research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of poly[tris­­(μ4-benzene-1,4-di­carboxyl­ato)tetra­kis­(di­methyl­formamide)­trinickel(II)]: a two-dimensional coordination network

CROSSMARK_Color_square_no_text.svg

aDepartament of Inorganic Chemistry and Materials Science/Advanced Materials, IIQ Chemical Research Institute, UMSA Universidad Mayor de San Andres, La Paz, Bolivia, bCryssmat-Lab/DETEMA, Facultad de Quimica, Universidad de la Republica, Montevideo, Uruguay, cDivision of Safety and Transport/Electronics, RISE, Research Institutes of Sweden, SE-50462 Borås, Sweden, and dDepartment of Chemical Engineering, Applied Electrochemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
*Correspondence e-mail: cesario.ajpi@gmail.com, leopoldo@fq.edu.uy, saulcabreram@hotmail.com

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 19 September 2019; accepted 29 October 2019; online 8 November 2019)

The crystal structure of the title compound, [Ni3(C8H4O4)3(C3H7NO)4], is a two-dimensional coordination network formed by trinuclear linear Ni3(tp)3(DMF)4 units (tp = terephthalate = benzene-1,4-di­carboxyl­ate and DMF = di­methyl­formamide) displaying a characteristic coordination mode of acetate groups in polynuclear metal–organic compounds. Individual trinuclear units are connected through tp anions in a triangular network that forms layers. One of the DMF ligands points outwards and provides inter­actions with equivalent planes above and below, leaving the second ligand in a structural void much larger than the DMF mol­ecule, which shows positional disorder. Parallel planes are connected mainly through weak C—H⋯O, H⋯H and H⋯C inter­actions between DMF mol­ecules, as shown by Hirshfeld surface analysis.

1. Chemical context

Extended hybrid organic–inorganic materials composed by transition metals and bridging carboxyl­ates are inter­esting compounds that include the well-known metal–organic frameworks (MOFs), coordination polymers (CP) and coord­ination networks (CN) (Batten et al., 2013[Batten, S. R., Champness, N. R., Chen, X.-M., Garcia-Martinez, J., Kitagawa, S., Öhrström, L., O'Keeffe, M., Paik Suh, M. & Reedijk, J. (2013). Pure Appl. Chem. 85, 1715-1724.]). In the last decade, much of the research into this kind of compounds has focused in the design of materials looking for tunability of potential industrial applications such as lithium-ion batteries (Shin et al., 2015[Shin, J., Kim, M., Cirera, J., Chen, S., Halder, G. J., Yersak, T. A., Paesani, F., Cohen, S. F. & Meng, J. S. (2015). J. Mater. Chem. A, 7, 4259-4290.]; Maiti et al., 2015[Maiti, S., Pramanik, A., Manju, U. & Mahanty, S. (2015). Appl. Mater. Interfaces, 7, 16357-16363.]; Tian et al., 2016[Tian, B., Ning, G.-H., Gao, Q., Tan, L.-M., Tang, W., Chen, Z., Su, C. & Loh, K. P. (2016). Appl. Mater. Interfaces, 8, 31067-31075.]), substitutes for dye-sensitized solar cells (DSSCs) (Zhang et al., 2018[Zhang, J., Xu, L. & Wong, W. Y. (2018). Coord. Chem. Rev. 355, 180-198.]; Yan et al., 2018[Yan, L., Li, R., Shen, W. & Qi, Z. (2018). J. Lumin. 194, 151-155.]; Jeevadason et al., 2014[Jeevadason, W. A., Murugavel, K. & Neelakantan, M. A. (2014). Renew. Sustain. Energy Rev. 36, 220-227.]), luminescent compounds (Kara et al., 2018[Kara, D. A., Donmez, A., Kara, H. & Coban, M. B. (2018). Acta Cryst. C74, 901-906.]; Igoa et al., 2019[Igoa, F., Peinado, G., Suescun, L., Kremer, C. & Torres, J. (2019). J. Solid State Chem. In the Press.]) and magnetic materials (Mesbah et al., 2014[Mesbah, A., Rabu, P., Sibille, R., Lebègue, S., Mazet, T., Malaman, B. & François, M. (2014). Inorg. Chem. 53, 872-881.]) among others. In the search for new extended hybrid materials based on Ni and terephthalate (terephthalate = tp = benzene-1,4-di­carboxyl­ate), the title compound [Ni3(C8H4O4)3(C3H7NO)4] was synthesized by a solvothermal process in di­methyl­formamide (DMF) and is currently under study for application as an anode material in lithium-ion batteries. In order to perform an adequate structure–property correlation, the crystal structure of the compound was determined and supra­molecular features of potential inter­est for understanding Li-ion inter­calation and migration were analysed using the Hirshfeld surface (HS).

[Scheme 1]

2. Structural commentary

The title compound is a two-dimensional coordination polymer formed by linear trinuclear centrosymmetric Ni3(tp)3(DMF)4 units connected through tp anions, which crystallizes in the monoclinic P21/c space group. Two distinct hexa­coordinated Ni2+ cations (Ni1 in a special position with occupancy factor 0.5), two DMF ligands and two tp anions (anion B in a special position with occupancy factor 0.5) exist in the asymmetric unit (Fig. 1[link]). The central Ni atom, located on an inversion centre, displays an octa­hedral coord­ination to O atoms from three pairs of carboxyl­ate units belonging to three symmetry-related tp anions with Ni1—O bond distances in the range 2.0205 (14)–2.0868 (14) Å and a maximum deviation of 4.85° from the expected O—Ni1—O octa­hedral bond angles. The two terminal Ni2 cations also coordinate the carboxyl­ate units of three symmetry-related tp units, one of them in bidentate mode, and two independent di­methyl­formamide ligands (one of them showing positional disorder) in a significantly distorted octa­hedron (Fig. 2[link]). Ni2—O bond distances are in the range 2.0090 (15)–2.0791 (15) Å for terephthalate and 2.042 (12)–2.1853 (16) Å for DMF oxygen atoms respectively (including the lower occupancy disordered ligands). The O1B—Ni2—O2B angle of 61.52 (6)° corresponding to a tridentate carboxyl­ate, acting as bidentate towards Ni2, is very far away for the expected octa­hedral 90° angle. However, the coord­in­ation is still octa­hedral since O1B, O2B, O1C and O3A form a clear equatorial plane with Ni deviating by just 0.1202 (7) Å from the plane and the rest of the equatorial bond angles [O2B—Ni2—O3A = 99.18 (6), O3A—Ni2—O1C = 99.13 (7) and O1C—Ni2—O1B = 98.91 (7)°] are increased by about 10° to compensate for the very small angle from the bidentate ligand (O3A is in position [1\over2] + x, [3\over2] − y, [1\over2] + z). Additionally the two apical atoms O1A and O1D lie 2.026 (6) and 2.1269 (16) Å, respectively, from the equatorial plane, forming an O1BD—Ni2—O1A angle of 176.0 (6)°. The carboxyl­ate that is bidentate towards Ni2 is also monodentate towards Ni1, with the O2B atom being the link between corner-sharing Ni1 and Ni2 octa­hedra, which explains the longer Ni—O2B bond distances of 2.0868 (14) and 2.0791 (15) Å to Ni1 and Ni2 respectively, compared with all other Ni—Otp bond distances (see Fig. 2[link]). The trinuclear octa­hedral arrangement with the three Ni atoms coordinated exclusively by O has only been observed in one 1,3-benzene­dicarboxyl­ate catena-[bis­(μ4-isophthalato)bis­(μ3-isophthalato)trinickel(II) bis­(3-ethyl-1-methyl-1H-imidazol-3-ium)] (Chen et al., 2011[Chen, W.-X., Zhuang, G.-L., Zhao, H.-X., Long, L.-S., Huang, R.-B. & Zheng, L.-S. (2011). Dalton Trans. 40, 10237-10241.]) where the Ni cations are connected through the same number and coordination modes of carboxyl­ate moieties. In that compound, however, two additional carboxyl­ates complete the coordination spheres of the terminal Ni cations, instead of DMF mol­ecules, giving a three-dimensional connected network. Ni1⋯Ni2 distances of 3.4414 (4) Å are observed, also found in the 1,2-benzene­dicarboxyl­ate (Nicentral⋯Niterminal = 3.442 Å). This coordination mode is frequently found in other trinuclear transition metal carboxyl­ates, with and without different ligands bonded to the terminal cations.

