research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1,4-bis­­[5-(2-meth­­oxy­phen­yl)-2H-tetra­zol-2-yl]butane

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
*Correspondence e-mail: leespy@chonnam.ac.kr, hrpark@chonnam.ac.kr

Edited by L. Fabian, University of East Anglia, England (Received 2 May 2019; accepted 4 November 2019; online 8 November 2019)

The title compound, C20H22N8O2, was synthesized by the coupling reaction of a sodium tetra­zolate salt and di­bromo­butane in a molar ratio of 2:1. The reaction can produce several possible regioisomers and the title compound was separated as the major product. The X-ray crystallographic study confirmed that the title compound crystallizes in the monoclinic P21/c space group and possesses a bridging butyl­ene group that connects two identical phenyl tetra­zole moieties. The butyl­ene group is attached not to the first but the second nitro­gen atoms of both tetra­zole rings. The dihedral angles between the phenyl groups and the adjacent tetra­zolyl rings are 5.32 (6) and 15.37 (7)°. In the crystal, the mol­ecules form centrosymmetric dimers through C—H⋯O hydrogen bonds between a C—H group of the butyl­ene linker and the O atom of a meth­oxy group.

1. Chemical context

Tetra­zole ligands have four nitro­gen atoms in their five-membered rings and the lone pairs of these nitro­gen atoms are useful for coordination bonds with metal ions (Zhao et al., 2008[Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84-100.]). Tetra­zole has a variety of binding modes with metal ions, which results in the unusual formation of high-dimensional metal–organic frameworks (MOFs) or coordination polymers (Karaghiosoff et al., 2009[Karaghiosoff, K., Klapötke, T. M. & Miró Sabaté, C. (2009). Chem. Eur. J. 15, 1164-1176.]; Liu et al., 2013[Liu, Z.-Y., Zou, H.-A., Hou, Z.-J., Yang, E.-C. & Zhao, X.-J. (2013). Dalton Trans. 42, 15716-15725.]). Valuable mono-, bis- and polytetra­zole ligands for the formation of MOFs and coordination polymers have been also reported (Boland et al., 2013[Boland, Y., Safin, D. A., Tinant, B., Babashkina, M. G., Marchand-Brynaert, J. & Garcia, Y. (2013). New J. Chem. 37, 1174-1179.]; Fan et al., 2016[Fan, J.-Z., Du, C.-C. & Wang, D.-Z. (2016). Polyhedron, 117, 487-495.]; Tăbăcaru et al., 2018[Tăbăcaru, A., Pettinari, C. & Galli, S. (2018). Coord. Chem. Rev. 372, 1-30.]; Zhao et al., 2016[Zhao, Y.-P., Li, Y., Cui, C.-Y., Xiao, Y., Li, R., Wang, S.-H., Zheng, F.-K. & Guo, G.-C. (2016). Inorg. Chem. 55, 7335-7340.]). As an extension of a project on the study of self-assembly behaviour in solution, we designed a di­tetra­zolyl chelate ligand possessing a butane bridge. It is worth noting that tetra­zole has two different resonance structures in which the hydrogen atoms are located at either the N1 or N2 positions. In many cases, this results in the formation of several products (Lee et al., 2017[Lee, S. G., Ryu, J. Y. & Lee, J. (2017). Acta Cryst. E73, 1971-1973.]). It is therefore essential to study the mol­ecular structure of synthesized tetra­zole complexes by X-ray crystallography.

[Scheme 1]

The title compound was isolated as an inter­mediate in the middle of the synthetic route for a chelate ligand. The reaction between the sodium salt of tetra­zole and 1,4-di­bromo­butane gave three isomeric products (Fig. 1[link]). Using column chromatography, the major product was isolated and its mol­ecular structure was determined unambiguously by X-ray crystallography. This compound is a useful precursor for the synthesis of dinuclear metal complexes with the expectation of synergetic effects of two metal centers (Fig. 2[link]). Herein, we report the synthesis and crystal structure of this compound.

[Figure 1]
Figure 1
Synthesis of the title compound (I)[link].
[Figure 2]
Figure 2
Synthetic route of the desired dinuclear metal complexes from the title compound (I)[link].

