589[ 15] 1 19[ 0.1] 0.766 0.088 0.618 1 -0.145 0.973 1.000 1.05 2 1.000 0.224 0.297 0.66 3 -0.110 1.000-0.356 0.60 2 2584[ 15] 1 19[ 0.1] 0.266 0.412 0.118 1 -0.139-0.965 1.000 1.05 2 1.000-0.242 0.289 0.66 3 0.123 1.000 0.358 0.59 3 2588[ 15] 1 19[ 0.1] 0.734 0.588 0.882 1 -0.143-0.973 1.000 1.05 2 1.000-0.230 0.294 0.66 3 0.114 1.000 0.358 0.60 4 2585[ 15] 1 19[ 0.1] 0.234 0.912 0.382 1 -0.147 0.967 1.000 1.05 2 1.000 0.207 0.304 0.66 3 -0.097 1.000-0.349 0.60 x y z Shortest Contacts within 4.5 Ang. (Excl. H) =============================================================================== 1 0.766 0.088 0.618 C7A 2.93; C1BD 2.93; C3B 2.97; C2A 3.09; C6A 3.13; N1BD 3.18; O1BD 3.21; C2B 3.38; C3A 3.40; 2 0.266 0.412 0.118 C1BD 2.93; C7A 2.93; C3B 2.97; C2A 3.09; C6A 3.13; N1BD 3.17; O1BD 3.21; C2B 3.38; C3A 3.41; 3 0.734 0.588 0.882 C7A 2.93; C1BD 2.93; C3B 2.97; C2A 3.09; C6A 3.13; N1BD 3.17; O1BD 3.21; C2B 3.38; C3A 3.40; 4 0.234 0.912 0.382 C1BD 2.93; C7A 2.93; C3B 2.97; C2A 3.09; C6A 3.13; N1BD 3.17; O1BD 3.21; C2B 3.39; C3A 3.41; |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ni1 | 0.500000 | 0.500000 | 0.500000 | 0.02455 (12) | |
Ni2 | 0.67419 (2) | 0.42716 (4) | 0.40049 (2) | 0.03009 (11) | |
O1A | 0.56051 (11) | 0.52816 (17) | 0.31290 (9) | 0.0386 (3) | |
C1A | 0.47483 (15) | 0.5613 (2) | 0.31483 (12) | 0.0318 (4) | |
O2A | 0.44086 (11) | 0.54372 (18) | 0.37410 (9) | 0.0406 (4) | |
C2A | 0.40430 (15) | 0.6317 (2) | 0.23606 (13) | 0.0350 (4) | |
O3A | 0.23759 (11) | 0.90569 (16) | −0.03005 (9) | 0.0380 (3) | |
C3A | 0.43627 (17) | 0.6769 (3) | 0.17032 (14) | 0.0453 (6) | |
H3A | 0.502355 | 0.659985 | 0.172565 | 0.054* | |
O4A | 0.11253 (10) | 0.85882 (16) | 0.02142 (10) | 0.0384 (3) | |
C3B | 0.54232 (19) | 0.1105 (2) | 0.55325 (15) | 0.0435 (5) | |
H3B | 0.570430 | 0.184531 | 0.589193 | 0.052* | |
C5A | 0.27238 (15) | 0.7701 (2) | 0.09543 (13) | 0.0340 (4) | |
C6A | 0.23995 (18) | 0.7236 (3) | 0.16061 (16) | 0.0550 (7) | |
H6A | 0.173356 | 0.738276 | 0.157606 | 0.066* | |
C7A | 0.30498 (18) | 0.6555 (3) | 0.23020 (16) | 0.0568 (7) | |
H7A | 0.281846 | 0.625248 | 0.273702 | 0.068* | |
C8A | 0.20106 (15) | 0.8513 (2) | 0.02281 (12) | 0.0315 (4) | |
C4A | 0.37147 (17) | 0.7469 (3) | 0.10111 (14) | 0.0445 (6) | |
H4A | 0.394827 | 0.778659 | 0.058044 | 0.053* | |
O1B | 0.59907 (13) | 0.22615 (17) | 0.36814 (10) | 0.0447 (4) | |
C1B | 0.57649 (15) | 0.2365 (2) | 0.43443 (14) | 0.0349 (4) | |
O2B | 0.59547 (10) | 0.35001 (14) | 0.47735 (9) | 0.0323 (3) | |
C2B | 0.53512 (16) | 0.1155 (2) | 0.46820 (15) | 0.0364 (5) | |