[Figure 1]
Figure 1
ORTEP model view of the asymmetric unit of [Ni3(C8H4O4)3(C3H7NO)4]. Displacement ellipsoids are represented at the 50% probability level. Atoms completing the connectivity of those in the asymmetric unit and half symmetry-equivalent tp anion are shown as coloured spheres of arbitrary radii. Only one position of the disordered DMF ligand is shown for clarity.
[Figure 2]
Figure 2
One trinuclear unit of [Ni3(C8H4O4)3(C3H7NO)4] highlighting the coordination polyhedra around each Ni atom and the coordination modes of the tp anions. Only one position of the disordered DMF ligand is shown and H atoms are omitted for clarity.

Each terephthalate ion links two nearby trinuclear units forming a slightly distorted two-dimensional hexa­gonal arrangement along the crystallographic (10[\overline{1}]) plane as shown in Fig. 3[link]. Since the central Ni atom (Ni1) of the trinuclear arrangement is located at (0, 0, 0) and equivalent (½, ½, ½) coordinates, the hexa­gonal arrangement shows a 2 + 4 distance pattern with two opposite nearby units at 9.6335 (11) Å (equal to the b-axis length) and four at 10.1407 (9) Å (equal to half of the short body diagonal of the unit cell) defining isosceles triangles with one small [56.718 (8)°] and two larger [(61.641 (4)°] angles. The tp anions link nearby units in two different modes. The longest inter­unit distance corresponds to tp anions connecting the top or bottom parts of the unit, parallel to the plane (terephthalate anion A), while the shorter distance corresponds to a tp unit that is located over a centre of symmetry (anion B), which connects the top/bottom part of one unit to the bottom/top part of the next unit. This diagonal connection produces a tilt in the linear trinuclear units that are rotated by 11.82° from the normal to the plane of the network, in a direction slightly away from the b axis.

[Figure 3]
Figure 3
One plane of [Ni3(C8H4O4)3(C3H7NO)4] showing the hexa­gonal arrangement of equivalent units with slightly distorted distances. The tilt of the trinuclear octa­hedral units is also visible. H atoms and disordered positions of the DMF ligand have been omitted for clarity.

The ordered DMF mol­ecules (labelled C) point outwards at both sides of the planes providing a polar surface that allows for the inter­action of parallel planes of the coordination polymer. The disordered DMF ligands (labelled D) occupy part of the void space between consecutive planes (see Section 3) and were modelled over three different positions rotated by 180° and displaced respectively, which strongly suggests that both static and dynamic disorder are present.

3. Supra­molecular features and Hirshfeld surface analysis

Parallel planes do not stack in a typical hexa­gonal arrangement, where a layer projects over the voids of the poly[tris­(μ4-benzene-1,4-di­carboxyl­ato)tetra­kis­(di­methyl­formamide)­trinickel(II)], but in this case one layer projects over the center of the short inter-unit distance of the next layer, or is shifted by half of the b-axis length. This is again a consequence of the position of the Ni1 atoms at the corners and the centre of the unit cell, forming planes along (10[\overline{1}]). Fig. 4[link]a shows two parallel planes along the [10[\overline1]] direction (compare with Fig. 3[link]) where it is shown that the projection of one plane falls away from the voids in the next one. Fig. 4[link]b shows the same two planes along the [010] direction where the relative position of the ordered DMF ligands in consecutive layers is shown.

[Figure 4]
Figure 4
(a) View of two planes of the [Ni3(C8H4O4)3(C3H7NO)4] coordination polymer along [10[\overline{1}]] showing that the projection of one plane is shifted by b/2 with respect to the next one and (b) the same two planes projected along [010] showing the relative position of ordered and disordered DMF mol­ecules with respect to the planes.

In order to visualize the inter­planar inter­actions, Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was performed by using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. The University of Western Australia.]). In the HS plotted over dnorm (Fig. 5[link]), the white surfaces indicate contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distant contact) than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625-636.]). Since bonds from Ni1 to O atoms and from C2B and C4B to C atoms are not included in the asymmetric unit, bright-red spots appear over them. The following stronger short contacts shown as light-red spots correspond to weak C—H⋯O hydrogen bonds shown in Table 1[link]. It is inter­esting to note that the ordered DMF-C mol­ecule shows one intra­molecular C1C—H1C⋯O1A and one inter­planar C2C—H2CB⋯O1Bi hydrogen bond [symmetry code: (i) −x + [{3\over 2}], y + [{1\over 2}], −z + [{1\over 2}]]. The former limits the rotation of the DMF group and the latter the orientation. This fixes the DMF-C mol­ecules and provides the main inter­action between parallel network planes. The DMF-D mol­ecule, disordered over three positions, participates in no hydrogen bonds to the aldehyde carbon (C1D, C1AD or C1BD) but only to methyl H atoms, giving the mol­ecule rotational freedom. Additionally, the DMF mol­ecule is smaller than the void in which it sits, allowing for additional positional freedom. Removing DMF-C and DMF-D from the structural model, allowed the volume these mol­ecules occupy in the crystal structure to be calculated. The void-calculation routine in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) was used, with a probe radius of 1.2 Å (enough to place small monoatomic ions). Voids arising from removing DMF-C and DMF-D are 110.18 and 167.93 Å3 per mol­ecule, respectively (two of the voids are connected around [1\over4], −0.07, [3\over4] and [3\over4], −0.02, [1\over4] for DMF-C and 1/2,0.003,0 and 0,0.496,1/2 for DMF-D), again showing that the DMF-D mol­ecule is located over a much larger void than its own size, justifying the observation of positional disorder. Moreover, performing the same void calculation procedure using each of the DMF-D positions individually (as is the real case for each appearance of the mol­ecule in the crystal), it is observed that the highest occupied position of DMF-D leaves only 21.75 Å3 free volume per mol­ecule (in two smaller 10.88 Å3 voids) while DMF-AD and DMF-BD leave larger 53.1 and 37.7 Å3 voids, respectively. Besides the described hydrogen-bond inter­actions, contacts between H atoms from both DMF mol­ecules and neighbouring H, O and C atoms from surrounding DMF and tp anions dominate the inter­actions in the crystal structure, as depicted in Fig. 6[link], where the two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]) are shown. H⋯H inter­actions from the DMF ligands are the most relevant, covering 45% of the Hirshfeld surface The presence of voids and a significant number of weak inter­layer inter­actions may well explain the possibility of using this material for Li-ion batteries, as will be discussed elsewhere.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1C—H1C⋯O1A 0.93 2.33 2.893 (3) 119
C2C—H2CB⋯O1Bi 0.96 2.56 3.367 (5) 143
C1AD—H1AD⋯O2B 0.93 2.49 3.013 (7) 116
C2AD—H2DE⋯O1Bii 0.96 2.39 3.089 (8) 130
C2BD—H2DG⋯O1Bii 0.96 2.39 2.981 (10) 119
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 5]
Figure 5
View of the three-dimensional Hirshfeld surface of the title complex plotted over dnorm in the range −0.7548 to 1.5398 a.u.
[Figure 6]
Figure 6
Two-dimensional fingerprint plot of the total (a) (top left) and specific (b) O⋯H/H⋯O (top right), (c) H⋯H,(bottom left) and (d) C⋯H/H⋯C (bottom right) inter­actions in [Ni3(C8H4O4)3(C3H7NO)4]. Note that H⋯H inter­actions coming from the methyl residues of DMF ligands are dominant and define the most relevant inter­actions among consecutive layers of the compound.