2. Structural commentary

The reaction yielded three isomeric products as described in Section 5, Synthesis and crystallization, and the structural analysis confirms the formation of the desired major product. The mol­ecular structure of the title compound is shown in Fig. 3[link]. There are no unusual bond lengths or angles. The title compound possesses two identical phenyl tetra­zole fragments, connected by a butyl (C17–C20) bridge. The butyl group is attached to the second N atom of both tetra­zole rings (N2 and N6, Fig. 3[link]). The dihedral angles between the phenyl group and tetra­zolyl ring are somewhat different in the two phenyl­tetra­zolyl groups. One phenyl­tetra­zolyl group (N1–N4/C1–C7) is almost planar with an angle of 5.32 (6)° between the mean planes of the rings. However, the other phenyl­tetra­zolyl group (N5–N8/C9–C15) is tilted with a dihedral angle of 15.37 (7)°.

[Figure 3]
Figure 3
A view of the mol­ecular structure of the title compound, with the atom labelling and 30% probability displacement ellipsoids.

Two intra­molecular C—H⋯N hydrogen bonds (Table 1[link]) occur, which are shown as yellow dashed lines in Fig. 4[link]. These inter­actions may contribute to the planarity of the phenyl­tetra­zolyl units.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯N4 0.95 2.48 2.8371 (16) 102
C15—H15⋯N8 0.95 2.53 2.8586 (17) 101
C17—H17A⋯O1i 0.99 2.58 3.4337 (15) 144
Symmetry code: (i) -x+2, -y+1, -z.
[Figure 4]
Figure 4
A plot showing the intra­molecular C—H⋯N hydrogen bonding (dashed yellow lines) and short contacts between mol­ecules (dashed pink, sky-blue and blue lines).

3. Supra­molecular features

The two phenyl­tetra­zolyl fragments exhibit different inter­molecular inter­actions. The tilted fragment (N5–N8/C9–C15) inter­acts with the butyl bridge of a glide-related mol­ecule through C19—H19A⋯C14ii [H⋯A = 2.812 (2) Å; symmetry code: (ii) x, −y + [{3\over 2}], z + [{1\over 2}]], C19—H19A⋯C15ii [H⋯A = 2.895 (2) Å] and C17—H17B⋯N8ii [H⋯A = 2.729 (2) Å] contacts (Fig. 4[link], pink dashed lines). There is an additional weak C14ii—H14ii⋯O2 inter­action [H⋯A = 2.624 (2) Å] between the same pair of mol­ecules, which is indicated by a sky-blue dashed line in Fig. 4[link]. The bridging butyl group forms a further C18—H18B⋯C5iii [H⋯C = 2.738 (2) Å; symmetry code: (iii) x, −y + [{1\over 2}], z − [{1\over 2}]] close contact (Fig. 4[link], red dashed line) with a mol­ecule generated by an adjacent glide plane. The planar fragments of screw-related mol­ecules form C4—H4⋯C1iv [H⋯A = 2.692 (2) Å; symmetry code: (iv) −x + 2, y − [{1\over 2}], −z + [{1\over 2}]] and C8—H8C⋯C7iv [H⋯A = 2.828 (2) Å] close contacts, which are indicated by blue dashed lines in the right-hand side of Fig. 4[link] (for clarity a different reference mol­ecule was used for the illustration of this contact). It is inter­esting that the C1 atom has another close C—H⋯C contact from the opposite side of the aromatic plane (Fig. 4[link], purple dashed lines), C16—H16A⋯C1v [H⋯C = 2.798 (2) Å; symmetry code: (v) −x + 1, y + [{1\over 2}], −z − [{1\over 2}]]. There is one notable close contact, C17—H17A⋯O1i that can be considered a weak hydrogen bond, which is indicated by green dashed line in Fig. 5[link]. This contact forms a dimeric rectangle between two mol­ecules. This rectangle extends in the c-axis direction by the short inter­actions described above.

[Figure 5]
Figure 5
A plot showing the short contacts between mol­ecules (dashed green and blue lines).