C4B | 0.50778 (19) | −0.0046 (2) | 0.58491 (15) | 0.0438 (5) | |
H4B | 0.513277 | −0.007863 | 0.642327 | 0.053* | |
O1C | 0.75142 (13) | 0.4275 (2) | 0.31558 (11) | 0.0528 (4) | |
C1C | 0.7187 (2) | 0.4691 (3) | 0.24174 (18) | 0.0558 (6) | |
H1C | 0.664285 | 0.529957 | 0.228484 | 0.067* | |
N1C | 0.75234 (19) | 0.4370 (3) | 0.18062 (15) | 0.0567 (6) | |
C2C | 0.7109 (3) | 0.4958 (5) | 0.0954 (2) | 0.0936 (12) | |
H2CA | 0.682464 | 0.422950 | 0.055091 | 0.140* | |
H2CB | 0.763583 | 0.541335 | 0.080424 | 0.140* | |
H2CC | 0.659234 | 0.561783 | 0.094316 | 0.140* | |
C3C | 0.8336 (4) | 0.3417 (6) | 0.1934 (3) | 0.1189 (17) | |
H3CA | 0.880182 | 0.351911 | 0.250325 | 0.178* | |
H3CB | 0.867587 | 0.360371 | 0.152930 | 0.178* | |
H3CC | 0.807666 | 0.248664 | 0.185574 | 0.178* | |
O1D | 0.8014 (9) | 0.3151 (12) | 0.4826 (6) | 0.0530 (6) | 0.502 (2) |
C1D | 0.8794 (4) | 0.3625 (6) | 0.5229 (3) | 0.0571 (10) | 0.502 (2) |
H1D | 0.897601 | 0.443924 | 0.501510 | 0.069* | 0.502 (2) |
N1D | 0.9445 (4) | 0.3160 (7) | 0.5941 (3) | 0.0713 (9) | 0.502 (2) |
C2D | 1.0427 (5) | 0.3755 (9) | 0.6322 (5) | 0.101 (2) | 0.502 (2) |
H2DA | 1.040810 | 0.440932 | 0.675326 | 0.151* | 0.502 (2) |
H2DB | 1.062711 | 0.422124 | 0.589159 | 0.151* | 0.502 (2) |
H2DC | 1.090317 | 0.303414 | 0.657648 | 0.151* | 0.502 (2) |
C3D | 0.9207 (6) | 0.1915 (9) | 0.6338 (5) | 0.109 (2) | 0.502 (2) |
H3DA | 0.892358 | 0.122527 | 0.590807 | 0.164* | 0.502 (2) |
H3DB | 0.872814 | 0.214163 | 0.661918 | 0.164* | 0.502 (2) |
H3DC | 0.981193 | 0.155916 | 0.674938 | 0.164* | 0.502 (2) |
O1AD | 0.7959 (15) | 0.317 (4) | 0.4743 (6) | 0.0530 (6) | 0.285 (3) |
C1AD | 0.8215 (6) | 0.3181 (12) | 0.5491 (5) | 0.0587 (12) | 0.285 (3) |
H1AD | 0.774908 | 0.353722 | 0.572603 | 0.070* | 0.285 (3) |
N1AD | 0.9073 (5) | 0.2759 (10) | 0.6039 (4) | 0.0713 (9) | 0.285 (3) |
C2AD | 0.9272 (8) | 0.2782 (15) | 0.6944 (4) | 0.085 (3) | 0.285 (3) |
H2DD | 0.920908 | 0.371541 | 0.712322 | 0.127* | 0.285 (3) |
H2DE | 0.994468 | 0.245201 | 0.722992 | 0.127* | 0.285 (3) |
H2DF | 0.879667 | 0.219575 | 0.708430 | 0.127* | 0.285 (3) |
C3AD | 0.9776 (7) | 0.1978 (14) | 0.5730 (6) | 0.090 (3) | 0.285 (3) |
H3DD | 0.941746 | 0.125546 | 0.535186 | 0.135* | 0.285 (3) |
H3DE | 1.029120 | 0.157344 | 0.620566 | 0.135* | 0.285 (3) |
H3DF | 1.008036 | 0.259050 | 0.542830 | 0.135* | 0.285 (3) |
O1BD | 0.7929 (14) | 0.315 (4) | 0.4838 (9) | 0.0530 (6) | 0.213 (3) |
C1BD | 0.8318 (6) | 0.3434 (18) | 0.5559 (6) | 0.0600 (13) | 0.213 (3) |
H1BD | 0.792321 | 0.392423 | 0.581459 | 0.072* | 0.213 (3) |
N1BD | 0.9240 (5) | 0.3147 (15) | 0.6053 (5) | 0.0713 (9) | 0.213 (3) |
C2BD | 0.9529 (10) | 0.343 (2) | 0.6968 (5) | 0.087 (3) | 0.213 (3) |
H2DG | 1.025064 | 0.340840 | 0.721607 | 0.131* | 0.213 (3) |
H2DH | 0.924006 | 0.273742 | 0.723433 | 0.131* | 0.213 (3) |
H2DI | 0.928462 | 0.432967 | 0.705483 | 0.131* | 0.213 (3) |
C3BD | 1.0039 (7) | 0.2844 (19) | 0.5720 (7) | 0.081 (3) | 0.213 (3) |
H3DG | 0.976030 | 0.268049 | 0.511667 | 0.122* | 0.213 (3) |
H3DH | 1.039618 | 0.203269 | 0.599686 | 0.122* | 0.213 (3) |
H3DI | 1.049555 | 0.361718 | 0.582424 | 0.122* | 0.213 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0235 (2) | 0.0262 (2) | 0.0194 (2) | −0.00175 (17) | 0.00091 (16) | 0.00035 (17) |
Ni2 | 0.02733 (18) | 0.0330 (2) | 0.02504 (18) | 0.00005 (13) | 0.00201 (13) | −0.00149 (14) |
O1A | 0.0326 (7) | 0.0499 (9) | 0.0283 (7) | 0.0057 (7) | 0.0033 (6) | 0.0066 (7) |
C1A | 0.0318 (10) | 0.0330 (10) | 0.0252 (9) | −0.0013 (8) | 0.0023 (8) | −0.0015 (8) |
O2A | 0.0353 (8) | 0.0580 (10) | 0.0237 (7) | 0.0064 (7) | 0.0032 (6) | 0.0076 (7) |
C2A | 0.0322 (10) | 0.0405 (11) | 0.0268 (9) | 0.0038 (9) | 0.0024 (8) | 0.0043 (9) |
O3A | 0.0362 (7) | 0.0418 (8) | 0.0330 (7) | 0.0109 (6) | 0.0074 (6) | 0.0090 (6) |
C3A | 0.0301 (10) | 0.0671 (16) | 0.0363 (11) | 0.0127 (10) | 0.0075 (9) | 0.0136 (11) |
O4A | 0.0290 (7) | 0.0351 (8) | 0.0463 (8) | 0.0070 (6) | 0.0058 (6) | 0.0090 (7) |
C3B | 0.0567 (14) | 0.0279 (11) | 0.0424 (12) | −0.0084 (10) | 0.0115 (10) | −0.0070 (9) |
C5A | 0.0305 (10) | 0.0384 (11) | 0.0276 (9) | 0.0065 (8) | 0.0022 (8) | 0.0034 (8) |
C6A | 0.0314 (11) | 0.086 (2) | 0.0464 (13) | 0.0138 (12) | 0.0116 (10) | 0.0248 (14) |
C7A | 0.0384 (12) | 0.090 (2) | 0.0422 (13) | 0.0134 (13) | 0.0139 (10) | 0.0298 (14) |
C8A | 0.0309 (10) | 0.0291 (10) | 0.0289 (9) | 0.0042 (8) | 0.0023 (8) | 0.0002 (8) |
C4A | 0.0366 (11) | 0.0638 (16) | 0.0319 (11) | 0.0110 (11) | 0.0098 (9) | 0.0157 (11) |
O1B | 0.0556 (9) | 0.0363 (8) | 0.0430 (9) | −0.0060 (7) | 0.0174 (7) | −0.0057 (7) |
C1B | 0.0325 (10) | 0.0291 (10) | 0.0377 (11) | 0.0017 (8) | 0.0044 (8) | 0.0000 (9) |
O2B | 0.0324 (7) | 0.0250 (7) | 0.0365 (7) | −0.0010 (6) | 0.0074 (6) | −0.0015 (6) |
C2B | 0.0376 (11) | 0.0252 (10) | 0.0438 (11) | 0.0010 (8) | 0.0099 (9) | −0.0004 (9) |
C4B | 0.0583 (14) | 0.0333 (12) | 0.0385 (11) | −0.0052 (10) | 0.0140 (10) | −0.0034 (10) |
O1C | 0.0464 (9) | 0.0731 (12) | 0.0419 (9) | 0.0095 (8) | 0.0188 (7) | 0.0067 (9) |
C1C | 0.0560 (14) | 0.0654 (16) | 0.0487 (13) | 0.0090 (12) | 0.0208 (11) | 0.0019 (12) |
N1C | 0.0714 (14) | 0.0577 (13) | 0.0486 (12) | −0.0040 (11) | 0.0301 (11) | −0.0011 (10) |
C2C | 0.110 (3) | 0.120 (3) | 0.0534 (18) | −0.020 (3) | 0.0299 (19) | 0.011 (2) |
C3C | 0.149 (4) | 0.127 (4) | 0.109 (3) | 0.053 (3) | 0.080 (3) | 0.012 (3) |
O1D | 0.0397 (12) | 0.0572 (10) | 0.0484 (10) | 0.0110 (9) | −0.0040 (9) | 0.0014 (14) |
C1D | 0.0406 (16) | 0.0618 (18) | 0.0543 (17) | 0.0079 (16) | −0.0040 (15) | 0.0058 (17) |
N1D | 0.0537 (15) | 0.0745 (15) | 0.0625 (13) | 0.0094 (13) | −0.0124 (12) | 0.0064 (13) |
C2D | 0.067 (3) | 0.104 (4) | 0.097 (4) | −0.001 (3) | −0.021 (3) | −0.001 (4) |
C3D | 0.094 (4) | 0.106 (4) | 0.093 (4) | −0.003 (3) | −0.015 (3) | 0.022 (3) |
O1AD | 0.0397 (12) | 0.0572 (10) | 0.0484 (10) | 0.0110 (9) | −0.0040 (9) | 0.0014 (14) |
C1AD | 0.0454 (19) | 0.065 (2) | 0.0521 (19) | 0.0110 (18) | −0.0028 (18) | 0.004 (2) |
N1AD | 0.0537 (15) | 0.0745 (15) | 0.0625 (13) | 0.0094 (13) | −0.0124 (12) | 0.0064 (13) |
C2AD | 0.077 (4) | 0.083 (4) | 0.070 (4) | 0.005 (4) | −0.009 (4) | 0.009 (4) |
C3AD | 0.065 (4) | 0.095 (4) | 0.083 (4) | 0.015 (4) | −0.011 (4) | 0.004 (4) |
O1BD | 0.0397 (12) | 0.0572 (10) | 0.0484 (10) | 0.0110 (9) | −0.0040 (9) | 0.0014 (14) |
C1BD | 0.046 (2) | 0.065 (2) | 0.053 (2) | 0.0109 (19) | −0.0046 (19) | 0.004 (2) |
N1BD | 0.0537 (15) | 0.0745 (15) | 0.0625 (13) | 0.0094 (13) | −0.0124 (12) | 0.0064 (13) |
C2BD | 0.071 (4) | 0.092 (4) | 0.071 (4) | 0.001 (4) | −0.013 (4) | 0.007 (4) |
C3BD | 0.061 (4) | 0.087 (4) | 0.074 (4) | 0.007 (4) | −0.008 (4) | 0.003 (4) |
Ni1—O2Ai | 2.0205 (14) | N1C—C3C | 1.424 (5) |
Ni1—O2A | 2.0206 (14) | N1C—C2C | 1.454 (4) |
Ni1—O4Aii | 2.0246 (14) | C2C—H2CA | 0.9600 |
Ni1—O4Aiii | 2.0246 (14) | C2C—H2CB | 0.9600 |
Ni1—O2Bi | 2.0868 (14) | C2C—H2CC | 0.9600 |
Ni1—O2B | 2.0868 (14) | C3C—H3CA | 0.9600 |
Ni2—O3Aii | 2.0090 (15) | C3C—H3CB | 0.9600 |
Ni2—O1A | 2.0184 (15) | C3C—H3CC | 0.9600 |
Ni2—O1C | 2.0399 (17) | O1D—C1D | 1.171 (10) |
Ni2—O1AD | 2.042 (12) | C1D—N1D | 1.311 (4) |
Ni2—O2B | 2.0791 (15) | C1D—H1D | 0.9300 |
Ni2—O1BD | 2.081 (19) | N1D—C2D | 1.432 (7) |
Ni2—O1D | 2.146 (6) | N1D—C3D | 1.460 (8) |
Ni2—O1B | 2.1853 (16) | C2D—H2DA | 0.9600 |
Ni2—C1B | 2.465 (2) | C2D—H2DB | 0.9600 |
O1A—C1A | 1.255 (3) | C2D—H2DC | 0.9600 |
C1A—O2A | 1.237 (3) | C3D—H3DA | 0.9600 |
C1A—C2A | 1.514 (3) | C3D—H3DB | 0.9600 |
C2A—C3A | 1.379 (3) | C3D—H3DC | 0.9600 |
C2A—C7A | 1.384 (3) | O1AD—C1AD | 1.171 (10) |
O3A—C8A | 1.266 (3) | C1AD—N1AD | 1.312 (4) |
C3A—C4A | 1.383 (3) | C1AD—H1AD | 0.9300 |
C3A—H3A | 0.9300 | N1AD—C2AD | 1.433 (7) |
O4A—C8A | 1.237 (2) | N1AD—C3AD | 1.461 (8) |
C3B—C4B | 1.381 (3) | C2AD—H2DD | 0.9600 |
C3B—C2B | 1.381 (3) | C2AD—H2DE | 0.9600 |
C3B—H3B | 0.9300 | C2AD—H2DF | 0.9600 |
C5A—C6A | 1.378 (3) | C3AD—H3DD | 0.9600 |
C5A—C4A | 1.380 (3) | C3AD—H3DE | 0.9600 |
C5A—C8A | 1.506 (3) | C3AD—H3DF | 0.9600 |
C6A—C7A | 1.379 (3) | O1BD—C1BD | 1.171 (10) |
C6A—H6A | 0.9300 | C1BD—N1BD | 1.312 (4) |
C7A—H7A | 0.9300 | C1BD—H1BD | 0.9300 |
C4A—H4A | 0.9300 | N1BD—C3BD | 1.433 (7) |
O1B—C1B | 1.244 (3) | N1BD—C2BD | 1.461 (8) |
C1B—O2B | 1.284 (3) | C2BD—H2DG | 0.9600 |
C1B—C2B | 1.491 (3) | C2BD—H2DH | 0.9600 |
C2B—C4Biv | 1.389 (3) | C2BD—H2DI | 0.9600 |
C4B—H4B | 0.9300 | C3BD—H3DG | 0.9600 |
O1C—C1C | 1.225 (3) | C3BD—H3DH | 0.9600 |
C1C—N1C | 1.288 (4) | C3BD—H3DI | 0.9600 |
C1C—H1C | 0.9300 | ||
O2Ai—Ni1—O2A | 180.0 | C1B—O2B—Ni2 | 91.14 (13) |
O2Ai—Ni1—O4Aii | 85.85 (7) | C1B—O2B—Ni1 | 131.39 (13) |
O2A—Ni1—O4Aii | 94.15 (7) | Ni2—O2B—Ni1 | 111.40 (6) |
O2Ai—Ni1—O4Aiii | 94.15 (7) | C3B—C2B—C4Biv | 119.4 (2) |
O2A—Ni1—O4Aiii | 85.85 (7) | C3B—C2B—C1B | 120.3 (2) |
O4Aii—Ni1—O4Aiii | 180.00 (12) | C4Biv—C2B—C1B | 120.3 (2) |
O2Ai—Ni1—O2Bi | 91.60 (6) | C3B—C4B—C2Biv | 120.6 (2) |
O2A—Ni1—O2Bi | 88.40 (6) | C3B—C4B—H4B | 119.7 |
O4Aii—Ni1—O2Bi | 90.75 (6) | C2Biv—C4B—H4B | 119.7 |
O4Aiii—Ni1—O2Bi | 89.25 (6) | C1C—O1C—Ni2 | 125.55 (17) |
O2Ai—Ni1—O2B | 88.40 (6) | O1C—C1C—N1C | 126.5 (3) |
O2A—Ni1—O2B | 91.60 (6) | O1C—C1C—H1C | 116.8 |
O4Aii—Ni1—O2B | 89.25 (6) | N1C—C1C—H1C | 116.8 |
O4Aiii—Ni1—O2B | 90.75 (6) | C1C—N1C—C3C | 121.3 (3) |
O2Bi—Ni1—O2B | 180.00 (5) | C1C—N1C—C2C | 122.6 (3) |
O3Aii—Ni2—O1A | 97.00 (7) | C3C—N1C—C2C | 116.1 (3) |
O3Aii—Ni2—O1C | 99.13 (7) | N1C—C2C—H2CA | 109.5 |
O1A—Ni2—O1C | 88.63 (7) | N1C—C2C—H2CB | 109.5 |
O3Aii—Ni2—O1AD | 87.1 (9) | H2CA—C2C—H2CB | 109.5 |
O1A—Ni2—O1AD | 171.6 (5) | N1C—C2C—H2CC | 109.5 |
O1C—Ni2—O1AD | 83.4 (7) | H2CA—C2C—H2CC | 109.5 |
O3Aii—Ni2—O2B | 99.18 (6) | H2CB—C2C—H2CC | 109.5 |
O1A—Ni2—O2B | 99.20 (6) | N1C—C3C—H3CA | 109.5 |
O1C—Ni2—O2B | 159.02 (7) | N1C—C3C—H3CB | 109.5 |
O1AD—Ni2—O2B | 87.4 (9) | H3CA—C3C—H3CB | 109.5 |
O3Aii—Ni2—O1BD | 85.9 (9) | N1C—C3C—H3CC | 109.5 |
O1A—Ni2—O1BD | 176.0 (6) | H3CA—C3C—H3CC | 109.5 |
O1C—Ni2—O1BD | 88.2 (7) | H3CB—C3C—H3CC | 109.5 |
O2B—Ni2—O1BD | 83.0 (9) | C1D—O1D—Ni2 | 126.2 (8) |
O3Aii—Ni2—O1D | 85.5 (3) | O1D—C1D—N1D | 128.5 (7) |
O1A—Ni2—O1D | 173.8 (4) | O1D—C1D—H1D | 115.7 |
O1C—Ni2—O1D | 85.3 (5) | N1D—C1D—H1D | 115.7 |
O2B—Ni2—O1D | 86.0 (5) | C1D—N1D—C2D | 123.0 (5) |
O3Aii—Ni2—O1B | 159.66 (6) | C1D—N1D—C3D | 119.5 (5) |
O1A—Ni2—O1B | 92.73 (7) | C2D—N1D—C3D | 117.4 (4) |
O1C—Ni2—O1B | 98.91 (7) | N1D—C2D—H2DA | 109.5 |
O1AD—Ni2—O1B | 85.7 (10) | N1D—C2D—H2DB | 109.5 |
O2B—Ni2—O1B | 61.52 (6) | H2DA—C2D—H2DB | 109.5 |
O1BD—Ni2—O1B | 85.4 (10) | N1D—C2D—H2DC | 109.5 |
O1D—Ni2—O1B | 86.7 (4) | H2DA—C2D—H2DC | 109.5 |
O3Aii—Ni2—C1B | 129.86 (7) | H2DB—C2D—H2DC | 109.5 |
O1A—Ni2—C1B | 99.00 (7) | N1D—C3D—H3DA | 109.5 |
O1C—Ni2—C1B | 128.35 (8) | N1D—C3D—H3DB | 109.5 |
O1AD—Ni2—C1B | 83.8 (11) | H3DA—C3D—H3DB | 109.5 |
O2B—Ni2—C1B | 31.38 (6) | N1D—C3D—H3DC | 109.5 |
O1BD—Ni2—C1B | 81.1 (11) | H3DA—C3D—H3DC | 109.5 |
O1D—Ni2—C1B | 83.6 (5) | H3DB—C3D—H3DC | 109.5 |
O1B—Ni2—C1B | 30.28 (7) | C1AD—O1AD—Ni2 | 122.2 (11) |
C1A—O1A—Ni2 | 129.89 (14) | O1AD—C1AD—N1AD | 128.4 (7) |
O2A—C1A—O1A | 127.48 (18) | O1AD—C1AD—H1AD | 115.8 |
O2A—C1A—C2A | 115.67 (18) | N1AD—C1AD—H1AD | 115.8 |
O1A—C1A—C2A | 116.84 (18) | C1AD—N1AD—C2AD | 122.6 (5) |
C1A—O2A—Ni1 | 135.62 (14) | C1AD—N1AD—C3AD | 119.2 (5) |
C3A—C2A—C7A | 118.32 (19) | C2AD—N1AD—C3AD | 117.0 (4) |
C3A—C2A—C1A | 122.19 (19) | N1AD—C2AD—H2DD | 109.5 |
C7A—C2A—C1A | 119.46 (19) | N1AD—C2AD—H2DE | 109.5 |
C8A—O3A—Ni2v | 121.68 (13) | H2DD—C2AD—H2DE | 109.5 |
C2A—C3A—C4A | 120.9 (2) | N1AD—C2AD—H2DF | 109.5 |
C2A—C3A—H3A | 119.5 | H2DD—C2AD—H2DF | 109.5 |
C4A—C3A—H3A | 119.5 | H2DE—C2AD—H2DF | 109.5 |
C8A—O4A—Ni1vi | 139.74 (14) | N1AD—C3AD—H3DD | 109.5 |
C4B—C3B—C2B | 120.0 (2) | N1AD—C3AD—H3DE | 109.5 |
C4B—C3B—H3B | 120.0 | H3DD—C3AD—H3DE | 109.5 |
C2B—C3B—H3B | 120.0 | N1AD—C3AD—H3DF | 109.5 |
C6A—C5A—C4A | 118.62 (19) | H3DD—C3AD—H3DF | 109.5 |
C6A—C5A—C8A | 119.45 (19) | H3DE—C3AD—H3DF | 109.5 |
C4A—C5A—C8A | 121.84 (19) | C1BD—O1BD—Ni2 | 124.0 (19) |
C5A—C6A—C7A | 120.8 (2) | O1BD—C1BD—N1BD | 128.4 (7) |
C5A—C6A—H6A | 119.6 | O1BD—C1BD—H1BD | 115.8 |
C7A—C6A—H6A | 119.6 | N1BD—C1BD—H1BD | 115.8 |
C6A—C7A—C2A | 120.8 (2) | C1BD—N1BD—C3BD | 122.5 (5) |
C6A—C7A—H7A | 119.6 | C1BD—N1BD—C2BD | 119.2 (5) |
C2A—C7A—H7A | 119.6 | C3BD—N1BD—C2BD | 117.0 (4) |
O4A—C8A—O3A | 126.59 (18) | N1BD—C2BD—H2DG | 109.5 |
O4A—C8A—C5A | 116.37 (18) | N1BD—C2BD—H2DH | 109.5 |
O3A—C8A—C5A | 117.04 (18) | H2DG—C2BD—H2DH | 109.5 |
C5A—C4A—C3A | 120.5 (2) | N1BD—C2BD—H2DI | 109.5 |
C5A—C4A—H4A | 119.7 | H2DG—C2BD—H2DI | 109.5 |
C3A—C4A—H4A | 119.7 | H2DH—C2BD—H2DI | 109.5 |
C1B—O1B—Ni2 | 87.41 (13) | N1BD—C3BD—H3DG | 109.5 |
O1B—C1B—O2B | 119.4 (2) | N1BD—C3BD—H3DH | 109.5 |
O1B—C1B—C2B | 120.87 (19) | H3DG—C3BD—H3DH | 109.5 |
O2B—C1B—C2B | 119.55 (19) | N1BD—C3BD—H3DI | 109.5 |
O1B—C1B—Ni2 | 62.32 (12) | H3DG—C3BD—H3DI | 109.5 |
O2B—C1B—Ni2 | 57.48 (10) | H3DH—C3BD—H3DI | 109.5 |
C2B—C1B—Ni2 | 169.32 (15) | ||
Ni2—O1A—C1A—O2A | 3.0 (3) | Ni2—O1B—C1B—C2B | −168.31 (18) |
Ni2—O1A—C1A—C2A | −177.23 (14) | O1B—C1B—O2B—Ni2 | −7.3 (2) |
O1A—C1A—O2A—Ni1 | 16.3 (4) | C2B—C1B—O2B—Ni2 | 168.02 (17) |
C2A—C1A—O2A—Ni1 | −163.41 (16) | O1B—C1B—O2B—Ni1 | 113.0 (2) |
O2A—C1A—C2A—C3A | 170.1 (2) | C2B—C1B—O2B—Ni1 | −71.7 (2) |
O1A—C1A—C2A—C3A | −9.7 (3) | Ni2—C1B—O2B—Ni1 | 120.27 (16) |
O2A—C1A—C2A—C7A | −8.0 (3) | C4B—C3B—C2B—C4Biv | 0.5 (4) |
O1A—C1A—C2A—C7A | 172.2 (2) | C4B—C3B—C2B—C1B | −177.2 (2) |
C7A—C2A—C3A—C4A | 1.4 (4) | O1B—C1B—C2B—C3B | 157.8 (2) |
C1A—C2A—C3A—C4A | −176.8 (2) | O2B—C1B—C2B—C3B | −17.4 (3) |
C4A—C5A—C6A—C7A | 0.1 (4) | Ni2—C1B—C2B—C3B | 53.4 (9) |
C8A—C5A—C6A—C7A | −176.5 (3) | O1B—C1B—C2B—C4Biv | −19.9 (3) |
C5A—C6A—C7A—C2A | −0.3 (5) | O2B—C1B—C2B—C4Biv | 164.9 (2) |
C3A—C2A—C7A—C6A | −0.4 (5) | Ni2—C1B—C2B—C4Biv | −124.3 (8) |
C1A—C2A—C7A—C6A | 177.8 (3) | C2B—C3B—C4B—C2Biv | −0.5 (4) |
Ni1vi—O4A—C8A—O3A | −42.2 (4) | Ni2—O1C—C1C—N1C | −159.3 (2) |
Ni1vi—O4A—C8A—C5A | 137.12 (18) | O1C—C1C—N1C—C3C | 1.8 (6) |
Ni2v—O3A—C8A—O4A | 24.2 (3) | O1C—C1C—N1C—C2C | −177.7 (3) |
Ni2v—O3A—C8A—C5A | −155.13 (14) | Ni2—O1D—C1D—N1D | 153.1 (8) |
C6A—C5A—C8A—O4A | −7.5 (3) | O1D—C1D—N1D—C2D | 172.9 (11) |
C4A—C5A—C8A—O4A | 175.9 (2) | O1D—C1D—N1D—C3D | −2.2 (15) |
C6A—C5A—C8A—O3A | 171.9 (2) | Ni2—O1AD—C1AD—N1AD | −165.3 (13) |
C4A—C5A—C8A—O3A | −4.7 (3) | O1AD—C1AD—N1AD—C2AD | −177 (3) |
C6A—C5A—C4A—C3A | 0.8 (4) | O1AD—C1AD—N1AD—C3AD | −10 (3) |
C8A—C5A—C4A—C3A | 177.4 (2) | Ni2—O1BD—C1BD—N1BD | −154.2 (15) |
C2A—C3A—C4A—C5A | −1.6 (4) | O1BD—C1BD—N1BD—C3BD | 22 (3) |
Ni2—O1B—C1B—O2B | 6.94 (19) | O1BD—C1BD—N1BD—C2BD | −172 (3) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1/2, −y+3/2, z+1/2; (iii) −x+1/2, y−1/2, −z+1/2; (iv) −x+1, −y, −z+1; (v) x−1/2, −y+3/2, z−1/2; (vi) −x+1/2, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1C—H1C···O1A | 0.93 | 2.33 | 2.893 (3) | 119 |
C2C—H2CB···O1Bvii | 0.96 | 2.56 | 3.367 (5) | 143 |
C1AD—H1AD···O2B | 0.93 | 2.49 | 3.013 (7) | 116 |
C2AD—H2DE···O1Bviii | 0.96 | 2.39 | 3.089 (8) | 130 |
C2BD—H2DG···O1Bviii | 0.96 | 2.39 | 2.981 (10) | 119 |
Symmetry codes: (vii) −x+3/2, y+1/2, −z+1/2; (viii) x+1/2, −y+1/2, z+1/2. |
Acknowledgements
This work is part of the PhD thesis of CAC (University of KTH) on Hybrid Materials for lithium batteries. The authors acknowledge the organizers of the 1st LACA School on Small Molecule Crystallography (Latin American Crystallographic Association) in Montevideo, Uruguay, for providing access to the single-crystal and powder X-ray diffractometers used to determine this structure.
Funding information
Funding for this research was provided by: ASDI (Swedish International Development Agency); KHT (Royal Institute of Technology) University, Department of Applied Electrochemistry; UMSA (Universidad Mayor de San Andrés), Departament of Inorganic Chemistry and Materials Science/Advanced Materials, IIQ Chemical Research Institute; PEDECIBA Química (Uruguay) (grant to L. Suescun).
References
Batten, S. R., Champness, N. R., Chen, X.-M., Garcia-Martinez, J., Kitagawa, S., Öhrström, L., O'Keeffe, M., Paik Suh, M. & Reedijk, J. (2013). Pure Appl. Chem. 85, 1715–1724. Web of Science CrossRef CAS Google Scholar
Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, W.-X., Zhuang, G.-L., Zhao, H.-X., Long, L.-S., Huang, R.-B. & Zheng, L.-S. (2011). Dalton Trans. 40, 10237–10241. Web of Science CSD CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Igoa, F., Peinado, G., Suescun, L., Kremer, C. & Torres, J. (2019). J. Solid State Chem. In the Press. Google Scholar
Jeevadason, W. A., Murugavel, K. & Neelakantan, M. A. (2014). Renew. Sustain. Energy Rev. 36, 220–227. Google Scholar
Kara, D. A., Donmez, A., Kara, H. & Coban, M. B. (2018). Acta Cryst. C74, 901–906. Web of Science CSD CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Maiti, S., Pramanik, A., Manju, U. & Mahanty, S. (2015). Appl. Mater. Interfaces, 7, 16357–16363. Web of Science CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816. Google Scholar
Mesbah, A., Rabu, P., Sibille, R., Lebègue, S., Mazet, T., Malaman, B. & François, M. (2014). Inorg. Chem. 53, 872–881. Web of Science CSD CrossRef CAS PubMed Google Scholar
Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shin, J., Kim, M., Cirera, J., Chen, S., Halder, G. J., Yersak, T. A., Paesani, F., Cohen, S. F. & Meng, J. S. (2015). J. Mater. Chem. A, 7, 4259–4290. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tian, B., Ning, G.-H., Gao, Q., Tan, L.-M., Tang, W., Chen, Z., Su, C. & Loh, K. P. (2016). Appl. Mater. Interfaces, 8, 31067–31075. Web of Science CSD CrossRef CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. The University of Western Australia. Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yan, L., Li, R., Shen, W. & Qi, Z. (2018). J. Lumin. 194, 151–155. Web of Science CrossRef CAS Google Scholar
Zhang, J., Xu, L. & Wong, W. Y. (2018). Coord. Chem. Rev. 355, 180–198. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.