4. Database survey

The May 2019 update of the CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains six coordination networks comprising Ni and a terephthalate anion as the sole linker; however, none of them contains only O in the coordination sphere. Additionally, there are eight trinuclear linear Ni compounds formed by carboxyl­ates and other oxygenated ligands, none of them coordination networks except for DAFHID (Chen et al., 2011[Chen, W.-X., Zhuang, G.-L., Zhao, H.-X., Long, L.-S., Huang, R.-B. & Zheng, L.-S. (2011). Dalton Trans. 40, 10237-10241.]), which is discussed above.

5. Synthesis and crystallization

The compound was synthesized by solvothermal method via reaction between NiCl2·6H2O (0.6143 g, 2.58 mmol), terephthalic acid (0.8587 g, 5.20 mmol) and N,N-di­methyl­formamide (DMF)(50 ml) as a solvent; the reactants were dissolved in DMF and transferred to a steel autoclave at 423 K for 24 h.

The green crystals were collected by filtration, washed several times with DMF and dried at 373 K (yield 0.7 mg, 70%). Elemental Analysis for Ni3(C8H4O4)3(C3H7NO)4 (Mr = 960.81). Calculated (%): C 45.00, H 4.20, N 5.83, Ni 18.33. Found: C44.95, H 4.21, N 5.85, Ni 18.22.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were placed at geometrically suitable positions and refined riding with Uiso(H) = 1.2 or 1.5 times the Ueq of the parent C atom. There are two sites occupied with N,N-di­methyl­formamide (DMF) mol­ecules; one of them showing disorder that was modelled in three different positions with relative occupancies of 0.502, 0.286 and 0.212. This causes C atoms from the DMF methyl groups to have very large thermal displacement parameters that required the use of similarity restraints to converge to reasonable values.

Table 2
Experimental details

Crystal data
Chemical formula [Ni3(C8H4O4)3(C3H7NO)4]
Mr 960.85
Crystal system, space group Monoclinic, P21/n
Temperature (K) 298
a, b, c (Å) 14.0309 (16), 9.6335 (11), 16.5804 (19)
β (°) 109.230 (5)
V3) 2116.1 (4)
Z 2
Radiation type Cu Kα
μ (mm−1) 2.18
Crystal size (mm) 0.18 × 0.14 × 0.08
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.657, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 21976, 4170, 3539
Rint 0.040
(sin θ/λ)max−1) 0.619
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.092, 1.04
No. of reflections 4170
No. of parameters 339
No. of restraints 353
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.52
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008) and VESTA (Momma & Izumi, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Poly[tris(µ4-benzene-1,4-dicarboxylato)tetrakis(dimethylformamide)trinickel(II)] top
Crystal data top
[Ni3(C8H4O4)3(C3H7NO)4]F(000) = 992
Mr = 960.85Dx = 1.508 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 14.0309 (16) ÅCell parameters from 9446 reflections
b = 9.6335 (11) Åθ = 3.6–72.4°
c = 16.5804 (19) ŵ = 2.18 mm1
β = 109.230 (5)°T = 298 K
V = 2116.1 (4) Å3Plate, green
Z = 20.18 × 0.14 × 0.08 mm
Data collection top
Bruker D8 Venture
diffractometer
4170 independent reflections
Radiation source: Incoatec microsource3539 reflections with I > 2σ(I)
Detector resolution: 10.25 pixels mm-1Rint = 0.040
/j and /w scansθmax = 72.5°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Krause, et al., 2015)
h = 1617
Tmin = 0.657, Tmax = 0.754k = 119
21976 measured reflectionsl = 2020
Refinement top
Refinement on F2353 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0499P)2 + 0.8233P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4170 reflectionsΔρmax = 0.28 e Å3
339 parametersΔρmin = 0.52 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

######################### VOID CALCULATED AFTER REMOVAL OF DMF-C (FROM PLATON) ========================================================================== Search for and Analysis of Solvent Accessible Voids in the Structure - Grid = 0.20 Ang., Probe Radius = 1.20 Ang., NStep = 6 ===============================================================================

:: Total Potential Solvent Area Vol 440.3 Ang**3 per Unit Cell Vol 2116.1 Ang**3 [20.8%]

Area #GridPoint VolPerc. Vol(A**3) X(av) Y(av) Z(av) Eigenvector(frac) Sig(Ang) ——————————————————————————- 1 30203[ 5658] 10 220[ 41.2] 0.250-0.068 0.750 1 0.125 1.000-0.231 3.00 2 0.245 0.677 1.000 1.85 3 1.000-0.310 0.187 1.20 2 30205[ 5658] 10 220[ 41.2] 0.750-0.018 0.250 1 0.158 1.000 0.025 2.91 2 -0.042 0.068 1.000 2.08 3 1.000-0.297 0.312 1.17

x y z Shortest Contacts within 4.5 Ang. (Excl. H) =============================================================================== 1 0.250-0.068 0.750 C2D 2.97; O1A 3.18; Ni2 3.31; O1B 3.66; O3A 3.72; C3BD 3.99; C2BD 4.06; C3A 4.29; O1AD 4.30; 2 0.750-0.018 0.250 Ni2 3.06; O1A 3.19; C2D 3.23; O3A 3.86; O1AD 3.89; O1D 4.02; O1BD 4.07; O1B 4.07; C2BD 4.31;

######################### VOID CALCULATED AFTER REMOVAL OF DMF-D (FROM PLATON) ============================================================================== Search for and Analysis of Solvent Accessible Voids in the Structure - Grid = 0.20 Ang., Probe Radius = 1.20 Ang., NStep = 6 ===============================================================================

:: Total Potential Solvent Area Vol 671.7 Ang**3 per Unit Cell Vol 2116.1 Ang**3 [31.7%]

Area #GridPoint VolPerc. Vol(A**3) X(av) Y(av) Z(av) Eigenvector(frac) Sig(Ang) ——————————————————————————- 1 46072[ 11117] 16 336[ 81.0] 0.500 0.003 0.000 1 -0.393 1.000 0.491 3.56 2 0.059-1.000 0.603 1.59 3 1.000 0.423 0.458 1.49 2 46084[ 11117] 16 336[ 81.0] 1.000 0.496 0.500 1 0.393 1.000-0.490 3.56 2 0.037 1.000 0.589 1.59 3 1.000-0.401 0.471 1.49

x y z Shortest Contacts within 4.5 Ang. (Excl. H) =============================================================================== 1 0.500 0.003 0.000 O3A 3.66; C4A 3.72; O1C 3.86; Ni2 4.37; C3A 4.46; 2 1.000 0.496 0.500 O3A 3.66; C4A 3.72; O1C 3.86; Ni2 4.37; C3A 4.46;

######################### VOID AROUND DMF-D (EXCLUDING DISORDERED POSITIONS AD AND BD) :: Total Potential Solvent Area Vol 43.5 Ang**3 per Unit Cell Vol 2116.1 Ang**3 [ 2.1%]

Area #GridPoint VolPerc. Vol(A**3) X(av) Y(av) Z(av) Eigenvector(frac) Sig(Ang) ——————————————————————————- 1 1492[ 5] 1 11[ 0.0] 0.368 0.018 0.206 1 -0.079-0.096 1.000 0.63 2 0.359 1.000 0.150 0.62 3 -1.000 0.684-0.306 0.59 2 1492[ 5] 1 11[ 0.0] 0.632-0.018 0.794 1 -0.082-0.079 1.000 0.63 2 0.358 1.000 0.144 0.62 3 -1.000 0.681-0.312 0.59 3 1492[ 5] 1 11[ 0.0] 0.868 0.482 0.706 1 -0.062 0.034 1.000 0.63 2 -0.381 1.000-0.132 0.62 3 -1.000-0.722-0.310 0.59 4 1491[ 5] 1 11[ 0.0] 0.132 0.518 0.294 1 -0.038-0.048 1.000 0.63 2 -0.394 1.000-0.103 0.62 3 -1.000-0.744-0.315 0.59

x y z Shortest Contacts within 4.5 Ang. (Excl. H) =============================================================================== 1 0.368 0.018 0.206 N1D 2.91; C5A 3.04; C4A 3.14; C3D 3.23; C7A 3.24; C2D 3.25; C1D 3.30; C6A 3.31; C4B 3.33; 2 0.632-0.018 0.794 N1D 2.91; C5A 3.04; C4A 3.15; C3D 3.23; C7A 3.24; C2D 3.24; C1D 3.30; C6A 3.31; C4B 3.33; 3 0.868 0.482 0.706 N1D 2.91; C5A 3.04; C4A 3.15; C3D 3.23; C7A 3.23; C2D 3.25; C1D 3.30; C6A 3.31; C4B 3.33; =========================================================================== 4 0.132 0.518 0.294 N1D 2.91; C5A 3.04; C4A 3.14; C3D 3.23; C7A 3.24; C2D 3.25; C1D 3.30; C6A 3.31; C4B 3.33;

######################### VOIDS AROUND DMF-AD (EXCLUDING DISORDERED POSITIONS D AND BD) :: Total Potential Solvent Area Vol 106.2 Ang**3 per Unit Cell Vol 2116.1 Ang**3 [ 5.0%]

Area #GridPoint VolPerc. Vol(A**3) X(av) Y(av) Z(av) Eigenvector(frac) Sig(Ang) ——————————————————————————- 1 5282[ 133] 2 39[ 1.0] 0.500 0.000 1.000 1 0.349-0.255 1.000 1.55 2 1.000-0.019 0.030 0.81 3 0.043 1.000 0.097 0.68 2 998[ 1] 0 7[ 0.0] 0.750 0.042 0.571 1 1.000-0.023-0.164 0.55 2 0.580-0.051 1.000 0.54 3 -0.020-1.000-0.017 0.52 3 5291[ 133] 2 39[ 1.0] 1.000 0.500 0.500 1 0.349 0.255 1.000 1.55 2 1.000 0.007 0.031 0.81 3 -0.037 1.000-0.097 0.68 4 998[ 1] 0 7[ 0.0] 0.250 0.458 0.071 1 1.000-0.017-0.170 0.55 2 0.587-0.046 1.000 0.54 3 -0.017-1.000-0.016 0.52 5 998[ 1] 0 7[ 0.0] 0.750 0.542 0.929 1 1.000-0.032-0.157 0.55 2 0.571-0.119 1.000 0.54 3 -0.038-1.000-0.042 0.52 6 998[ 1] 0 7[ 0.0] 0.250 0.958 0.429 1 1.000-0.024-0.169 0.55 2 0.587-0.002 1.000 0.54 3 -0.010-1.000 0.001 0.52 ===============================================================================

x y z Shortest Contacts within 4.5 Ang. (Excl. H) =============================================================================== 1 0.500 0.000 1.000 C3AD 3.20; O1AD 3.26; N1AD 3.29; C1AD 3.37; O3A 3.66; C4A 3.74; O1C 3.87; C2AD 4.26; Ni2 4.37; 2 0.750 0.042 0.571 C3B 2.91; C1AD 2.92; C6A 2.98; C2B 3.02; C2C 3.02; C5A 3.03; N1AD 3.08; C7A 3.13; C4A 3.21; 3 1.000 0.500 0.500 C3AD 3.20; O1AD 3.26; N1AD 3.29; C1AD 3.37; O3A 3.66; C4A 3.74; O1C 3.87; C2AD 4.26; Ni2 4.37; 4 0.250 0.458 0.071 C3B 2.91; C1AD 2.91; C6A 2.98; C2B 3.02; C2C 3.02; C5A 3.03; N1AD 3.08; C7A 3.13; C4A 3.21; 5 0.750 0.542 0.929 C3B 2.91; C1AD 2.92; C6A 2.98; C2B 3.02; C2C 3.02; C5A 3.03; N1AD 3.08; C7A 3.13; C4A 3.21; 6 0.250 0.958 0.429 C3B 2.91; C1AD 2.91; C6A 2.98; C2B 3.02; C2C 3.02; C5A 3.03; N1AD 3.07; C7A 3.13; C4A 3.21;

######################### VOIDS AROUND DMF-BD (EXCLUDING DISORDERED POSITIONS D AND BD) :: Total Potential Solvent Area Vol 75.4 Ang**3 per Unit Cell Vol 2116.1 Ang**3 [ 3.6%]

Area #GridPoint VolPerc. Vol(A**3) X(av) Y(av) Z(av) Eigenvector(frac) Sig(Ang) ——————————————————————————- 1 2589[ 15] 1 19[ 0.1] 0.766 0.088 0.618 1 -0.145 0.973 1.000 1.05 2 1.000 0.224 0.297 0.66 3 -0.110 1.000-0.356 0.60 2 2584[ 15] 1 19[ 0.1] 0.266 0.412 0.118 1 -0.139-0.965 1.000 1.05 2 1.000-0.242 0.289 0.66 3 0.123 1.000 0.358 0.59 3 2588[ 15] 1 19[ 0.1] 0.734 0.588 0.882 1 -0.143-0.973 1.000 1.05 2 1.000-0.230 0.294 0.66 3 0.114 1.000 0.358 0.60 4 2585[ 15] 1 19[ 0.1] 0.234 0.912 0.382 1 -0.147 0.967 1.000 1.05 2 1.000 0.207 0.304 0.66 3 -0.097 1.000-0.349 0.60

x y z Shortest Contacts within 4.5 Ang. (Excl. H) =============================================================================== 1 0.766 0.088 0.618 C7A 2.93; C1BD 2.93; C3B 2.97; C2A 3.09; C6A 3.13; N1BD 3.18; O1BD 3.21; C2B 3.38; C3A 3.40; 2 0.266 0.412 0.118 C1BD 2.93; C7A 2.93; C3B 2.97; C2A 3.09; C6A 3.13; N1BD 3.17; O1BD 3.21; C2B 3.38; C3A 3.41; 3 0.734 0.588 0.882 C7A 2.93; C1BD 2.93; C3B 2.97; C2A 3.09; C6A 3.13; N1BD 3.17; O1BD 3.21; C2B 3.38; C3A 3.40; 4 0.234 0.912 0.382 C1BD 2.93; C7A 2.93; C3B 2.97; C2A 3.09; C6A 3.13; N1BD 3.17; O1BD 3.21; C2B 3.39; C3A 3.41;