To provide an overall view of the weak inter­actions between the mol­ecules, a Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.]). The Hirshfeld surface was calculated using a standard (high) surface resolution with the three-dimensional (3D) dnorm surface plotted over a fixed colour scale of −0.1339 (red) to 1.4773 a.u. (blue). The 3D dnorm surface of the title complex is shown in Fig. 6[link]a and 6b. The red spots indicate short contacts, i.e., negative dnorm values on the surface, which highlight the most important weak inter­actions: C17—H17A⋯O1i hydrogen bond (green dashed line), C4—H4⋯C1iv contact (blue in Fig. 6[link]a), C18—H18B⋯C5iii (pink in Fig. 6[link]a, red in Fig. 6[link]b) and C16—H16A⋯C1v (blue in Fig. 6[link]b).

[Figure 6]
Figure 6
dnorm mapped on the Hirshfeld surface for visualizing the inter­molecular inter­actions.(a) front side, (b) back side.

4. Database survey

A search of the Cambridge Structural Database (CSD Version 5.40, November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for bis­(tetra­zol­yl)alkane fragments provided four hits with a methyl­ene bridge [SAVPAJ, SAVPIR (Freis et al., 2017[Freis, M., Klapötke, T. M., Stierstorfer, J. & Szimhardt, N. (2017). Inorg. Chem. 56, 7936-7947.]), OYIWOK02 (Feng, Qiu et al., 2016[Feng, Y.-A., Qiu, H., Yang, S.-A., Du, J. & Zhang, T.-L. (2016). Dalton Trans. 45, 17117-17122.]) and UMOJEN (Feng, Bi et al., 2016[Feng, Y., Bi, Y., Zhao, W. & Zhang, T. (2016). J. Mater. Chem. A, 4, 7596-7600.])] and two with a propyl­ene bridge (SIBFIV, SIBFUH; Wurzenberger et al., 2018[Wurzenberger, M. H. H., Szimhardt, N. & Stierstorfer, J. (2018). J. Am. Chem. Soc. 140, 3206-3209.]). The butyl­ene-bridged examples include a bis­tetra­zolyl copper complex (SIBGIW; Wurzenberger et al., 2018[Wurzenberger, M. H. H., Szimhardt, N. & Stierstorfer, J. (2018). J. Am. Chem. Soc. 140, 3206-3209.]) and three bis­(pyridyl­tetra­zol­yl)silver complexes (QOKBAV, QOKBEZ, QOKBID; Wang et al., 2014[Wang, X.-L., Li, N., Tian, A.-X., Ying, J., Li, T.-J., Lin, X.-L., Luan, J. & Yang, Y. (2014). Inorg. Chem. 53, 7118-7129.]). All of the above bis­(tetra­zol­yl)alkane structures are metal complexes. It is worth noting that inter­esting metal-free cyclic bis­tetra­zolyl compounds have been reported (VELPUZ, VELPOT; Voitekhovich et al., 2012[Voitekhovich, S. V., Lyakhov, A. S., Ivashkevich, L. S. & Gaponik, P. N. (2012). Tetrahedron Lett. 53, 6111-6114.]) in which the bis­(tetra­zol­yl)butane fragment is part of a ring.

5. Synthesis and crystallization

The synthesis scheme for the title compound is represented in Fig. 1[link]. The sodium salt of 5-(2-meth­oxy­phen­yl)-1H-tetra­zole (495 mg, 2.5 mmol) and di­bromo­butane (150 µl, 1.25 mmol) were dissolved in aceto­nitrile and refluxed for 2 d. The resulting white solid was filtered and the solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel using hexa­ne:acetone (1:1) as eluent. Three isomeric compounds were obtained, as shown in Fig. 1[link]. The major product (I)[link] (yield = 35%) was recrystallized in ethanol by the slow evaporation method and yielded colourless crystals of the title compound.

Spectroscopic data: 1H NMR (DMSO, 400 MHz): δ = 7.62 (t, 2H, Ph), 7.36 (d, 2H, Ph), 7.22 (d, 2H, Ph), 7.12 (t, 2H, Ph), 4.13 (s, 4H, CH2), 3.71 (s, 6H, OCH3), 1.66 (s, 4H, CH2). 13C NMR (125 MHz, DMSO): 156.56, 152.18, 133.10, 131.20, 120.80, 112.26, 111.91, 55.50, 46.63, 25.57 ppm.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were included in calculated positions using a riding model, with C—H = 0.95–1.00 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) for all others. Two reflections (100 and 110) were omitted because of truncation by the beamstop.

Table 2
Experimental details

Crystal data
Chemical formula C20H22N8O2
Mr 406.45
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 13.2904 (2), 10.2785 (2), 14.4968 (3)
β (°) 100.2538 (9)
V3) 1948.71 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.1 × 0.1 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.706, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 26494, 4008, 3516
Rint 0.021
(sin θ/λ)max−1) 0.627
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 1.05
No. of reflections 4008
No. of parameters 273
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.37
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

1,4-Bis[5-(2-methoxyphenyl)-2H-tetrazol-2-yl]butane top
Crystal data top
C20H22N8O2F(000) = 856
Mr = 406.45Dx = 1.385 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.2904 (2) ÅCell parameters from 9933 reflections
b = 10.2785 (2) Åθ = 2.5–26.4°
c = 14.4968 (3) ŵ = 0.10 mm1
β = 100.2538 (9)°T = 100 K
V = 1948.71 (6) Å3Block, colorless
Z = 40.1 × 0.1 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
3516 reflections with I > 2σ(I)
φ and ω scansRint = 0.021
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 26.5°, θmin = 2.4°
Tmin = 0.706, Tmax = 0.745h = 1616
26494 measured reflectionsk = 1212
4008 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0491P)2 + 0.7236P]
where P = (Fo2 + 2Fc2)/3
4008 reflections(Δ/σ)max = 0.001
273 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. 1. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups At 1.5 times of: All C(H,H,H) groups 2.a Secondary CH2 refined with riding coordinates: C18(H18A,H18B), C19(H19A,H19B), C17(H17A,H17B), C20(H20A,H20B) 2.b Aromatic/amide H refined with riding coordinates: C7(H7), C13(H13), C15(H15), C4(H4), C6(H6), C12(H12), C5(H5), C14(H14) 2.c Idealised Me refined as rotating group: C8(H8A,H8B,H8C), C16(H16A,H16B,H16C)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.95431 (7)0.24652 (8)0.11811 (6)0.0258 (2)
N10.86468 (7)0.47789 (10)0.06134 (7)0.0217 (2)
N20.81869 (8)0.58734 (10)0.02753 (7)0.0217 (2)
N50.60298 (7)0.58496 (10)0.44500 (7)0.0226 (2)
N60.68182 (8)0.51604 (10)0.40215 (7)0.0247 (2)
N40.77518 (8)0.57102 (11)0.15994 (7)0.0269 (2)
C30.92713 (9)0.26068 (12)0.20399 (8)0.0220 (3)
C10.83621 (8)0.46963 (11)0.14486 (8)0.0198 (2)
N30.76475 (8)0.64445 (11)0.08397 (7)0.0278 (2)
C90.62616 (9)0.59998 (12)0.52995 (8)0.0220 (2)
O20.46627 (8)0.77149 (12)0.51135 (6)0.0463 (3)
C100.56607 (9)0.67077 (12)0.60922 (8)0.0215 (2)
N80.71619 (9)0.54247 (13)0.53723 (8)0.0348 (3)
C70.83412 (9)0.38359 (12)0.30302 (8)0.0238 (3)
H70.79110.45470.31170.029*
C20.86647 (9)0.36911 (12)0.21675 (8)0.0207 (2)
C130.46290 (10)0.80750 (13)0.76430 (9)0.0284 (3)
H130.42800.85440.81690.034*
C180.74738 (9)0.55296 (12)0.13870 (8)0.0232 (3)
H18A0.67630.57280.13140.028*
H18B0.75960.45930.12510.028*
C190.75877 (9)0.57977 (12)0.23988 (8)0.0242 (3)
H19A0.73550.66920.25800.029*
H19B0.83140.57180.24640.029*
C150.59024 (9)0.65380 (12)0.69829 (8)0.0237 (3)
H150.64310.59470.70610.028*
C40.95664 (9)0.17429 (12)0.27783 (9)0.0268 (3)
H40.99830.10160.26960.032*
C60.86318 (10)0.29699 (13)0.37594 (9)0.0282 (3)
H60.84050.30850.43390.034*
N70.75068 (9)0.48940 (13)0.45441 (8)0.0366 (3)
C170.82070 (9)0.63252 (12)0.06795 (8)0.0240 (3)
H17A0.89090.62430.08140.029*
H17B0.80100.72550.07360.029*
C120.43688 (10)0.82663 (13)0.67683 (9)0.0299 (3)
H120.38440.88660.66980.036*
C110.48755 (10)0.75822 (13)0.59921 (8)0.0276 (3)
C81.00848 (10)0.13020 (13)0.10279 (10)0.0302 (3)
H8A1.02150.12940.03830.045*
H8B0.96730.05410.11290.045*
H8C1.07370.12750.14670.045*
C50.92583 (10)0.19321 (13)0.36327 (9)0.0289 (3)
H50.94780.13460.41350.035*
C200.69416 (10)0.48127 (13)0.30300 (8)0.0259 (3)
H20A0.72680.39460.29340.031*
H20B0.62590.47530.28490.031*
C140.53931 (10)0.72068 (13)0.77559 (8)0.0265 (3)
H140.55660.70710.83570.032*
C160.38052 (17)0.8497 (2)0.50095 (12)0.0780 (8)
H16A0.31950.81740.54280.117*
H16B0.39340.94000.51700.117*
H16C0.36970.84530.43590.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0290 (5)0.0251 (4)0.0246 (4)0.0063 (4)0.0083 (4)0.0012 (3)
N10.0245 (5)0.0214 (5)0.0190 (5)0.0009 (4)0.0038 (4)0.0011 (4)
N20.0242 (5)0.0221 (5)0.0186 (5)0.0009 (4)0.0035 (4)0.0003 (4)
N50.0233 (5)0.0256 (5)0.0184 (5)0.0025 (4)0.0024 (4)0.0011 (4)
N60.0260 (5)0.0293 (6)0.0184 (5)0.0058 (4)0.0030 (4)0.0014 (4)
N40.0316 (6)0.0290 (6)0.0208 (5)0.0073 (4)0.0070 (4)0.0029 (4)
C30.0189 (5)0.0251 (6)0.0217 (6)0.0028 (4)0.0029 (4)0.0003 (5)
C10.0183 (5)0.0222 (6)0.0186 (5)0.0020 (4)0.0024 (4)0.0023 (4)
N30.0332 (6)0.0288 (6)0.0227 (5)0.0071 (5)0.0082 (4)0.0018 (4)
C90.0234 (6)0.0241 (6)0.0185 (6)0.0016 (5)0.0037 (4)0.0030 (5)
O20.0503 (6)0.0703 (8)0.0190 (5)0.0395 (6)0.0080 (4)0.0032 (5)
C100.0227 (6)0.0234 (6)0.0181 (6)0.0002 (5)0.0024 (4)0.0010 (5)
N80.0351 (6)0.0489 (7)0.0212 (5)0.0174 (5)0.0067 (5)0.0042 (5)
C70.0229 (6)0.0275 (6)0.0208 (6)0.0020 (5)0.0032 (5)0.0014 (5)
C20.0192 (5)0.0233 (6)0.0188 (6)0.0028 (4)0.0015 (4)0.0004 (5)
C130.0335 (7)0.0285 (6)0.0214 (6)0.0001 (5)0.0000 (5)0.0046 (5)
C180.0253 (6)0.0254 (6)0.0188 (6)0.0001 (5)0.0040 (5)0.0036 (5)
C190.0268 (6)0.0267 (6)0.0193 (6)0.0018 (5)0.0047 (5)0.0038 (5)
C150.0265 (6)0.0242 (6)0.0213 (6)0.0004 (5)0.0067 (5)0.0012 (5)
C40.0221 (6)0.0264 (6)0.0313 (7)0.0007 (5)0.0030 (5)0.0052 (5)
C60.0283 (6)0.0363 (7)0.0200 (6)0.0044 (5)0.0047 (5)0.0025 (5)
N70.0370 (6)0.0523 (8)0.0214 (5)0.0202 (6)0.0075 (5)0.0051 (5)
C170.0292 (6)0.0245 (6)0.0189 (6)0.0004 (5)0.0062 (5)0.0041 (5)
C120.0311 (7)0.0320 (7)0.0254 (6)0.0100 (5)0.0019 (5)0.0018 (5)
C110.0293 (6)0.0345 (7)0.0187 (6)0.0067 (5)0.0035 (5)0.0008 (5)
C80.0318 (7)0.0250 (6)0.0356 (7)0.0057 (5)0.0107 (6)0.0010 (5)
C50.0259 (6)0.0338 (7)0.0256 (6)0.0028 (5)0.0008 (5)0.0098 (5)
C200.0304 (6)0.0292 (7)0.0174 (6)0.0015 (5)0.0026 (5)0.0046 (5)
C140.0335 (7)0.0288 (6)0.0177 (6)0.0033 (5)0.0060 (5)0.0005 (5)
C160.0869 (14)0.1223 (19)0.0290 (8)0.0798 (14)0.0218 (9)0.0134 (10)
Geometric parameters (Å, º) top
O1—C31.3644 (14)C18—H18A0.9900
O1—C81.4331 (15)C18—H18B0.9900
N1—N21.3315 (14)C18—C191.5262 (16)
N1—C11.3339 (15)C18—C171.5214 (17)
N2—N31.3179 (14)C19—H19A0.9900
N2—C171.4647 (14)C19—H19B0.9900
N5—N61.3243 (14)C19—C201.5232 (17)
N5—C91.3306 (15)C15—H150.9500
N6—N71.3166 (15)C15—C141.3843 (17)
N6—C201.4618 (15)C4—H40.9500
N4—C11.3619 (15)C4—C51.3858 (18)
N4—N31.3218 (15)C6—H60.9500
C3—C21.4069 (17)C6—C51.3854 (19)
C3—C41.3924 (17)C17—H17A0.9900
C1—C21.4719 (16)C17—H17B0.9900
C9—C101.4700 (16)C12—H120.9500
C9—N81.3555 (16)C12—C111.3945 (18)
O2—C111.3597 (15)C8—H8A0.9800
O2—C161.4242 (18)C8—H8B0.9800
C10—C151.3959 (16)C8—H8C0.9800
C10—C111.4043 (17)C5—H50.9500
N8—N71.3240 (16)C20—H20A0.9900
C7—H70.9500C20—H20B0.9900
C7—C21.4009 (16)C14—H140.9500
C7—C61.3833 (18)C16—H16A0.9800
C13—H130.9500C16—H16B0.9800
C13—C121.3864 (18)C16—H16C0.9800
C13—C141.3834 (18)
C3—O1—C8116.89 (10)C10—C15—H15119.1
N2—N1—C1101.66 (9)C14—C15—C10121.79 (11)
N1—N2—C17122.10 (10)C14—C15—H15119.1
N3—N2—N1114.36 (9)C3—C4—H4119.7
N3—N2—C17123.30 (10)C5—C4—C3120.67 (12)
N6—N5—C9101.65 (9)C5—C4—H4119.7
N5—N6—C20122.20 (10)C7—C6—H6120.4
N7—N6—N5114.48 (10)C7—C6—C5119.12 (11)
N7—N6—C20123.17 (10)C5—C6—H6120.4
N3—N4—C1106.28 (10)N6—N7—N8105.79 (10)
O1—C3—C2117.10 (10)N2—C17—C18110.45 (9)
O1—C3—C4123.32 (11)N2—C17—H17A109.6
C4—C3—C2119.58 (11)N2—C17—H17B109.6
N1—C1—N4111.73 (10)C18—C17—H17A109.6
N1—C1—C2126.98 (10)C18—C17—H17B109.6
N4—C1—C2121.26 (10)H17A—C17—H17B108.1
N2—N3—N4105.96 (10)C13—C12—H12119.9
N5—C9—C10126.72 (10)C13—C12—C11120.22 (12)
N5—C9—N8111.99 (10)C11—C12—H12119.9
N8—C9—C10121.28 (10)O2—C11—C10116.32 (11)
C11—O2—C16117.36 (11)O2—C11—C12123.66 (11)
C15—C10—C9118.61 (11)C12—C11—C10120.02 (11)
C15—C10—C11118.25 (11)O1—C8—H8A109.5
C11—C10—C9123.11 (10)O1—C8—H8B109.5
N7—N8—C9106.08 (10)O1—C8—H8C109.5
C2—C7—H7119.1H8A—C8—H8B109.5
C6—C7—H7119.1H8A—C8—H8C109.5
C6—C7—C2121.70 (12)H8B—C8—H8C109.5
C3—C2—C1123.62 (10)C4—C5—H5119.8
C7—C2—C3118.41 (11)C6—C5—C4120.45 (12)
C7—C2—C1117.97 (11)C6—C5—H5119.8
C12—C13—H13119.7N6—C20—C19112.38 (10)
C14—C13—H13119.7N6—C20—H20A109.1
C14—C13—C12120.50 (12)N6—C20—H20B109.1
H18A—C18—H18B107.8C19—C20—H20A109.1
C19—C18—H18A109.0C19—C20—H20B109.1
C19—C18—H18B109.0H20A—C20—H20B107.9
C17—C18—H18A109.0C13—C14—C15119.21 (11)
C17—C18—H18B109.0C13—C14—H14120.4
C17—C18—C19112.93 (10)C15—C14—H14120.4
C18—C19—H19A110.0O2—C16—H16A109.5
C18—C19—H19B110.0O2—C16—H16B109.5
H19A—C19—H19B108.4O2—C16—H16C109.5
C20—C19—C18108.39 (10)H16A—C16—H16B109.5
C20—C19—H19A110.0H16A—C16—H16C109.5
C20—C19—H19B110.0H16B—C16—H16C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···N40.952.482.8371 (16)102
C15—H15···N80.952.532.8586 (17)101
C17—H17A···O1i0.992.583.4337 (15)144
Symmetry code: (i) x+2, y+1, z.
 

Funding information

We acknowledge financial support from the Basic Science Research Program (2016R1D1A1B03930507 and 2019R1A2C1001989) and BRL Program (2015R1A4A1041036) through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT & Future Planning and Education.

References

First citationBoland, Y., Safin, D. A., Tinant, B., Babashkina, M. G., Marchand-Brynaert, J. & Garcia, Y. (2013). New J. Chem. 37, 1174–1179.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFan, J.-Z., Du, C.-C. & Wang, D.-Z. (2016). Polyhedron, 117, 487–495.  Web of Science CSD CrossRef CAS Google Scholar
First citationFeng, Y.-A., Qiu, H., Yang, S.-A., Du, J. & Zhang, T.-L. (2016). Dalton Trans. 45, 17117–17122.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFeng, Y., Bi, Y., Zhao, W. & Zhang, T. (2016). J. Mater. Chem. A, 4, 7596–7600.  Web of Science CSD CrossRef CAS Google Scholar
First citationFreis, M., Klapötke, T. M., Stierstorfer, J. & Szimhardt, N. (2017). Inorg. Chem. 56, 7936–7947.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKaraghiosoff, K., Klapötke, T. M. & Miró Sabaté, C. (2009). Chem. Eur. J. 15, 1164–1176.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLee, S. G., Ryu, J. Y. & Lee, J. (2017). Acta Cryst. E73, 1971–1973.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Z.-Y., Zou, H.-A., Hou, Z.-J., Yang, E.-C. & Zhao, X.-J. (2013). Dalton Trans. 42, 15716–15725.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTăbăcaru, A., Pettinari, C. & Galli, S. (2018). Coord. Chem. Rev. 372, 1–30.  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar
First citationVoitekhovich, S. V., Lyakhov, A. S., Ivashkevich, L. S. & Gaponik, P. N. (2012). Tetrahedron Lett. 53, 6111–6114.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, X.-L., Li, N., Tian, A.-X., Ying, J., Li, T.-J., Lin, X.-L., Luan, J. & Yang, Y. (2014). Inorg. Chem. 53, 7118–7129.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWurzenberger, M. H. H., Szimhardt, N. & Stierstorfer, J. (2018). J. Am. Chem. Soc. 140, 3206–3209.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84–100.  Web of Science CrossRef PubMed Google Scholar
First citationZhao, Y.-P., Li, Y., Cui, C.-Y., Xiao, Y., Li, R., Wang, S.-H., Zheng, F.-K. & Guo, G.-C. (2016). Inorg. Chem. 55, 7335–7340.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds