research communications
H-tetrazol-2-yl]butane
of 1,4-bis[5-(2-methoxyphenyl)-2aDepartment of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
*Correspondence e-mail: leespy@chonnam.ac.kr, hrpark@chonnam.ac.kr
The title compound, C20H22N8O2, was synthesized by the coupling reaction of a sodium tetrazolate salt and dibromobutane in a molar ratio of 2:1. The reaction can produce several possible regioisomers and the title compound was separated as the major product. The X-ray crystallographic study confirmed that the title compound crystallizes in the monoclinic P21/c and possesses a bridging butylene group that connects two identical phenyl tetrazole moieties. The butylene group is attached not to the first but the second nitrogen atoms of both tetrazole rings. The dihedral angles between the phenyl groups and the adjacent tetrazolyl rings are 5.32 (6) and 15.37 (7)°. In the crystal, the molecules form centrosymmetric dimers through C—H⋯O hydrogen bonds between a C—H group of the butylene linker and the O atom of a methoxy group.
1. Chemical context
Tetrazole ligands have four nitrogen atoms in their five-membered rings and the lone pairs of these nitrogen atoms are useful for coordination bonds with metal ions (Zhao et al., 2008). Tetrazole has a variety of binding modes with metal ions, which results in the unusual formation of high-dimensional metal–organic frameworks (MOFs) or coordination polymers (Karaghiosoff et al., 2009; Liu et al., 2013). Valuable mono-, bis- and polytetrazole ligands for the formation of MOFs and coordination polymers have been also reported (Boland et al., 2013; Fan et al., 2016; Tăbăcaru et al., 2018; Zhao et al., 2016). As an extension of a project on the study of self-assembly behaviour in solution, we designed a ditetrazolyl chelate ligand possessing a butane bridge. It is worth noting that tetrazole has two different resonance structures in which the hydrogen atoms are located at either the N1 or N2 positions. In many cases, this results in the formation of several products (Lee et al., 2017). It is therefore essential to study the molecular structure of synthesized tetrazole complexes by X-ray crystallography.
The title compound was isolated as an intermediate in the middle of the synthetic route for a chelate ligand. The reaction between the sodium salt of tetrazole and 1,4-dibromobutane gave three isomeric products (Fig. 1). Using the major product was isolated and its molecular structure was determined unambiguously by X-ray crystallography. This compound is a useful precursor for the synthesis of dinuclear metal complexes with the expectation of synergetic effects of two metal centers (Fig. 2). Herein, we report the synthesis and of this compound.
2. Structural commentary
The reaction yielded three isomeric products as described in Section 5, Synthesis and crystallization, and the structural analysis confirms the formation of the desired major product. The molecular structure of the title compound is shown in Fig. 3. There are no unusual bond lengths or angles. The title compound possesses two identical phenyl tetrazole fragments, connected by a butyl (C17–C20) bridge. The butyl group is attached to the second N atom of both tetrazole rings (N2 and N6, Fig. 3). The dihedral angles between the phenyl group and tetrazolyl ring are somewhat different in the two phenyltetrazolyl groups. One phenyltetrazolyl group (N1–N4/C1–C7) is almost planar with an angle of 5.32 (6)° between the mean planes of the rings. However, the other phenyltetrazolyl group (N5–N8/C9–C15) is tilted with a dihedral angle of 15.37 (7)°.
Two intramolecular C—H⋯N hydrogen bonds (Table 1) occur, which are shown as yellow dashed lines in Fig. 4. These interactions may contribute to the planarity of the phenyltetrazolyl units.
3. Supramolecular features
The two phenyltetrazolyl fragments exhibit different intermolecular interactions. The tilted fragment (N5–N8/C9–C15) interacts with the butyl bridge of a glide-related molecule through C19—H19A⋯C14ii [H⋯A = 2.812 (2) Å; symmetry code: (ii) x, −y + , z + ], C19—H19A⋯C15ii [H⋯A = 2.895 (2) Å] and C17—H17B⋯N8ii [H⋯A = 2.729 (2) Å] contacts (Fig. 4, pink dashed lines). There is an additional weak C14ii—H14ii⋯O2 interaction [H⋯A = 2.624 (2) Å] between the same pair of molecules, which is indicated by a sky-blue dashed line in Fig. 4. The bridging butyl group forms a further C18—H18B⋯C5iii [H⋯C = 2.738 (2) Å; symmetry code: (iii) x, −y + , z − ] close contact (Fig. 4, red dashed line) with a molecule generated by an adjacent glide plane. The planar fragments of screw-related molecules form C4—H4⋯C1iv [H⋯A = 2.692 (2) Å; symmetry code: (iv) −x + 2, y − , −z + ] and C8—H8C⋯C7iv [H⋯A = 2.828 (2) Å] close contacts, which are indicated by blue dashed lines in the right-hand side of Fig. 4 (for clarity a different reference molecule was used for the illustration of this contact). It is interesting that the C1 atom has another close C—H⋯C contact from the opposite side of the aromatic plane (Fig. 4, purple dashed lines), C16—H16A⋯C1v [H⋯C = 2.798 (2) Å; symmetry code: (v) −x + 1, y + , −z − ]. There is one notable close contact, C17—H17A⋯O1i that can be considered a weak hydrogen bond, which is indicated by green dashed line in Fig. 5. This contact forms a dimeric rectangle between two molecules. This rectangle extends in the c-axis direction by the short interactions described above.
To provide an overall view of the weak interactions between the molecules, a Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) was performed with CrystalExplorer17 (Turner et al., 2017). The Hirshfeld surface was calculated using a standard (high) surface resolution with the three-dimensional (3D) dnorm surface plotted over a fixed colour scale of −0.1339 (red) to 1.4773 a.u. (blue). The 3D dnorm surface of the title complex is shown in Fig. 6a and 6b. The red spots indicate short contacts, i.e., negative dnorm values on the surface, which highlight the most important weak interactions: C17—H17A⋯O1i hydrogen bond (green dashed line), C4—H4⋯C1iv contact (blue in Fig. 6a), C18—H18B⋯C5iii (pink in Fig. 6a, red in Fig. 6b) and C16—H16A⋯C1v (blue in Fig. 6b).
4. Database survey
A search of the Cambridge Structural Database (CSD Version 5.40, November 2018; Groom et al., 2016) for bis(tetrazolyl)alkane fragments provided four hits with a methylene bridge [SAVPAJ, SAVPIR (Freis et al., 2017), OYIWOK02 (Feng, Qiu et al., 2016) and UMOJEN (Feng, Bi et al., 2016)] and two with a propylene bridge (SIBFIV, SIBFUH; Wurzenberger et al., 2018). The butylene-bridged examples include a bistetrazolyl copper complex (SIBGIW; Wurzenberger et al., 2018) and three bis(pyridyltetrazolyl)silver complexes (QOKBAV, QOKBEZ, QOKBID; Wang et al., 2014). All of the above bis(tetrazolyl)alkane structures are metal complexes. It is worth noting that interesting metal-free cyclic bistetrazolyl compounds have been reported (VELPUZ, VELPOT; Voitekhovich et al., 2012) in which the bis(tetrazolyl)butane fragment is part of a ring.
5. Synthesis and crystallization
The synthesis scheme for the title compound is represented in Fig. 1. The sodium salt of 5-(2-methoxyphenyl)-1H-tetrazole (495 mg, 2.5 mmol) and dibromobutane (150 µl, 1.25 mmol) were dissolved in acetonitrile and refluxed for 2 d. The resulting white solid was filtered and the solvent was removed under reduced pressure. The residue was purified by on silica gel using hexane:acetone (1:1) as Three isomeric compounds were obtained, as shown in Fig. 1. The major product (I) (yield = 35%) was recrystallized in ethanol by the slow evaporation method and yielded colourless crystals of the title compound.
Spectroscopic data: 1H NMR (DMSO, 400 MHz): δ = 7.62 (t, 2H, Ph), 7.36 (d, 2H, Ph), 7.22 (d, 2H, Ph), 7.12 (t, 2H, Ph), 4.13 (s, 4H, CH2), 3.71 (s, 6H, OCH3), 1.66 (s, 4H, CH2). 13C NMR (125 MHz, DMSO): 156.56, 152.18, 133.10, 131.20, 120.80, 112.26, 111.91, 55.50, 46.63, 25.57 ppm.
6. Refinement
Crystal data, data collection and structure . All H atoms were included in calculated positions using a riding model, with C—H = 0.95–1.00 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) for all others. Two reflections (100 and 110) were omitted because of truncation by the beamstop.
details are summarized in Table 2Supporting information
https://doi.org/10.1107/S2056989019014877/fy2138sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019014877/fy2138Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019014877/fy2138Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989019014877/fy2138Isup4.cml
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C20H22N8O2 | F(000) = 856 |
Mr = 406.45 | Dx = 1.385 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 13.2904 (2) Å | Cell parameters from 9933 reflections |
b = 10.2785 (2) Å | θ = 2.5–26.4° |
c = 14.4968 (3) Å | µ = 0.10 mm−1 |
β = 100.2538 (9)° | T = 100 K |
V = 1948.71 (6) Å3 | Block, colorless |
Z = 4 | 0.1 × 0.1 × 0.08 mm |
Bruker APEXII CCD diffractometer | 3516 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.021 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 26.5°, θmin = 2.4° |
Tmin = 0.706, Tmax = 0.745 | h = −16→16 |
26494 measured reflections | k = −12→12 |
4008 independent reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.098 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0491P)2 + 0.7236P] where P = (Fo2 + 2Fc2)/3 |
4008 reflections | (Δ/σ)max = 0.001 |
273 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.37 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. 1. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups At 1.5 times of: All C(H,H,H) groups 2.a Secondary CH2 refined with riding coordinates: C18(H18A,H18B), C19(H19A,H19B), C17(H17A,H17B), C20(H20A,H20B) 2.b Aromatic/amide H refined with riding coordinates: C7(H7), C13(H13), C15(H15), C4(H4), C6(H6), C12(H12), C5(H5), C14(H14) 2.c Idealised Me refined as rotating group: C8(H8A,H8B,H8C), C16(H16A,H16B,H16C) |
x | y | z | Uiso*/Ueq | ||
O1 | 0.95431 (7) | 0.24652 (8) | 0.11811 (6) | 0.0258 (2) | |
N1 | 0.86468 (7) | 0.47789 (10) | 0.06134 (7) | 0.0217 (2) | |
N2 | 0.81869 (8) | 0.58734 (10) | 0.02753 (7) | 0.0217 (2) | |
N5 | 0.60298 (7) | 0.58496 (10) | −0.44500 (7) | 0.0226 (2) | |
N6 | 0.68182 (8) | 0.51604 (10) | −0.40215 (7) | 0.0247 (2) | |
N4 | 0.77518 (8) | 0.57102 (11) | 0.15994 (7) | 0.0269 (2) | |
C3 | 0.92713 (9) | 0.26068 (12) | 0.20399 (8) | 0.0220 (3) | |
C1 | 0.83621 (8) | 0.46963 (11) | 0.14486 (8) | 0.0198 (2) | |
N3 | 0.76475 (8) | 0.64445 (11) | 0.08397 (7) | 0.0278 (2) | |
C9 | 0.62616 (9) | 0.59998 (12) | −0.52995 (8) | 0.0220 (2) | |
O2 | 0.46627 (8) | 0.77149 (12) | −0.51135 (6) | 0.0463 (3) | |
C10 | 0.56607 (9) | 0.67077 (12) | −0.60922 (8) | 0.0215 (2) | |
N8 | 0.71619 (9) | 0.54247 (13) | −0.53723 (8) | 0.0348 (3) | |
C7 | 0.83412 (9) | 0.38359 (12) | 0.30302 (8) | 0.0238 (3) | |
H7 | 0.7911 | 0.4547 | 0.3117 | 0.029* | |
C2 | 0.86647 (9) | 0.36911 (12) | 0.21675 (8) | 0.0207 (2) | |
C13 | 0.46290 (10) | 0.80750 (13) | −0.76430 (9) | 0.0284 (3) | |
H13 | 0.4280 | 0.8544 | −0.8169 | 0.034* | |
C18 | 0.74738 (9) | 0.55296 (12) | −0.13870 (8) | 0.0232 (3) | |
H18A | 0.6763 | 0.5728 | −0.1314 | 0.028* | |
H18B | 0.7596 | 0.4593 | −0.1251 | 0.028* | |
C19 | 0.75877 (9) | 0.57977 (12) | −0.23988 (8) | 0.0242 (3) | |
H19A | 0.7355 | 0.6692 | −0.2580 | 0.029* | |
H19B | 0.8314 | 0.5718 | −0.2464 | 0.029* | |
C15 | 0.59024 (9) | 0.65380 (12) | −0.69829 (8) | 0.0237 (3) | |
H15 | 0.6431 | 0.5947 | −0.7061 | 0.028* | |
C4 | 0.95664 (9) | 0.17429 (12) | 0.27783 (9) | 0.0268 (3) | |
H4 | 0.9983 | 0.1016 | 0.2696 | 0.032* | |
C6 | 0.86318 (10) | 0.29699 (13) | 0.37594 (9) | 0.0282 (3) | |
H6 | 0.8405 | 0.3085 | 0.4339 | 0.034* | |
N7 | 0.75068 (9) | 0.48940 (13) | −0.45441 (8) | 0.0366 (3) | |
C17 | 0.82070 (9) | 0.63252 (12) | −0.06795 (8) | 0.0240 (3) | |
H17A | 0.8909 | 0.6243 | −0.0814 | 0.029* | |
H17B | 0.8010 | 0.7255 | −0.0736 | 0.029* | |
C12 | 0.43688 (10) | 0.82663 (13) | −0.67683 (9) | 0.0299 (3) | |
H12 | 0.3844 | 0.8866 | −0.6698 | 0.036* | |
C11 | 0.48755 (10) | 0.75822 (13) | −0.59921 (8) | 0.0276 (3) | |
C8 | 1.00848 (10) | 0.13020 (13) | 0.10279 (10) | 0.0302 (3) | |
H8A | 1.0215 | 0.1294 | 0.0383 | 0.045* | |
H8B | 0.9673 | 0.0541 | 0.1129 | 0.045* | |
H8C | 1.0737 | 0.1275 | 0.1467 | 0.045* | |
C5 | 0.92583 (10) | 0.19321 (13) | 0.36327 (9) | 0.0289 (3) | |
H5 | 0.9478 | 0.1346 | 0.4135 | 0.035* | |
C20 | 0.69416 (10) | 0.48127 (13) | −0.30300 (8) | 0.0259 (3) | |
H20A | 0.7268 | 0.3946 | −0.2934 | 0.031* | |
H20B | 0.6259 | 0.4753 | −0.2849 | 0.031* | |
C14 | 0.53931 (10) | 0.72068 (13) | −0.77559 (8) | 0.0265 (3) | |
H14 | 0.5566 | 0.7071 | −0.8357 | 0.032* | |
C16 | 0.38052 (17) | 0.8497 (2) | −0.50095 (12) | 0.0780 (8) | |
H16A | 0.3195 | 0.8174 | −0.5428 | 0.117* | |
H16B | 0.3934 | 0.9400 | −0.5170 | 0.117* | |
H16C | 0.3697 | 0.8453 | −0.4359 | 0.117* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0290 (5) | 0.0251 (4) | 0.0246 (4) | 0.0063 (4) | 0.0083 (4) | 0.0012 (3) |
N1 | 0.0245 (5) | 0.0214 (5) | 0.0190 (5) | 0.0009 (4) | 0.0038 (4) | 0.0011 (4) |
N2 | 0.0242 (5) | 0.0221 (5) | 0.0186 (5) | 0.0009 (4) | 0.0035 (4) | 0.0003 (4) |
N5 | 0.0233 (5) | 0.0256 (5) | 0.0184 (5) | 0.0025 (4) | 0.0024 (4) | 0.0011 (4) |
N6 | 0.0260 (5) | 0.0293 (6) | 0.0184 (5) | 0.0058 (4) | 0.0030 (4) | 0.0014 (4) |
N4 | 0.0316 (6) | 0.0290 (6) | 0.0208 (5) | 0.0073 (4) | 0.0070 (4) | 0.0029 (4) |
C3 | 0.0189 (5) | 0.0251 (6) | 0.0217 (6) | −0.0028 (4) | 0.0029 (4) | 0.0003 (5) |
C1 | 0.0183 (5) | 0.0222 (6) | 0.0186 (5) | −0.0020 (4) | 0.0024 (4) | −0.0023 (4) |
N3 | 0.0332 (6) | 0.0288 (6) | 0.0227 (5) | 0.0071 (5) | 0.0082 (4) | 0.0018 (4) |
C9 | 0.0234 (6) | 0.0241 (6) | 0.0185 (6) | 0.0016 (5) | 0.0037 (4) | −0.0030 (5) |
O2 | 0.0503 (6) | 0.0703 (8) | 0.0190 (5) | 0.0395 (6) | 0.0080 (4) | 0.0032 (5) |
C10 | 0.0227 (6) | 0.0234 (6) | 0.0181 (6) | −0.0002 (5) | 0.0024 (4) | −0.0010 (5) |
N8 | 0.0351 (6) | 0.0489 (7) | 0.0212 (5) | 0.0174 (5) | 0.0067 (5) | 0.0042 (5) |
C7 | 0.0229 (6) | 0.0275 (6) | 0.0208 (6) | −0.0020 (5) | 0.0032 (5) | −0.0014 (5) |
C2 | 0.0192 (5) | 0.0233 (6) | 0.0188 (6) | −0.0028 (4) | 0.0015 (4) | 0.0004 (5) |
C13 | 0.0335 (7) | 0.0285 (6) | 0.0214 (6) | −0.0001 (5) | 0.0000 (5) | 0.0046 (5) |
C18 | 0.0253 (6) | 0.0254 (6) | 0.0188 (6) | 0.0001 (5) | 0.0040 (5) | 0.0036 (5) |
C19 | 0.0268 (6) | 0.0267 (6) | 0.0193 (6) | 0.0018 (5) | 0.0047 (5) | 0.0038 (5) |
C15 | 0.0265 (6) | 0.0242 (6) | 0.0213 (6) | −0.0004 (5) | 0.0067 (5) | −0.0012 (5) |
C4 | 0.0221 (6) | 0.0264 (6) | 0.0313 (7) | 0.0007 (5) | 0.0030 (5) | 0.0052 (5) |
C6 | 0.0283 (6) | 0.0363 (7) | 0.0200 (6) | −0.0044 (5) | 0.0047 (5) | 0.0025 (5) |
N7 | 0.0370 (6) | 0.0523 (8) | 0.0214 (5) | 0.0202 (6) | 0.0075 (5) | 0.0051 (5) |
C17 | 0.0292 (6) | 0.0245 (6) | 0.0189 (6) | −0.0004 (5) | 0.0062 (5) | 0.0041 (5) |
C12 | 0.0311 (7) | 0.0320 (7) | 0.0254 (6) | 0.0100 (5) | 0.0019 (5) | 0.0018 (5) |
C11 | 0.0293 (6) | 0.0345 (7) | 0.0187 (6) | 0.0067 (5) | 0.0035 (5) | −0.0008 (5) |
C8 | 0.0318 (7) | 0.0250 (6) | 0.0356 (7) | 0.0057 (5) | 0.0107 (6) | −0.0010 (5) |
C5 | 0.0259 (6) | 0.0338 (7) | 0.0256 (6) | −0.0028 (5) | 0.0008 (5) | 0.0098 (5) |
C20 | 0.0304 (6) | 0.0292 (7) | 0.0174 (6) | 0.0015 (5) | 0.0026 (5) | 0.0046 (5) |
C14 | 0.0335 (7) | 0.0288 (6) | 0.0177 (6) | −0.0033 (5) | 0.0060 (5) | 0.0005 (5) |
C16 | 0.0869 (14) | 0.1223 (19) | 0.0290 (8) | 0.0798 (14) | 0.0218 (9) | 0.0134 (10) |
O1—C3 | 1.3644 (14) | C18—H18A | 0.9900 |
O1—C8 | 1.4331 (15) | C18—H18B | 0.9900 |
N1—N2 | 1.3315 (14) | C18—C19 | 1.5262 (16) |
N1—C1 | 1.3339 (15) | C18—C17 | 1.5214 (17) |
N2—N3 | 1.3179 (14) | C19—H19A | 0.9900 |
N2—C17 | 1.4647 (14) | C19—H19B | 0.9900 |
N5—N6 | 1.3243 (14) | C19—C20 | 1.5232 (17) |
N5—C9 | 1.3306 (15) | C15—H15 | 0.9500 |
N6—N7 | 1.3166 (15) | C15—C14 | 1.3843 (17) |
N6—C20 | 1.4618 (15) | C4—H4 | 0.9500 |
N4—C1 | 1.3619 (15) | C4—C5 | 1.3858 (18) |
N4—N3 | 1.3218 (15) | C6—H6 | 0.9500 |
C3—C2 | 1.4069 (17) | C6—C5 | 1.3854 (19) |
C3—C4 | 1.3924 (17) | C17—H17A | 0.9900 |
C1—C2 | 1.4719 (16) | C17—H17B | 0.9900 |
C9—C10 | 1.4700 (16) | C12—H12 | 0.9500 |
C9—N8 | 1.3555 (16) | C12—C11 | 1.3945 (18) |
O2—C11 | 1.3597 (15) | C8—H8A | 0.9800 |
O2—C16 | 1.4242 (18) | C8—H8B | 0.9800 |
C10—C15 | 1.3959 (16) | C8—H8C | 0.9800 |
C10—C11 | 1.4043 (17) | C5—H5 | 0.9500 |
N8—N7 | 1.3240 (16) | C20—H20A | 0.9900 |
C7—H7 | 0.9500 | C20—H20B | 0.9900 |
C7—C2 | 1.4009 (16) | C14—H14 | 0.9500 |
C7—C6 | 1.3833 (18) | C16—H16A | 0.9800 |
C13—H13 | 0.9500 | C16—H16B | 0.9800 |
C13—C12 | 1.3864 (18) | C16—H16C | 0.9800 |
C13—C14 | 1.3834 (18) | ||
C3—O1—C8 | 116.89 (10) | C10—C15—H15 | 119.1 |
N2—N1—C1 | 101.66 (9) | C14—C15—C10 | 121.79 (11) |
N1—N2—C17 | 122.10 (10) | C14—C15—H15 | 119.1 |
N3—N2—N1 | 114.36 (9) | C3—C4—H4 | 119.7 |
N3—N2—C17 | 123.30 (10) | C5—C4—C3 | 120.67 (12) |
N6—N5—C9 | 101.65 (9) | C5—C4—H4 | 119.7 |
N5—N6—C20 | 122.20 (10) | C7—C6—H6 | 120.4 |
N7—N6—N5 | 114.48 (10) | C7—C6—C5 | 119.12 (11) |
N7—N6—C20 | 123.17 (10) | C5—C6—H6 | 120.4 |
N3—N4—C1 | 106.28 (10) | N6—N7—N8 | 105.79 (10) |
O1—C3—C2 | 117.10 (10) | N2—C17—C18 | 110.45 (9) |
O1—C3—C4 | 123.32 (11) | N2—C17—H17A | 109.6 |
C4—C3—C2 | 119.58 (11) | N2—C17—H17B | 109.6 |
N1—C1—N4 | 111.73 (10) | C18—C17—H17A | 109.6 |
N1—C1—C2 | 126.98 (10) | C18—C17—H17B | 109.6 |
N4—C1—C2 | 121.26 (10) | H17A—C17—H17B | 108.1 |
N2—N3—N4 | 105.96 (10) | C13—C12—H12 | 119.9 |
N5—C9—C10 | 126.72 (10) | C13—C12—C11 | 120.22 (12) |
N5—C9—N8 | 111.99 (10) | C11—C12—H12 | 119.9 |
N8—C9—C10 | 121.28 (10) | O2—C11—C10 | 116.32 (11) |
C11—O2—C16 | 117.36 (11) | O2—C11—C12 | 123.66 (11) |
C15—C10—C9 | 118.61 (11) | C12—C11—C10 | 120.02 (11) |
C15—C10—C11 | 118.25 (11) | O1—C8—H8A | 109.5 |
C11—C10—C9 | 123.11 (10) | O1—C8—H8B | 109.5 |
N7—N8—C9 | 106.08 (10) | O1—C8—H8C | 109.5 |
C2—C7—H7 | 119.1 | H8A—C8—H8B | 109.5 |
C6—C7—H7 | 119.1 | H8A—C8—H8C | 109.5 |
C6—C7—C2 | 121.70 (12) | H8B—C8—H8C | 109.5 |
C3—C2—C1 | 123.62 (10) | C4—C5—H5 | 119.8 |
C7—C2—C3 | 118.41 (11) | C6—C5—C4 | 120.45 (12) |
C7—C2—C1 | 117.97 (11) | C6—C5—H5 | 119.8 |
C12—C13—H13 | 119.7 | N6—C20—C19 | 112.38 (10) |
C14—C13—H13 | 119.7 | N6—C20—H20A | 109.1 |
C14—C13—C12 | 120.50 (12) | N6—C20—H20B | 109.1 |
H18A—C18—H18B | 107.8 | C19—C20—H20A | 109.1 |
C19—C18—H18A | 109.0 | C19—C20—H20B | 109.1 |
C19—C18—H18B | 109.0 | H20A—C20—H20B | 107.9 |
C17—C18—H18A | 109.0 | C13—C14—C15 | 119.21 (11) |
C17—C18—H18B | 109.0 | C13—C14—H14 | 120.4 |
C17—C18—C19 | 112.93 (10) | C15—C14—H14 | 120.4 |
C18—C19—H19A | 110.0 | O2—C16—H16A | 109.5 |
C18—C19—H19B | 110.0 | O2—C16—H16B | 109.5 |
H19A—C19—H19B | 108.4 | O2—C16—H16C | 109.5 |
C20—C19—C18 | 108.39 (10) | H16A—C16—H16B | 109.5 |
C20—C19—H19A | 110.0 | H16A—C16—H16C | 109.5 |
C20—C19—H19B | 110.0 | H16B—C16—H16C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···N4 | 0.95 | 2.48 | 2.8371 (16) | 102 |
C15—H15···N8 | 0.95 | 2.53 | 2.8586 (17) | 101 |
C17—H17A···O1i | 0.99 | 2.58 | 3.4337 (15) | 144 |
Symmetry code: (i) −x+2, −y+1, −z. |
Funding information
We acknowledge financial support from the Basic Science Research Program (2016R1D1A1B03930507 and 2019R1A2C1001989) and BRL Program (2015R1A4A1041036) through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT & Future Planning and Education.
References
Boland, Y., Safin, D. A., Tinant, B., Babashkina, M. G., Marchand-Brynaert, J. & Garcia, Y. (2013). New J. Chem. 37, 1174–1179. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fan, J.-Z., Du, C.-C. & Wang, D.-Z. (2016). Polyhedron, 117, 487–495. Web of Science CSD CrossRef CAS Google Scholar
Feng, Y.-A., Qiu, H., Yang, S.-A., Du, J. & Zhang, T.-L. (2016). Dalton Trans. 45, 17117–17122. Web of Science CSD CrossRef CAS PubMed Google Scholar
Feng, Y., Bi, Y., Zhao, W. & Zhang, T. (2016). J. Mater. Chem. A, 4, 7596–7600. Web of Science CSD CrossRef CAS Google Scholar
Freis, M., Klapötke, T. M., Stierstorfer, J. & Szimhardt, N. (2017). Inorg. Chem. 56, 7936–7947. Web of Science CSD CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Karaghiosoff, K., Klapötke, T. M. & Miró Sabaté, C. (2009). Chem. Eur. J. 15, 1164–1176. Web of Science CSD CrossRef PubMed CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lee, S. G., Ryu, J. Y. & Lee, J. (2017). Acta Cryst. E73, 1971–1973. Web of Science CSD CrossRef IUCr Journals Google Scholar
Liu, Z.-Y., Zou, H.-A., Hou, Z.-J., Yang, E.-C. & Zhao, X.-J. (2013). Dalton Trans. 42, 15716–15725. Web of Science CSD CrossRef CAS PubMed Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Tăbăcaru, A., Pettinari, C. & Galli, S. (2018). Coord. Chem. Rev. 372, 1–30. Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net. Google Scholar
Voitekhovich, S. V., Lyakhov, A. S., Ivashkevich, L. S. & Gaponik, P. N. (2012). Tetrahedron Lett. 53, 6111–6114. Web of Science CSD CrossRef CAS Google Scholar
Wang, X.-L., Li, N., Tian, A.-X., Ying, J., Li, T.-J., Lin, X.-L., Luan, J. & Yang, Y. (2014). Inorg. Chem. 53, 7118–7129. Web of Science CSD CrossRef CAS PubMed Google Scholar
Wurzenberger, M. H. H., Szimhardt, N. & Stierstorfer, J. (2018). J. Am. Chem. Soc. 140, 3206–3209. Web of Science CSD CrossRef CAS PubMed Google Scholar
Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84–100. Web of Science CrossRef PubMed Google Scholar
Zhao, Y.-P., Li, Y., Cui, C.-Y., Xiao, Y., Li, R., Wang, S.-H., Zheng, F.-K. & Guo, G.-C. (2016). Inorg. Chem. 55, 7335–7340. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.