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.5000000.5000000.5000000.02455 (12)
Ni20.67419 (2)0.42716 (4)0.40049 (2)0.03009 (11)
O1A0.56051 (11)0.52816 (17)0.31290 (9)0.0386 (3)
C1A0.47483 (15)0.5613 (2)0.31483 (12)0.0318 (4)
O2A0.44086 (11)0.54372 (18)0.37410 (9)0.0406 (4)
C2A0.40430 (15)0.6317 (2)0.23606 (13)0.0350 (4)
O3A0.23759 (11)0.90569 (16)0.03005 (9)0.0380 (3)
C3A0.43627 (17)0.6769 (3)0.17032 (14)0.0453 (6)
H3A0.5023550.6599850.1725650.054*
O4A0.11253 (10)0.85882 (16)0.02142 (10)0.0384 (3)
C3B0.54232 (19)0.1105 (2)0.55325 (15)0.0435 (5)
H3B0.5704300.1845310.5891930.052*
C5A0.27238 (15)0.7701 (2)0.09543 (13)0.0340 (4)
C6A0.23995 (18)0.7236 (3)0.16061 (16)0.0550 (7)
H6A0.1733560.7382760.1576060.066*
C7A0.30498 (18)0.6555 (3)0.23020 (16)0.0568 (7)
H7A0.2818460.6252480.2737020.068*
C8A0.20106 (15)0.8513 (2)0.02281 (12)0.0315 (4)
C4A0.37147 (17)0.7469 (3)0.10111 (14)0.0445 (6)
H4A0.3948270.7786590.0580440.053*
O1B0.59907 (13)0.22615 (17)0.36814 (10)0.0447 (4)
C1B0.57649 (15)0.2365 (2)0.43443 (14)0.0349 (4)
O2B0.59547 (10)0.35001 (14)0.47735 (9)0.0323 (3)
C2B0.53512 (16)0.1155 (2)0.46820 (15)0.0364 (5)
C4B0.50778 (19)0.0046 (2)0.58491 (15)0.0438 (5)
H4B0.5132770.0078630.6423270.053*
O1C0.75142 (13)0.4275 (2)0.31558 (11)0.0528 (4)
C1C0.7187 (2)0.4691 (3)0.24174 (18)0.0558 (6)
H1C0.6642850.5299570.2284840.067*
N1C0.75234 (19)0.4370 (3)0.18062 (15)0.0567 (6)
C2C0.7109 (3)0.4958 (5)0.0954 (2)0.0936 (12)
H2CA0.6824640.4229500.0550910.140*
H2CB0.7635830.5413350.0804240.140*
H2CC0.6592340.5617830.0943160.140*
C3C0.8336 (4)0.3417 (6)0.1934 (3)0.1189 (17)
H3CA0.8801820.3519110.2503250.178*
H3CB0.8675870.3603710.1529300.178*
H3CC0.8076660.2486640.1855740.178*
O1D0.8014 (9)0.3151 (12)0.4826 (6)0.0530 (6)0.502 (2)
C1D0.8794 (4)0.3625 (6)0.5229 (3)0.0571 (10)0.502 (2)
H1D0.8976010.4439240.5015100.069*0.502 (2)
N1D0.9445 (4)0.3160 (7)0.5941 (3)0.0713 (9)0.502 (2)
C2D1.0427 (5)0.3755 (9)0.6322 (5)0.101 (2)0.502 (2)
H2DA1.0408100.4409320.6753260.151*0.502 (2)
H2DB1.0627110.4221240.5891590.151*0.502 (2)
H2DC1.0903170.3034140.6576480.151*0.502 (2)
C3D0.9207 (6)0.1915 (9)0.6338 (5)0.109 (2)0.502 (2)
H3DA0.8923580.1225270.5908070.164*0.502 (2)
H3DB0.8728140.2141630.6619180.164*0.502 (2)
H3DC0.9811930.1559160.6749380.164*0.502 (2)
O1AD0.7959 (15)0.317 (4)0.4743 (6)0.0530 (6)0.285 (3)
C1AD0.8215 (6)0.3181 (12)0.5491 (5)0.0587 (12)0.285 (3)
H1AD0.7749080.3537220.5726030.070*0.285 (3)
N1AD0.9073 (5)0.2759 (10)0.6039 (4)0.0713 (9)0.285 (3)
C2AD0.9272 (8)0.2782 (15)0.6944 (4)0.085 (3)0.285 (3)
H2DD0.9209080.3715410.7123220.127*0.285 (3)
H2DE0.9944680.2452010.7229920.127*0.285 (3)
H2DF0.8796670.2195750.7084300.127*0.285 (3)
C3AD0.9776 (7)0.1978 (14)0.5730 (6)0.090 (3)0.285 (3)
H3DD0.9417460.1255460.5351860.135*0.285 (3)
H3DE1.0291200.1573440.6205660.135*0.285 (3)
H3DF1.0080360.2590500.5428300.135*0.285 (3)
O1BD0.7929 (14)0.315 (4)0.4838 (9)0.0530 (6)0.213 (3)
C1BD0.8318 (6)0.3434 (18)0.5559 (6)0.0600 (13)0.213 (3)
H1BD0.7923210.3924230.5814590.072*0.213 (3)
N1BD0.9240 (5)0.3147 (15)0.6053 (5)0.0713 (9)0.213 (3)
C2BD0.9529 (10)0.343 (2)0.6968 (5)0.087 (3)0.213 (3)
H2DG1.0250640.3408400.7216070.131*0.213 (3)
H2DH0.9240060.2737420.7234330.131*0.213 (3)
H2DI0.9284620.4329670.7054830.131*0.213 (3)
C3BD1.0039 (7)0.2844 (19)0.5720 (7)0.081 (3)0.213 (3)
H3DG0.9760300.2680490.5116670.122*0.213 (3)
H3DH1.0396180.2032690.5996860.122*0.213 (3)
H3DI1.0495550.3617180.5824240.122*0.213 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0235 (2)0.0262 (2)0.0194 (2)0.00175 (17)0.00091 (16)0.00035 (17)
Ni20.02733 (18)0.0330 (2)0.02504 (18)0.00005 (13)0.00201 (13)0.00149 (14)
O1A0.0326 (7)0.0499 (9)0.0283 (7)0.0057 (7)0.0033 (6)0.0066 (7)
C1A0.0318 (10)0.0330 (10)0.0252 (9)0.0013 (8)0.0023 (8)0.0015 (8)
O2A0.0353 (8)0.0580 (10)0.0237 (7)0.0064 (7)0.0032 (6)0.0076 (7)
C2A0.0322 (10)0.0405 (11)0.0268 (9)0.0038 (9)0.0024 (8)0.0043 (9)
O3A0.0362 (7)0.0418 (8)0.0330 (7)0.0109 (6)0.0074 (6)0.0090 (6)
C3A0.0301 (10)0.0671 (16)0.0363 (11)0.0127 (10)0.0075 (9)0.0136 (11)
O4A0.0290 (7)0.0351 (8)0.0463 (8)0.0070 (6)0.0058 (6)0.0090 (7)
C3B0.0567 (14)0.0279 (11)0.0424 (12)0.0084 (10)0.0115 (10)0.0070 (9)
C5A0.0305 (10)0.0384 (11)0.0276 (9)0.0065 (8)0.0022 (8)0.0034 (8)
C6A0.0314 (11)0.086 (2)0.0464 (13)0.0138 (12)0.0116 (10)0.0248 (14)
C7A0.0384 (12)0.090 (2)0.0422 (13)0.0134 (13)0.0139 (10)0.0298 (14)
C8A0.0309 (10)0.0291 (10)0.0289 (9)0.0042 (8)0.0023 (8)0.0002 (8)
C4A0.0366 (11)0.0638 (16)0.0319 (11)0.0110 (11)0.0098 (9)0.0157 (11)
O1B0.0556 (9)0.0363 (8)0.0430 (9)0.0060 (7)0.0174 (7)0.0057 (7)
C1B0.0325 (10)0.0291 (10)0.0377 (11)0.0017 (8)0.0044 (8)0.0000 (9)
O2B0.0324 (7)0.0250 (7)0.0365 (7)0.0010 (6)0.0074 (6)0.0015 (6)
C2B0.0376 (11)0.0252 (10)0.0438 (11)0.0010 (8)0.0099 (9)0.0004 (9)
C4B0.0583 (14)0.0333 (12)0.0385 (11)0.0052 (10)0.0140 (10)0.0034 (10)
O1C0.0464 (9)0.0731 (12)0.0419 (9)0.0095 (8)0.0188 (7)0.0067 (9)
C1C0.0560 (14)0.0654 (16)0.0487 (13)0.0090 (12)0.0208 (11)0.0019 (12)
N1C0.0714 (14)0.0577 (13)0.0486 (12)0.0040 (11)0.0301 (11)0.0011 (10)
C2C0.110 (3)0.120 (3)0.0534 (18)0.020 (3)0.0299 (19)0.011 (2)
C3C0.149 (4)0.127 (4)0.109 (3)0.053 (3)0.080 (3)0.012 (3)
O1D0.0397 (12)0.0572 (10)0.0484 (10)0.0110 (9)0.0040 (9)0.0014 (14)
C1D0.0406 (16)0.0618 (18)0.0543 (17)0.0079 (16)0.0040 (15)0.0058 (17)
N1D0.0537 (15)0.0745 (15)0.0625 (13)0.0094 (13)0.0124 (12)0.0064 (13)
C2D0.067 (3)0.104 (4)0.097 (4)0.001 (3)0.021 (3)0.001 (4)
C3D0.094 (4)0.106 (4)0.093 (4)0.003 (3)0.015 (3)0.022 (3)
O1AD0.0397 (12)0.0572 (10)0.0484 (10)0.0110 (9)0.0040 (9)0.0014 (14)
C1AD0.0454 (19)0.065 (2)0.0521 (19)0.0110 (18)0.0028 (18)0.004 (2)
N1AD0.0537 (15)0.0745 (15)0.0625 (13)0.0094 (13)0.0124 (12)0.0064 (13)
C2AD0.077 (4)0.083 (4)0.070 (4)0.005 (4)0.009 (4)0.009 (4)
C3AD0.065 (4)0.095 (4)0.083 (4)0.015 (4)0.011 (4)0.004 (4)
O1BD0.0397 (12)0.0572 (10)0.0484 (10)0.0110 (9)0.0040 (9)0.0014 (14)
C1BD0.046 (2)0.065 (2)0.053 (2)0.0109 (19)0.0046 (19)0.004 (2)
N1BD0.0537 (15)0.0745 (15)0.0625 (13)0.0094 (13)0.0124 (12)0.0064 (13)
C2BD0.071 (4)0.092 (4)0.071 (4)0.001 (4)0.013 (4)0.007 (4)
C3BD0.061 (4)0.087 (4)0.074 (4)0.007 (4)0.008 (4)0.003 (4)
Geometric parameters (Å, º) top
Ni1—O2Ai2.0205 (14)N1C—C3C1.424 (5)
Ni1—O2A2.0206 (14)N1C—C2C1.454 (4)
Ni1—O4Aii2.0246 (14)C2C—H2CA0.9600
Ni1—O4Aiii2.0246 (14)C2C—H2CB0.9600
Ni1—O2Bi2.0868 (14)C2C—H2CC0.9600
Ni1—O2B2.0868 (14)C3C—H3CA0.9600
Ni2—O3Aii2.0090 (15)C3C—H3CB0.9600
Ni2—O1A2.0184 (15)C3C—H3CC0.9600
Ni2—O1C2.0399 (17)O1D—C1D1.171 (10)
Ni2—O1AD2.042 (12)C1D—N1D1.311 (4)
Ni2—O2B2.0791 (15)C1D—H1D0.9300
Ni2—O1BD2.081 (19)N1D—C2D1.432 (7)
Ni2—O1D2.146 (6)N1D—C3D1.460 (8)
Ni2—O1B2.1853 (16)C2D—H2DA0.9600
Ni2—C1B2.465 (2)C2D—H2DB0.9600
O1A—C1A1.255 (3)C2D—H2DC0.9600
C1A—O2A1.237 (3)C3D—H3DA0.9600
C1A—C2A1.514 (3)C3D—H3DB0.9600
C2A—C3A1.379 (3)C3D—H3DC0.9600
C2A—C7A1.384 (3)O1AD—C1AD1.171 (10)
O3A—C8A1.266 (3)C1AD—N1AD1.312 (4)
C3A—C4A1.383 (3)C1AD—H1AD0.9300
C3A—H3A0.9300N1AD—C2AD1.433 (7)
O4A—C8A1.237 (2)N1AD—C3AD1.461 (8)
C3B—C4B1.381 (3)C2AD—H2DD0.9600
C3B—C2B1.381 (3)C2AD—H2DE0.9600
C3B—H3B0.9300C2AD—H2DF0.9600
C5A—C6A1.378 (3)C3AD—H3DD0.9600
C5A—C4A1.380 (3)C3AD—H3DE0.9600
C5A—C8A1.506 (3)C3AD—H3DF0.9600
C6A—C7A1.379 (3)O1BD—C1BD1.171 (10)
C6A—H6A0.9300C1BD—N1BD1.312 (4)
C7A—H7A0.9300C1BD—H1BD0.9300
C4A—H4A0.9300N1BD—C3BD1.433 (7)
O1B—C1B1.244 (3)N1BD—C2BD1.461 (8)
C1B—O2B1.284 (3)C2BD—H2DG0.9600
C1B—C2B1.491 (3)C2BD—H2DH0.9600
C2B—C4Biv1.389 (3)C2BD—H2DI0.9600
C4B—H4B0.9300C3BD—H3DG0.9600
O1C—C1C1.225 (3)C3BD—H3DH0.9600
C1C—N1C1.288 (4)C3BD—H3DI0.9600
C1C—H1C0.9300
O2Ai—Ni1—O2A180.0C1B—O2B—Ni291.14 (13)
O2Ai—Ni1—O4Aii85.85 (7)C1B—O2B—Ni1131.39 (13)
O2A—Ni1—O4Aii94.15 (7)Ni2—O2B—Ni1111.40 (6)
O2Ai—Ni1—O4Aiii94.15 (7)C3B—C2B—C4Biv119.4 (2)
O2A—Ni1—O4Aiii85.85 (7)C3B—C2B—C1B120.3 (2)
O4Aii—Ni1—O4Aiii180.00 (12)C4Biv—C2B—C1B120.3 (2)
O2Ai—Ni1—O2Bi91.60 (6)C3B—C4B—C2Biv120.6 (2)
O2A—Ni1—O2Bi88.40 (6)C3B—C4B—H4B119.7
O4Aii—Ni1—O2Bi90.75 (6)C2Biv—C4B—H4B119.7
O4Aiii—Ni1—O2Bi89.25 (6)C1C—O1C—Ni2125.55 (17)
O2Ai—Ni1—O2B88.40 (6)O1C—C1C—N1C126.5 (3)
O2A—Ni1—O2B91.60 (6)O1C—C1C—H1C116.8
O4Aii—Ni1—O2B89.25 (6)N1C—C1C—H1C116.8
O4Aiii—Ni1—O2B90.75 (6)C1C—N1C—C3C121.3 (3)
O2Bi—Ni1—O2B180.00 (5)C1C—N1C—C2C122.6 (3)
O3Aii—Ni2—O1A97.00 (7)C3C—N1C—C2C116.1 (3)
O3Aii—Ni2—O1C99.13 (7)N1C—C2C—H2CA109.5
O1A—Ni2—O1C88.63 (7)N1C—C2C—H2CB109.5
O3Aii—Ni2—O1AD87.1 (9)H2CA—C2C—H2CB109.5
O1A—Ni2—O1AD171.6 (5)N1C—C2C—H2CC109.5
O1C—Ni2—O1AD83.4 (7)H2CA—C2C—H2CC109.5
O3Aii—Ni2—O2B99.18 (6)H2CB—C2C—H2CC109.5
O1A—Ni2—O2B99.20 (6)N1C—C3C—H3CA109.5
O1C—Ni2—O2B159.02 (7)N1C—C3C—H3CB109.5
O1AD—Ni2—O2B87.4 (9)H3CA—C3C—H3CB109.5
O3Aii—Ni2—O1BD85.9 (9)N1C—C3C—H3CC109.5
O1A—Ni2—O1BD176.0 (6)H3CA—C3C—H3CC109.5
O1C—Ni2—O1BD88.2 (7)H3CB—C3C—H3CC109.5
O2B—Ni2—O1BD83.0 (9)C1D—O1D—Ni2126.2 (8)
O3Aii—Ni2—O1D85.5 (3)O1D—C1D—N1D128.5 (7)
O1A—Ni2—O1D173.8 (4)O1D—C1D—H1D115.7
O1C—Ni2—O1D85.3 (5)N1D—C1D—H1D115.7
O2B—Ni2—O1D86.0 (5)C1D—N1D—C2D123.0 (5)
O3Aii—Ni2—O1B159.66 (6)C1D—N1D—C3D119.5 (5)
O1A—Ni2—O1B92.73 (7)C2D—N1D—C3D117.4 (4)
O1C—Ni2—O1B98.91 (7)N1D—C2D—H2DA109.5
O1AD—Ni2—O1B85.7 (10)N1D—C2D—H2DB109.5
O2B—Ni2—O1B61.52 (6)H2DA—C2D—H2DB109.5
O1BD—Ni2—O1B85.4 (10)N1D—C2D—H2DC109.5
O1D—Ni2—O1B86.7 (4)H2DA—C2D—H2DC109.5
O3Aii—Ni2—C1B129.86 (7)H2DB—C2D—H2DC109.5
O1A—Ni2—C1B99.00 (7)N1D—C3D—H3DA109.5
O1C—Ni2—C1B128.35 (8)N1D—C3D—H3DB109.5
O1AD—Ni2—C1B83.8 (11)H3DA—C3D—H3DB109.5
O2B—Ni2—C1B31.38 (6)N1D—C3D—H3DC109.5
O1BD—Ni2—C1B81.1 (11)H3DA—C3D—H3DC109.5
O1D—Ni2—C1B83.6 (5)H3DB—C3D—H3DC109.5
O1B—Ni2—C1B30.28 (7)C1AD—O1AD—Ni2122.2 (11)
C1A—O1A—Ni2129.89 (14)O1AD—C1AD—N1AD128.4 (7)
O2A—C1A—O1A127.48 (18)O1AD—C1AD—H1AD115.8
O2A—C1A—C2A115.67 (18)N1AD—C1AD—H1AD115.8
O1A—C1A—C2A116.84 (18)C1AD—N1AD—C2AD122.6 (5)
C1A—O2A—Ni1135.62 (14)C1AD—N1AD—C3AD119.2 (5)
C3A—C2A—C7A118.32 (19)C2AD—N1AD—C3AD117.0 (4)
C3A—C2A—C1A122.19 (19)N1AD—C2AD—H2DD109.5
C7A—C2A—C1A119.46 (19)N1AD—C2AD—H2DE109.5
C8A—O3A—Ni2v121.68 (13)H2DD—C2AD—H2DE109.5
C2A—C3A—C4A120.9 (2)N1AD—C2AD—H2DF109.5
C2A—C3A—H3A119.5H2DD—C2AD—H2DF109.5
C4A—C3A—H3A119.5H2DE—C2AD—H2DF109.5
C8A—O4A—Ni1vi139.74 (14)N1AD—C3AD—H3DD109.5
C4B—C3B—C2B120.0 (2)N1AD—C3AD—H3DE109.5
C4B—C3B—H3B120.0H3DD—C3AD—H3DE109.5
C2B—C3B—H3B120.0N1AD—C3AD—H3DF109.5
C6A—C5A—C4A118.62 (19)H3DD—C3AD—H3DF109.5
C6A—C5A—C8A119.45 (19)H3DE—C3AD—H3DF109.5
C4A—C5A—C8A121.84 (19)C1BD—O1BD—Ni2124.0 (19)
C5A—C6A—C7A120.8 (2)O1BD—C1BD—N1BD128.4 (7)
C5A—C6A—H6A119.6O1BD—C1BD—H1BD115.8
C7A—C6A—H6A119.6N1BD—C1BD—H1BD115.8
C6A—C7A—C2A120.8 (2)C1BD—N1BD—C3BD122.5 (5)
C6A—C7A—H7A119.6C1BD—N1BD—C2BD119.2 (5)
C2A—C7A—H7A119.6C3BD—N1BD—C2BD117.0 (4)
O4A—C8A—O3A126.59 (18)N1BD—C2BD—H2DG109.5
O4A—C8A—C5A116.37 (18)N1BD—C2BD—H2DH109.5
O3A—C8A—C5A117.04 (18)H2DG—C2BD—H2DH109.5
C5A—C4A—C3A120.5 (2)N1BD—C2BD—H2DI109.5
C5A—C4A—H4A119.7H2DG—C2BD—H2DI109.5
C3A—C4A—H4A119.7H2DH—C2BD—H2DI109.5
C1B—O1B—Ni287.41 (13)N1BD—C3BD—H3DG109.5
O1B—C1B—O2B119.4 (2)N1BD—C3BD—H3DH109.5
O1B—C1B—C2B120.87 (19)H3DG—C3BD—H3DH109.5
O2B—C1B—C2B119.55 (19)N1BD—C3BD—H3DI109.5
O1B—C1B—Ni262.32 (12)H3DG—C3BD—H3DI109.5
O2B—C1B—Ni257.48 (10)H3DH—C3BD—H3DI109.5
C2B—C1B—Ni2169.32 (15)
Ni2—O1A—C1A—O2A3.0 (3)Ni2—O1B—C1B—C2B168.31 (18)
Ni2—O1A—C1A—C2A177.23 (14)O1B—C1B—O2B—Ni27.3 (2)
O1A—C1A—O2A—Ni116.3 (4)C2B—C1B—O2B—Ni2168.02 (17)
C2A—C1A—O2A—Ni1163.41 (16)O1B—C1B—O2B—Ni1113.0 (2)
O2A—C1A—C2A—C3A170.1 (2)C2B—C1B—O2B—Ni171.7 (2)
O1A—C1A—C2A—C3A9.7 (3)Ni2—C1B—O2B—Ni1120.27 (16)
O2A—C1A—C2A—C7A8.0 (3)C4B—C3B—C2B—C4Biv0.5 (4)
O1A—C1A—C2A—C7A172.2 (2)C4B—C3B—C2B—C1B177.2 (2)
C7A—C2A—C3A—C4A1.4 (4)O1B—C1B—C2B—C3B157.8 (2)
C1A—C2A—C3A—C4A176.8 (2)O2B—C1B—C2B—C3B17.4 (3)
C4A—C5A—C6A—C7A0.1 (4)Ni2—C1B—C2B—C3B53.4 (9)
C8A—C5A—C6A—C7A176.5 (3)O1B—C1B—C2B—C4Biv19.9 (3)
C5A—C6A—C7A—C2A0.3 (5)O2B—C1B—C2B—C4Biv164.9 (2)
C3A—C2A—C7A—C6A0.4 (5)Ni2—C1B—C2B—C4Biv124.3 (8)
C1A—C2A—C7A—C6A177.8 (3)C2B—C3B—C4B—C2Biv0.5 (4)
Ni1vi—O4A—C8A—O3A42.2 (4)Ni2—O1C—C1C—N1C159.3 (2)
Ni1vi—O4A—C8A—C5A137.12 (18)O1C—C1C—N1C—C3C1.8 (6)
Ni2v—O3A—C8A—O4A24.2 (3)O1C—C1C—N1C—C2C177.7 (3)
Ni2v—O3A—C8A—C5A155.13 (14)Ni2—O1D—C1D—N1D153.1 (8)
C6A—C5A—C8A—O4A7.5 (3)O1D—C1D—N1D—C2D172.9 (11)
C4A—C5A—C8A—O4A175.9 (2)O1D—C1D—N1D—C3D2.2 (15)
C6A—C5A—C8A—O3A171.9 (2)Ni2—O1AD—C1AD—N1AD165.3 (13)
C4A—C5A—C8A—O3A4.7 (3)O1AD—C1AD—N1AD—C2AD177 (3)
C6A—C5A—C4A—C3A0.8 (4)O1AD—C1AD—N1AD—C3AD10 (3)
C8A—C5A—C4A—C3A177.4 (2)Ni2—O1BD—C1BD—N1BD154.2 (15)
C2A—C3A—C4A—C5A1.6 (4)O1BD—C1BD—N1BD—C3BD22 (3)
Ni2—O1B—C1B—O2B6.94 (19)O1BD—C1BD—N1BD—C2BD172 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x+1, y, z+1; (v) x1/2, y+3/2, z1/2; (vi) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1C—H1C···O1A0.932.332.893 (3)119
C2C—H2CB···O1Bvii0.962.563.367 (5)143
C1AD—H1AD···O2B0.932.493.013 (7)116
C2AD—H2DE···O1Bviii0.962.393.089 (8)130
C2BD—H2DG···O1Bviii0.962.392.981 (10)119
Symmetry codes: (vii) x+3/2, y+1/2, z+1/2; (viii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This work is part of the PhD thesis of CAC (University of KTH) on Hybrid Materials for lithium batteries. The authors acknowledge the organizers of the 1st LACA School on Small Mol­ecule Crystallography (Latin American Crystallographic Association) in Montevideo, Uruguay, for providing access to the single-crystal and powder X-ray diffractometers used to determine this structure.

Funding information

Funding for this research was provided by: ASDI (Swedish International Development Agency); KHT (Royal Institute of Technology) University, Department of Applied Electrochemistry; UMSA (Universidad Mayor de San Andrés), Departament of Inorganic Chemistry and Materials Science/Advanced Materials, IIQ Chemical Research Institute; PEDECIBA Química (Uruguay) (grant to L. Suescun).

References

First citationBatten, S. R., Champness, N. R., Chen, X.-M., Garcia-Martinez, J., Kitagawa, S., Öhrström, L., O'Keeffe, M., Paik Suh, M. & Reedijk, J. (2013). Pure Appl. Chem. 85, 1715–1724.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, W.-X., Zhuang, G.-L., Zhao, H.-X., Long, L.-S., Huang, R.-B. & Zheng, L.-S. (2011). Dalton Trans. 40, 10237–10241.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationIgoa, F., Peinado, G., Suescun, L., Kremer, C. & Torres, J. (2019). J. Solid State Chem. In the Press.  Google Scholar
First citationJeevadason, W. A., Murugavel, K. & Neelakantan, M. A. (2014). Renew. Sustain. Energy Rev. 36, 220–227.  Google Scholar
First citationKara, D. A., Donmez, A., Kara, H. & Coban, M. B. (2018). Acta Cryst. C74, 901–906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMaiti, S., Pramanik, A., Manju, U. & Mahanty, S. (2015). Appl. Mater. Interfaces, 7, 16357–16363.  Web of Science CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationMesbah, A., Rabu, P., Sibille, R., Lebègue, S., Mazet, T., Malaman, B. & François, M. (2014). Inorg. Chem. 53, 872–881.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShin, J., Kim, M., Cirera, J., Chen, S., Halder, G. J., Yersak, T. A., Paesani, F., Cohen, S. F. & Meng, J. S. (2015). J. Mater. Chem. A, 7, 4259–4290.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, B., Ning, G.-H., Gao, Q., Tan, L.-M., Tang, W., Chen, Z., Su, C. & Loh, K. P. (2016). Appl. Mater. Interfaces, 8, 31067–31075.  Web of Science CSD CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. The University of Western Australia.  Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, L., Li, R., Shen, W. & Qi, Z. (2018). J. Lumin. 194, 151–155.  Web of Science CrossRef CAS Google Scholar
First citationZhang, J., Xu, L. & Wong, W. Y. (2018). Coord. Chem. Rev. 355, 180–198.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds