research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(μ-Di-tert-butyl­silanediolato)bis­­[bis­­(η5-cyclo­penta­dien­yl)methyl­zirconium]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Victoria, PO Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada, and bSchool of Chemistry, Trinity College Dublin, University of Dublin, Dublin 2, Ireland
*Correspondence e-mail: djberg@uvic.ca

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 4 September 2019; accepted 31 October 2019; online 8 November 2019)

The reaction of t-Bu2Si(OH)2 with two equivalents of Cp2Zr(CH3)2 produces the title t-Bu2SiO2-siloxide bridged dimer, [Zr2(CH3)2(C5H5)4(C8H18O2Si)] or [Cp2Zr(CH3)]2[μ-t-Bu2SiO2] (1), where one methyl group is retained per zirconium atom. The same product is obtained at room temperature even when equimolar ratios of the silanediol and Cp2Zr(CH3)2 are used. Attempts to thermally eliminate methane and produce a bridging methyl­ene complex resulted in decomposition. The crystal structure of 1 displays typical Zr—CH3 and Zr—O distances but the Si—O distance [1.628 (2) Å] and O—Si—O angle [110.86 (15)°] are among the largest observed in this family of compounds suggesting steric crowding between the t-Bu substituents of the silicon atom and the cyclo­penta­dienyl groups. The silicon atom lies on a crystallographic twofold axis and both Cp rings are disordered over two orientations of equal occupancy.

1. Chemical context

Zirconocene siloxides have been investigated for their ability to bond reactive metal centers to solid glass supports (Samuel et al., 1994[Samuel, E., Harrod, J. F., McGlinchey, M. J., Cabestaing, C. & Robert, F. (1994). Inorg. Chem. 33, 1292-1296.]) and as potential precursors to novel inorganic polymers by cyclic siloxane ring-opening polymerization (Thieme et al., 2002[Thieme, K., Bourke, S. C., Zheng, J., MacLachlan, M. J., Zamanian, F., Lough, A. J. & Manners, I. (2002). Can. J. Chem. 80, 1469-1480.]). In both of these examples, two diorganosilicon dioxide (μ-R2SiO22−) ligands span two zirconocene units in a cyclic dimer. In contrast, the structure of the title compound 1, shows only one bridging di-tert-butyl­silicon dioxide ligand and each zirconocene unit retains one reactive methyl group. The same product is obtained regardless of whether one or two equivalents of Cp2Zr(CH3)2 are used per equivalent of silanediol at room temperature. At higher temperatures, the NMR of the reaction mixture becomes more complicated but we were unable to cleanly obtain the cyclic equivalent of the compounds mentioned above, [Cp2Zr]2[μ-t-Bu2SiO2]2. This compound could potentially serve as an olefin polymerization pre-catalyst by methyl abstraction with [Ph3C]+[B(C6F5)4] or similar activators (see for e.g., Babushkin et al., 2014[Babushkin, D. E., Panchenko, V. N. & Brintzinger, H.-H. (2014). Angew. Chem. Int. Ed. 53, 9645-9649.]). Initial attempts to thermally eliminate methane and form a bridging methyl­ene complex, [Cp2Zr]2[μ-t-Bu2SiO2][μ-CH2], led to decomposition.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of 1 is shown in Fig. 1[link] and a packing diagram is given in Fig. 2[link]. The cyclo­penta­dienyl groups on Zr1 are both disordered and were modelled over two positions with 50% occupancy each. The diagrams in Figs. 1[link] and 2[link] show only one of the two disordered cyclo­penta­dienyl positions.

[Figure 1]
Figure 1
The mol­ecular structure of 1 with displacement ellipsoids drawn at the 50% probability level; hydrogen atoms omitted for clarity.
[Figure 2]
Figure 2
Packing diagram for one disorder partner of 1, viewed down the c axis.

The Zr1—CH3 (C11) distance in 1 of 2.307 (3) Å is typical of other zirconocene methyl complexes (range: 2.24–2.39 Å, median: 2.29 Å). The Zr1—O1 and O1—Si1 distances of 1.960 (2) and 1.628 (2) Å, respectively, are typical of other zirconocene siloxides, although the latter distance is at the long end of the observed range (Zr—O range: 1.94–2.01 Å, median: 1.98 Å; Si—O range: 1.56–1.65 Å, median: 1.61 Å). The O1—Si1—O1(1 − x, −y, z) angle is 110.86 (15)°, which is the widest yet observed in an R2SiO2 bridged transition metal dimer (range: 103.7—110.2°). The wider O—Si—O angle and longer Si—O bond likely reflect increased steric crowding between the t-butyl substituents on Si and the Cp rings on Zr. Other key geometrical data are listed in Table 1[link].

Table 1
Selected geometric parameters (Å, °)

Zr1—Cp1 2.196 Zr1—Cp2 2.202
Zr1—Cp1′ 2.258 Zr1—Cp2′ 2.233
       
O1—Zr1—C11 98.83 (11) C11—Zr1—Cp1′ 96.81
O1—Zr1—Cp1 108.60 C11—Zr1—Cp2 98.16
O1—Zr1—Cp1′ 109.30 C11—Zr1—Cp2′ 106.27
O1—Zr1—Cp2 107.31 Cp1—Zr1—Cp2 130.26
O1—Zr1—Cp2′ 110.27 Cp1′—Zr1—Cp2′ 129.80
C11—Zr1—Cp1 109.36    

3. Supra­molecular features

Assuming that they are not artifacts of disorder, there are some short inter­molecular ππ contacts between the Cp rings [shortest centroid–centroid separation = 3.862 (8) Å]. Otherwise, there are no exceptional features in the packing of 1.

4. Database survey

There are 60 structures in the CSD (November 2018 version; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) containing zirconocene units bonded to an anionic oxygen atom and a methyl group, Cp2Zr(CH3)(OX), that were used to compare the Zr—CH3 distance in 1. Many of these structures contain a bridging oxo (O2−) group bridged to another metal, which is obviously quite different than the siloxide in 1. A smaller subset of this group (19 structures) contain simple alkoxides as the anionic oxygen unit [i.e. Cp2Zr(CH3)(OR)]. If the comparison is restricted to just the latter structures, the Zr—C bond length range is somewhat narrower from 2.26–2.33 Å with a median of 2.29 Å (Bestgen et al., 2016[Bestgen, S., Schoo, C., Zovko, C., Köppe, R., Kelly, R. P., Lebedkin, S., Kappes, M. M. & Roesky, P. W. (2016). Chem. Eur. J. 22, 7115-7126.]; Black et al., 2008[Black, K., Aspinall, H. C., Jones, A. C., Przybylak, K., Bacsa, J., Chalker, P. R., Taylor, S., Zhao, C. Z., Elliott, S. D., Zydor, A. & Heys, P. (2008). J. Mater. Chem. 18, 4561.]; Breen & Stephan, 1996[Breen, T. L. & Stephan, D. W. (1996). Organometallics, 15, 4509-4514.]; Chapman et al., 2012[Chapman, A. M., Haddow, M. F. & Wass, D. F. (2012). Eur. J. Inorg. Chem. pp. 1546-1554.]; Frömel et al., 2013[Frömel, S., Kehr, G., Fröhlich, R., Daniliuc, C. G. & Erker, G. (2013). Dalton Trans. 42, 14531-14536.]; Gambarotta et al., 1985[Gambarotta, S., Strologo, S., Floriani, C., Chiesi-Villa, A. & Guastini, C. (1985). Inorg. Chem. 24, 654-660.]; Jian et al., 2018[Jian, Z., Daniliuc, C. G., Kehr, G. & Erker, G. (2018). Chem. Commun. 54, 5724-5727.]; Koch et al., 2000[Koch, T., Blaurock, S., Hey-Hawkins, E., Galan-Fereres, M., Plat, D. & Eisen, M. S. (2000). J. Organomet. Chem. 595, 126-133.]; Mariott & Chen, 2005[Mariott, W. R. & Chen, E. Y. X. (2005). Macromolecules, 38, 6822-6832.]; Matchett et al., 1988[Matchett, S. A., Norton, J. P. & Anderson, O. P. (1988). Organometallics, 7, 2228-2230.]; Normand et al., 2016[Normand, A. T., Daniliuc, C. G., Wibbeling, B., Kehr, G., Le Gendre, P. & Erker, G. (2016). Chem. Eur. J. 22, 4285-4293.]; Stuhldreier et al., 2000[Stuhldreier, T., Keul, H., Höcker, H. & Englert, U. (2000). Organometallics, 19, 5231-5234.]). There are 15 structures containing siloxide ligands bonded to a zirconocene unit in a pseudo-tetra­hedral environment used to compare Zr—O and O—Si distances in 1. Of those structures, there are nine that contain simple siloxides that are not part of a polysiloxane cluster or a chelate ring system; using those structures for comparison results in no substantial change in the range or median Si—O or Zr—O bond lengths (Abrahams et al., 1996[Abrahams, I., Simon, C., Motevalli, M., Shah, S. A. A. & Sullivan, A. C. (1996). J. Organomet. Chem. 521, 301-304.]; Burlakov et al., 2006[Burlakov, V. V., Arndt, P., Baumann, W., Spannenberg, A. & Rosenthal, U. (2006). Organometallics, 25, 1317-1320.]; Enders et al., 2001[Enders, M., Fink, J., Maillant, V. & Pritzkow, H. (2001). Z. Anorg. Allg. Chem. 627, 2281.]; Hofmann et al., 2002[Hofmann, M., Malisch, W., Schumacher, D., Lager, M. & Nieger, M. (2002). Organometallics, 21, 3485-3488.]; Richers et al., 2017[Richers, C. P., Bertke, J. A. & Rauchfuss, T. B. (2017). Dalton Trans. 46, 8756-8762.]; Samuel et al., 1994[Samuel, E., Harrod, J. F., McGlinchey, M. J., Cabestaing, C. & Robert, F. (1994). Inorg. Chem. 33, 1292-1296.]; Thieme et al., 2002[Thieme, K., Bourke, S. C., Zheng, J., MacLachlan, M. J., Zamanian, F., Lough, A. J. & Manners, I. (2002). Can. J. Chem. 80, 1469-1480.]; Zhang et al., 2009[Zhang, W., Zhang, S., Sun, X., Nishiura, M., Hou, Z. & Xi, Z. (2009). Angew. Chem. Int. Ed. 48, 7227-7231.]). In addition, there are 14 structures containing the O2Si—t-Bu2 unit bridging two transition metals that were used for comparison to the O—Si—O angles in 1. These structures include Ti (six structures: Haoudi-Mazzah et al., 1991[Haoudi-Mazzah, A., Mazzah, A., Schmidt, H.-G., Noltemeyer, M. & Roesky, H. W. (1991). Z. Naturforsch. Teil B, 46, 587-592.]; Liu, Schmidt et al., 1992[Liu, F.-Q., Schmidt, H.-G., Noltemeyer, M., Freire-Erdbrügger, C., Sheldrick, G. M. & Roesky, H. W. (1992). Z. Naturforsch. Teil B, 47, 1085-1090.]; Liu, Roesky et al., 1992[Liu, F.-Q., Roesky, H. W., Schmidt, H.-G. & Noltemeyer, M. (1992). Organometallics, 11, 2965-2967.]; Liu et al., 1995[Liu, F.-Q., Usón, I. & Roesky, H. W. (1995). J. Chem. Soc. Dalton Trans. pp. 2453-2458.]), Zr (Haoudi-Mazzah et al., 1991[Haoudi-Mazzah, A., Mazzah, A., Schmidt, H.-G., Noltemeyer, M. & Roesky, H. W. (1991). Z. Naturforsch. Teil B, 46, 587-592.]), Hf (Liu et al., 1996[Liu, F.-Q., Uson, I. & Roesky, H. W. (1996). Z. Anorg. Allg. Chem. 622, 819-822.]), V (Gosink et al., 1993[Gosink, H.-J., Roesky, H. W., Noltemeyer, M., Schmidt, H.-G., Freire-Erdbrügger, C. & Sheldrick, G. M. (1993). Chem. Ber. 126, 279-283.]), Nb (Gosink et al., 1994[Gosink, H.-J., Roesky, H. W., Schmidt, H.-G., Noltemeyer, M., Irmer, E. & Herbst-Irmer, R. (1994). Organometallics, 13, 3420-3426.]), Mo (Gosink et al., 1993[Gosink, H.-J., Roesky, H. W., Noltemeyer, M., Schmidt, H.-G., Freire-Erdbrügger, C. & Sheldrick, G. M. (1993). Chem. Ber. 126, 279-283.]), W (Gosink et al., 1994[Gosink, H.-J., Roesky, H. W., Schmidt, H.-G., Noltemeyer, M., Irmer, E. & Herbst-Irmer, R. (1994). Organometallics, 13, 3420-3426.]), Re (two structures: Roesky, Mazzah, et al., 1991[Roesky, H. W., Mazzah, A., Hesse, D. & Noltemeyer, M. (1991). Chem. Ber. 124, 519-521.]; Roesky, Hesse et al., 1991[Roesky, H. W., Hesse, D., Bohra, R. & Noltemeyer, M. (1991). Chem. Ber. 124, 1913-1915.]).

Crystal structures with Cp2Zr—CH3 units for Zr—C distance comparisons:

AQESIZ (Mukherjee et al., 2011[Mukherjee, A., Nembenna, S., Sen, T. K., Sarish, S. P., Ghorai, P. K., Ott, H., Stalke, D., Mandal, S. K. & Roesky, H. W. (2011). Angew. Chem. Int. Ed. 50, 3968-3972.]); AXIBOA (Boulho et al.2016[Boulho, C., Zijlstra, H. S., Hofmann, A., Budzelaar, P. H. M. & Harder, S. (2016). Chem. Eur. J. 22, 17450-17459.]); BESGOW (Bolig & Chen, 2004[Bolig, A. D. & Chen, E. Y. (2004). J. Am. Chem. Soc. 126, 4897-4906.]); BODMIR (Helmstedt et al., 2008[Helmstedt, U., Lebedkin, S., Höcher, T., Blaurock, S. & Hey-Hawkins, E. (2008). Inorg. Chem. 47, 5815-5820.]); BUHVAD (Xu et al., 2015[Xu, X., Kehr, G., Daniliuc, C. G. & Erker, G. (2015). Organometallics, 34, 2655-2661.]); BUYSOD10 (Longato et al., 1985[Longato, B., Martin, B. D., Norton, J. R. & Anderson, O. P. (1985). Inorg. Chem. 24, 1389-1394.]); CADRUU (Hunter et al., 1983[Hunter, W. E., Hrncir, D. C., Bynum, R. V., Penttila, R. A. & Atwood, J. L. (1983). Organometallics, 2, 750-755.]); COHTEY (Waymouth et al., 1984[Waymouth, R. W., Santarsiero, B. D. & Grubbs, R. H. (1984). J. Am. Chem. Soc. 106, 4050-4051.]); COPRII (Ho et al., 1984[Ho, S. C. H., Straus, D. A., Armantrout, J. A., Schaefer, W. P. & Grubbs, R. H. (1984). J. Am. Chem. Soc. 106, 2210-2211.]); DAGKAX and DAGKIF (Gambarotta et al., 1985[Gambarotta, S., Strologo, S., Floriani, C., Chiesi-Villa, A. & Guastini, C. (1985). Inorg. Chem. 24, 654-660.]); DITHAP (Martin et al., 1985[Martin, B. D., Matchett, S. A., Norton, J. R. & Anderson, O. P. (1985). J. Am. Chem. Soc. 107, 7952-7959.]); EHEFUT (Neu et al., 2011[Neu, R. C., Otten, E., Lough, A. & Stephan, D. W. (2011). Chem. Sci. 2, 170-176.]); EKEVEX, EKEVIB, EKEVOH, EKEVUN, EKEWAU and EKEWEY (Normand et al., 2016[Normand, A. T., Daniliuc, C. G., Wibbeling, B., Kehr, G., Le Gendre, P. & Erker, G. (2016). Chem. Eur. J. 22, 4285-4293.]); ESISAA (Zuccaccia et al., 2004[Zuccaccia, C., Stahl, N. G., Macchioni, A., Chen, M. C., Roberts, J. A. & Marks, T. J. (2004). J. Am. Chem. Soc. 126, 1448-1464.]); GIPYUZ (Matchett et al., 1988[Matchett, S. A., Norton, J. P. & Anderson, O. P. (1988). Organometallics, 7, 2228-2230.]); HEMCOR (Askham et al., 1994[Askham, F. R., Carroll, K. M., Briggs, P. M., Rheingold, A. L. & Haggerty, B. S. (1994). Organometallics, 13, 2139-2141.]); HIKHUF and HIKJAN (Gurubasavaraj et al., 2007[Gurubasavaraj, P. M., Roesky, H. W., Sharma, P. M. V., Oswald, R. B., Dolle, V., Herbst-Irmer, R. & Pal, A. (2007). Organometallics, 26, 3346-3351.]); HUVLAL (Fujdala et al., 2003[Fujdala, K. L., Oliver, A. G., Hollander, F. J. & Tilley, T. D. (2003). Inorg. Chem. 42, 1140-1150.]); IGUDOD (Hüerländer et al., 2002[Hüerländer, D., Kleigrewe, N., Kehr, G., Erker, G. & Fröhlich, R. (2002). Eur. J. Inorg. Chem. pp. 2633-2642.]); JITVAK and JITVEO (Mandal et al., 2007[Mandal, S. K., Gurubasavaraj, P. M., Roesky, H. W., Schwab, G., Stalke, D., Oswald, R. B. & Dolle, V. (2007). Inorg. Chem. 46, 10158-10167.]); JUGCIZ (Boulho et al., 2015[Boulho, C., Zijlstra, H. S. & Harder, S. (2015). Eur. J. Inorg. Chem. pp. 2132-2138.]); KEXYER (Erker et al., 1990[Erker, G., Albrecht, M., Werner, S. & Krüger, C. (1990). Z. Naturforsch. Teil B, 45, 1205-1209.]); KODQAV (Koch et al., 2000[Koch, T., Blaurock, S., Hey-Hawkins, E., Galan-Fereres, M., Plat, D. & Eisen, M. S. (2000). J. Organomet. Chem. 595, 126-133.]); KUPQAP (Mariott & Chen, 2005[Mariott, W. R. & Chen, E. Y. X. (2005). Macromolecules, 38, 6822-6832.]); LEDBEB (Askham et al., 1993[Askham, F. R., Carroll, K. M., Alexander, S. J., Rheingold, A. L. & Haggerty, B. S. (1993). Organometallics, 12, 4810-4815.]); LEPXAH (Mukherjee et al., 2013[Mukherjee, A., Sen, T. K., Mandal, S. K., Maity, B. & Koley, D. (2013). RSC Adv. 3, 1255-1264.]); MOJHEZ (Black et al., 2008[Black, K., Aspinall, H. C., Jones, A. C., Przybylak, K., Bacsa, J., Chalker, P. R., Taylor, S., Zhao, C. Z., Elliott, S. D., Zydor, A. & Heys, P. (2008). J. Mater. Chem. 18, 4561.]); NAHYOL (Bai et al., 2005[Bai, G., Singh, S., Roesky, H. W., Noltemeyer, M. & Schmidt, H.-G. (2005). J. Am. Chem. Soc. 127, 3449-3455.]); NAPXUY (Pineda et al., 2005[Pineda, L. W., Jancik, V., Roesky, H. W. & Herbst-Irmer, R. (2005). Inorg. Chem. 44, 3537-3540.]); NIMNOM (Johnson et al., 1997[Johnson, M. J. A., Odom, A. L. & Cummins, C. C. (1997). Chem. Commun. pp. 1523-1524.]); ODOBIU, ODOBOA and ODOBUG (Frömel et al., 2013[Frömel, S., Kehr, G., Fröhlich, R., Daniliuc, C. G. & Erker, G. (2013). Dalton Trans. 42, 14531-14536.]); OKUFUX (Bestgen et al., 2016[Bestgen, S., Schoo, C., Zovko, C., Köppe, R., Kelly, R. P., Lebedkin, S., Kappes, M. M. & Roesky, P. W. (2016). Chem. Eur. J. 22, 7115-7126.]); OZUCAO (Kelsen et al., 2011[Kelsen, V., Vallée, C., Jeanneau, E., Bibal, C., Santini, C. C., Chauvin, Y. & Olivier-Bourbigou, H. (2011). Organometallics, 30, 4284-4291.]); PEDFUA (Singh et al., 2006[Singh, S., Jancik, V., Roesky, H. W. & Herbst-Irmer, R. (2006). Inorg. Chem. 45, 949-951.]); QIZCEI (Yang, Gurubasavaraj et al., 2008[Yang, Y., Gurubasavaraj, P. M., Ye, H., Zhang, Z., Roesky, H. W. & Jones, P. G. (2008). J. Organomet. Chem. 693, 1455-1461.]); REDTUQ (Cummings et al., 2006[Cummings, S. A., Radford, R., Erker, G., Kehr, G. & Fröhlich, R. (2006). Organometallics, 25, 839-842.]); TIWKUG (Yang, Schulz et al., 2008[Yang, Y., Schulz, T., John, M., Yang, Z., Jiménez-Pérez, V. M., Roesky, H. W., Gurubasavaraj, P. M., Stalke, D. & Ye, H. (2008). Organometallics, 27, 769-777.]); TOWMUN (Breen & Stephan, 1996[Breen, T. L. & Stephan, D. W. (1996). Organometallics, 15, 4509-4514.]); VIBSOO (Waymouth et al., 1990[Waymouth, R. W., Potter, K. S., Schaefer, W. P. & Grubbs, R. H. (1990). Organometallics, 9, 2843-2846.]); WAJLOJ (Ruck & Bergman, 2004[Ruck, R. T. & Bergman, R. G. (2004). Angew. Chem. Int. Ed. 43, 5375-5377.]); WATSOB, WATSUH and WATTAO (Chapman et al., 2012[Chapman, A. M., Haddow, M. F. & Wass, D. F. (2012). Eur. J. Inorg. Chem. pp. 1546-1554.]); WAYMER (Liu et al., (2017[Liu, Y.-L., Kehr, G., Daniliuc, C. G. & Erker, G. (2017). Organometallics, 36, 3407-3414.]); WETJEL (Helmstedt et al., 2006[Helmstedt, U., Lönnecke, P., Reinhold, J. & Hey-Hawkins, E. (2006). Eur. J. Inorg. Chem. pp. 4922-4930.]); WEWRUO (Jian et al., 2018[Jian, Z., Daniliuc, C. G., Kehr, G. & Erker, G. (2018). Chem. Commun. 54, 5724-5727.]); WEXWED (Nekoueishahraki et al., 2009[Nekoueishahraki, B., Jana, A., Roesky, H. W., Mishra, L., Stern, D. & Stalke, D. (2009). Organometallics, 28, 5733-5738.]); WUPVUA (Gurubasavaraj (2015[Gurubasavaraj, P. M. (2015). Private Communication (refcode WUPVUA). CCDC, Cambridge, England.]); XESDEE Stuhldreier et al., 2000[Stuhldreier, T., Keul, H., Höcker, H. & Englert, U. (2000). Organometallics, 19, 5231-5234.]); YIMKAG (Ciruelo et al., 1995[Ciruelo, G., Cuenca, T., Gómez-Sal, P., Martín, A. & Royo, P. (1995). J. Chem. Soc. Dalton Trans. pp. 231-236.]).

Crystal structures with Cp2Zr–O–Si units for Zr—O and O—Si distance comparisons:

EXUBII (Garrison et al., 2004[Garrison, J. C., Kim, H., Collins, S. & Youngs, W. J. (2004). Acta Cryst. C60, m357-m359.]); HECZEU (Samuel et al., 1994[Samuel, E., Harrod, J. F., McGlinchey, M. J., Cabestaing, C. & Robert, F. (1994). Inorg. Chem. 33, 1292-1296.]); JANYEF (Richers et al., 2017[Richers, C. P., Bertke, J. A. & Rauchfuss, T. B. (2017). Dalton Trans. 46, 8756-8762.]); LEJSEZ (Burlakov et al., 2006[Burlakov, V. V., Arndt, P., Baumann, W., Spannenberg, A. & Rosenthal, U. (2006). Organometallics, 25, 1317-1320.]); QAMLEW (Wada et al., 2004[Wada, K., Itayama, N., Watanabe, N., Bundo, M., Kondo, T. & Mitsudo, T. (2004). Organometallics, 23, 5824-5832.]); REWKIN (Abrahams et al., 1996[Abrahams, I., Simon, C., Motevalli, M., Shah, S. A. A. & Sullivan, A. C. (1996). J. Organomet. Chem. 521, 301-304.]); ROCWIP (Enders et al., 2001[Enders, M., Fink, J., Maillant, V. & Pritzkow, H. (2001). Z. Anorg. Allg. Chem. 627, 2281.]); TUDQEP (Zhang et al., 2009[Zhang, W., Zhang, S., Sun, X., Nishiura, M., Hou, Z. & Xi, Z. (2009). Angew. Chem. Int. Ed. 48, 7227-7231.]); UGINIH and UGINON; UMOWUO (Lacroix et al., 2003[Lacroix, F., Plecnik, C. E., Liu, S., Liu, F., Meyers, E. A. & Shore, S. G. (2003). J. Organomet. Chem. 687, 69-77.]); VAQMEH (Varga et al., 2012[Varga, V., Horáček, M., Bastl, Z., Merna, J., Císařová, I., Sýkora, J. & Pinkas, J. (2012). Catal. Today, 179, 130-139.]); WUSWAI and WUSWEM (Thieme et al., 2002[Thieme, K., Bourke, S. C., Zheng, J., MacLachlan, M. J., Zamanian, F., Lough, A. J. & Manners, I. (2002). Can. J. Chem. 80, 1469-1480.]); XIXDIR (Skowronska-Ptasinska et al., 2001[Skowronska-Ptasinska, M. D., Duchateau, R., van Santen, R. A. & Yap, G. P. A. (2001). Organometallics, 20, 3519-3530.]).

Crystal structures with M–O–Si(t-Bu)2–O–M units for O—Si—O angle comparisons:

HETRED and HETRON (Gosink et al., 1994[Gosink, H.-J., Roesky, H. W., Schmidt, H.-G., Noltemeyer, M., Irmer, E. & Herbst-Irmer, R. (1994). Organometallics, 13, 3420-3426.]); JIYBEY (Roesky, Hesse et al., 1991[Roesky, H. W., Hesse, D., Bohra, R. & Noltemeyer, M. (1991). Chem. Ber. 124, 1913-1915.]); KIPGUL (Roesky, Mazzah et al., 1991[Roesky, H. W., Mazzah, A., Hesse, D. & Noltemeyer, M. (1991). Chem. Ber. 124, 519-521.]); NADDAX (Liu et al., 1996[Liu, F.-Q., Uson, I. & Roesky, H. W. (1996). Z. Anorg. Allg. Chem. 622, 819-822.]); PAHZED (Liu, Schmidt et al., 1992[Liu, F.-Q., Schmidt, H.-G., Noltemeyer, M., Freire-Erdbrügger, C., Sheldrick, G. M. & Roesky, H. W. (1992). Z. Naturforsch. Teil B, 47, 1085-1090.]); TAJYOS, TAJYUY and TAJZAF (Haoudi-Mazzah et al., 1991[Haoudi-Mazzah, A., Mazzah, A., Schmidt, H.-G., Noltemeyer, M. & Roesky, H. W. (1991). Z. Naturforsch. Teil B, 46, 587-592.]); VUMNUM (Liu, Roesky et al., 1992[Liu, F.-Q., Roesky, H. W., Schmidt, H.-G. & Noltemeyer, M. (1992). Organometallics, 11, 2965-2967.]); WAGVIJ and WAGVOP (Gosink et al., 1993[Gosink, H.-J., Roesky, H. W., Noltemeyer, M., Schmidt, H.-G., Freire-Erdbrügger, C. & Sheldrick, G. M. (1993). Chem. Ber. 126, 279-283.]); ZEKKAB and ZEKKEF (Liu et al., 1995[Liu, F.-Q., Usón, I. & Roesky, H. W. (1995). J. Chem. Soc. Dalton Trans. pp. 2453-2458.]).

5. Synthesis and crystallization

General. All solvents were purchased from Sigma–Aldrich Chemicals and dried by distillation from sodium under nitro­gen. Cp2Zr(CH3)2 was purchased from Sigma–Aldrich Chemicals and used as received. Di-t-butyl­silanediol was prepared by the oxidation of t-Bu2Si(H)Cl (Sigma–Aldrich) with aqueous KMnO4 following the procedure of Lickiss & Lucas (1996[Lickiss, P. D. & Lucas, R. (1996). J. Organomet. Chem. 521, 229-234.]). NMR spectra were recorded on a Bruker AVIII 300 MHz Spectrometer in sealable Teflon-valved tube and were referenced to residual solvent resonances. Elemental analyses were performed by Canadian Microanalytical Ltd.

Synthesis. The title compound was prepared (Fig. 3[link]) by adding a toluene solution (5 ml) of di-t-butyl­silanediol (0.080 g, 0.45 mmol) to a stirred solution of di­methyl­zirconocene, Cp2Zr(CH3)2 (0.228 g, 0.907 mmol), in toluene (5 ml) in a 50 ml Erlenmyer flask in an inert atmosphere glovebox. After stirring overnight, the solution was concentrated under vacuum, layered with hexane and stored in a 243 K freezer. Large, colourless crystals of 1 deposited within a few days. Yield: 0.196 g (67%). 1H NMR (C6D6, 300 MHz): δ 5.905 (s, 20H, CpH), 1.091 [s, 18H, C(CH3)3], 0.465 (s, 6H, CH3); 13C{1H} NMR (C6D6, 125 MHz): δ 111.32 (CpC), 28.92 (C(CH3)3), 22.63 (CH3); C(CH3)3 not observed. Analysis calculated for C30H44O2SiZr2 (%): C, 55.68; H, 6.85. Found: C, 55.33; H, 6.71.

[Figure 3]
Figure 3
Reaction scheme.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Both Cp rings were found to be disordered and modelled over two sets of sites with 50% occupancy with restraints (SIMU cards). H atoms were positioned geometrically and refined as riding, with C—H = 0.95–0.98 Å and Uiso(H = 1.2Ueq(C) or 1.5Ueq(C-meth­yl).

Table 2
Experimental details

Crystal data
Chemical formula [Zr2(CH3)2(C5H5)4(C8H18O2Si)]
Mr 647.18
Crystal system, space group Orthorhombic, Fdd2
Temperature (K) 83
a, b, c (Å) 21.673 (4), 28.296 (6), 9.7466 (19)
V3) 5977 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.76
Crystal size (mm) 0.35 × 0.27 × 0.17
 
Data collection
Diffractometer Bruker P4
Absorption correction Multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.777, 0.882
No. of measured, independent and observed [I > 2σ(I)] reflections 18986, 4237, 4172
Rint 0.025
(sin θ/λ)max−1) 0.705
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.055, 1.12
No. of reflections 4237
No. of parameters 253
No. of restraints 319
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.52, −0.53
Absolute structure Flack x determined using 1892 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.001 (16)
Computer programs: SMART and SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(µ-Di-tert-butylsilanediolato)bis[bis(η5-cyclopentadienyl)methylzirconium] top
Crystal data top
[Zr2(CH3)2(C5H5)4(C8H18O2Si)]Dx = 1.438 Mg m3
Mr = 647.18Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Fdd2Cell parameters from 5368 reflections
a = 21.673 (4) Åθ = 2.4–29.7°
b = 28.296 (6) ŵ = 0.76 mm1
c = 9.7466 (19) ÅT = 83 K
V = 5977 (2) Å3Pyramidal, colorless
Z = 80.35 × 0.27 × 0.17 mm
F(000) = 2672
Data collection top
Bruker P4
diffractometer
4237 independent reflections
Parallel,graphite monochromator4172 reflections with I > 2σ(I)
Detector resolution: 8.3 pixels mm-1Rint = 0.025
ω scansθmax = 30.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 2929
Tmin = 0.777, Tmax = 0.882k = 3939
18986 measured reflectionsl = 1313
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.022P)2 + 9.9744P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.055(Δ/σ)max = 0.001
S = 1.12Δρmax = 0.52 e Å3
4237 reflectionsΔρmin = 0.53 e Å3
253 parametersAbsolute structure: Flack x determined using 1892 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
319 restraintsAbsolute structure parameter: 0.001 (16)
Primary atom site location: structure-invariant direct methods
Special details top

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 5 sets of ω scans each set at different φ and/or 2θ angles and each scan (5 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 5.035 cm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Each Cp was disordered and modelled over two positions with 50% occupancy with restraints (SIMU).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4149 (3)0.1012 (2)0.1240 (7)0.0231 (10)0.5
H10.4292160.1209190.0519400.028*0.5
C20.4512 (10)0.0654 (5)0.197 (2)0.0246 (15)0.5
H20.4932330.0573600.1814730.030*0.5
C30.4115 (4)0.0457 (2)0.2919 (7)0.0264 (10)0.5
H30.4227290.0216770.3550790.032*0.5
C40.3518 (6)0.0661 (3)0.2832 (11)0.0264 (14)0.5
H40.3165440.0578770.3362230.032*0.5
C50.3553 (3)0.1011 (2)0.1793 (7)0.0266 (10)0.5
H50.3225270.1213260.1518090.032*0.5
C60.3122 (7)0.0244 (3)0.1688 (15)0.0269 (16)0.5
H60.3348220.0291350.2512100.032*0.5
C70.2998 (5)0.0191 (3)0.1095 (13)0.0272 (15)0.5
H70.3135600.0488190.1427710.033*0.5
C80.2638 (4)0.0119 (3)0.0073 (12)0.0260 (15)0.5
H80.2479940.0361390.0646400.031*0.5
C90.2547 (5)0.0358 (3)0.0267 (13)0.0300 (16)0.5
H90.2325280.0500520.0998540.036*0.5
C100.2859 (5)0.0607 (4)0.0871 (12)0.0306 (15)0.5
H100.2878400.0938480.1023120.037*0.5
C1'0.3957 (4)0.0989 (2)0.1826 (8)0.0294 (10)0.5
H1'0.3899030.1266700.1292230.035*0.5
C2'0.4486 (9)0.0729 (4)0.191 (2)0.0235 (15)0.5
H2'0.4863390.0800070.1454640.028*0.5
C3'0.4379 (3)0.0332 (2)0.2784 (6)0.0253 (11)0.5
H3'0.4666230.0090670.3007430.030*0.5
C4'0.3769 (3)0.0368 (2)0.3251 (7)0.0281 (10)0.5
H4'0.3566580.0154150.3853300.034*0.5
C5'0.3514 (6)0.0774 (3)0.2672 (13)0.0280 (15)0.5
H5'0.3106690.0886120.2824720.034*0.5
C6'0.3136 (7)0.0370 (4)0.1603 (15)0.0280 (17)0.5
H6'0.3371900.0419410.2410980.034*0.5
C7'0.2922 (5)0.0066 (4)0.1119 (15)0.0302 (15)0.5
H7'0.2996100.0366210.1520150.036*0.5
C8'0.2570 (5)0.0027 (4)0.0094 (12)0.0303 (16)0.5
H8'0.2367920.0199940.0653270.036*0.5
C9'0.2582 (5)0.0507 (3)0.0295 (14)0.0315 (16)0.5
H9'0.2373520.0670930.1008730.038*0.5
C10'0.2943 (5)0.0715 (4)0.0698 (13)0.0331 (17)0.5
H10'0.3042850.1041670.0751730.040*0.5
C110.36287 (17)0.04990 (13)0.1677 (4)0.0385 (8)
H11A0.3514160.0738780.0997540.058*
H11B0.3315320.0487880.2401070.058*
H11C0.4029370.0579990.2079620.058*
C120.51765 (14)0.05586 (10)0.2559 (3)0.0239 (6)
C130.54483 (15)0.09254 (10)0.1573 (3)0.0289 (6)
H13A0.5819610.0796050.1139020.043*
H13B0.5143400.1002720.0865300.043*
H13C0.5555840.1212090.2084030.043*
C140.56515 (18)0.04516 (12)0.3690 (3)0.0364 (8)
H14A0.5780960.0747660.4125010.055*
H14B0.5464860.0244130.4379950.055*
H14C0.6011310.0294760.3285480.055*
C150.46013 (17)0.07800 (10)0.3227 (3)0.0304 (7)
H15A0.4306320.0870270.2511240.046*
H15B0.4409120.0549810.3844710.046*
H15C0.4722260.1060960.3749810.046*
O10.43966 (9)0.01044 (7)0.0586 (2)0.0188 (4)
Si10.5000000.0000000.15337 (9)0.01599 (18)
Zr10.36931 (2)0.02294 (2)0.06245 (3)0.01769 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.027 (2)0.019 (2)0.024 (2)0.0031 (19)0.004 (2)0.0088 (19)
C20.026 (2)0.025 (3)0.022 (2)0.001 (3)0.005 (2)0.006 (3)
C30.033 (2)0.028 (2)0.019 (2)0.003 (2)0.004 (2)0.0031 (18)
C40.031 (2)0.027 (3)0.021 (3)0.007 (3)0.006 (2)0.006 (3)
C50.028 (2)0.023 (2)0.029 (2)0.000 (2)0.002 (2)0.0147 (19)
C60.023 (2)0.032 (4)0.025 (2)0.004 (3)0.010 (2)0.001 (3)
C70.021 (3)0.031 (4)0.029 (2)0.001 (2)0.011 (2)0.004 (3)
C80.016 (2)0.027 (4)0.034 (2)0.001 (2)0.004 (2)0.005 (3)
C90.016 (2)0.036 (4)0.037 (2)0.003 (3)0.0038 (19)0.003 (3)
C100.022 (3)0.035 (4)0.035 (3)0.003 (2)0.013 (2)0.002 (3)
C1'0.036 (2)0.022 (2)0.030 (2)0.005 (2)0.001 (2)0.005 (2)
C2'0.028 (3)0.021 (3)0.021 (2)0.009 (3)0.001 (2)0.005 (3)
C3'0.027 (2)0.029 (2)0.020 (2)0.002 (2)0.005 (2)0.006 (2)
C4'0.031 (2)0.032 (2)0.022 (2)0.007 (2)0.005 (2)0.004 (2)
C5'0.031 (2)0.025 (3)0.028 (3)0.003 (3)0.003 (2)0.008 (2)
C6'0.021 (2)0.036 (4)0.027 (3)0.000 (3)0.010 (2)0.006 (3)
C7'0.021 (2)0.036 (4)0.033 (2)0.001 (3)0.011 (2)0.001 (3)
C8'0.019 (2)0.038 (4)0.035 (2)0.002 (3)0.005 (2)0.003 (3)
C9'0.018 (2)0.037 (4)0.039 (3)0.005 (3)0.004 (2)0.000 (3)
C10'0.023 (3)0.037 (4)0.040 (3)0.008 (3)0.012 (2)0.003 (3)
C110.0400 (19)0.0380 (18)0.0376 (19)0.0013 (14)0.0140 (15)0.0159 (15)
C120.0353 (15)0.0190 (12)0.0175 (12)0.0011 (11)0.0031 (11)0.0039 (10)
C130.0398 (16)0.0215 (12)0.0256 (15)0.0065 (11)0.0006 (12)0.0056 (11)
C140.053 (2)0.0285 (15)0.0278 (16)0.0030 (15)0.0166 (15)0.0103 (12)
C150.0468 (19)0.0221 (13)0.0224 (14)0.0047 (13)0.0058 (13)0.0029 (11)
O10.0199 (9)0.0173 (8)0.0193 (9)0.0003 (7)0.0017 (7)0.0000 (7)
Si10.0220 (4)0.0152 (4)0.0108 (4)0.0005 (3)0.0000.000
Zr10.01532 (10)0.01792 (10)0.01984 (11)0.00056 (9)0.00167 (9)0.00222 (9)
Geometric parameters (Å, º) top
C1—H10.9500C4'—Zr12.595 (7)
C1—C21.465 (16)C5'—H5'0.9500
C1—C51.399 (9)C5'—Zr12.550 (12)
C1—Zr12.497 (6)C6'—H6'0.9500
C2—H20.9500C6'—C7'1.398 (13)
C2—C31.38 (2)C6'—C10'1.381 (14)
C2—Zr12.51 (2)C6'—Zr12.516 (14)
C3—H30.9500C7'—H7'0.9500
C3—C41.419 (15)C7'—C8'1.431 (15)
C3—Zr12.500 (6)C7'—Zr12.525 (13)
C4—H40.9500C8'—H8'0.9500
C4—C51.420 (11)C8'—C9'1.373 (11)
C4—Zr12.503 (11)C8'—Zr12.552 (11)
C5—H50.9500C9'—H9'0.9500
C5—Zr12.507 (6)C9'—C10'1.376 (15)
C6—H60.9500C9'—Zr12.553 (11)
C6—C71.385 (13)C10'—H10'0.9500
C6—C101.421 (13)C10'—Zr12.489 (12)
C6—Zr12.572 (14)C11—H11A0.9800
C7—H70.9500C11—H11B0.9800
C7—C81.395 (14)C11—H11C0.9800
C7—Zr12.547 (12)C11—Zr12.307 (3)
C8—H80.9500C12—C131.532 (4)
C8—C91.376 (10)C12—C141.538 (4)
C8—Zr12.547 (10)C12—C151.540 (4)
C9—H90.9500C12—Si11.909 (3)
C9—C101.478 (15)C13—H13A0.9800
C9—Zr12.534 (11)C13—H13B0.9800
C10—H100.9500C13—H13C0.9800
C10—Zr12.557 (12)C14—H14A0.9800
C1'—H1'0.9500C14—H14B0.9800
C1'—C2'1.364 (19)C14—H14C0.9800
C1'—C5'1.406 (15)C15—H15A0.9800
C1'—Zr12.514 (6)C15—H15B0.9800
C2'—H2'0.9500C15—H15C0.9800
C2'—C3'1.431 (17)O1—Si11.628 (2)
C2'—Zr12.553 (19)O1—Zr11.9599 (19)
C3'—H3'0.9500Zr1—Cp12.196
C3'—C4'1.401 (9)Zr1—Cp1'2.258
C3'—Zr12.593 (6)Zr1—Cp22.202
C4'—H4'0.9500Zr1—Cp2'2.233
C4'—C5'1.394 (11)
C2—C1—H1126.0C12—C14—H14B109.5
C2—C1—Zr173.5 (8)C12—C14—H14C109.5
C5—C1—H1126.0H14A—C14—H14B109.5
C5—C1—C2108.0 (10)H14A—C14—H14C109.5
C5—C1—Zr174.2 (3)H14B—C14—H14C109.5
Zr1—C1—H1118.3C12—C15—H15A109.5
C1—C2—H2127.3C12—C15—H15B109.5
C1—C2—Zr172.5 (8)C12—C15—H15C109.5
C3—C2—C1105.5 (14)H15A—C15—H15B109.5
C3—C2—H2127.3H15A—C15—H15C109.5
C3—C2—Zr173.6 (9)H15B—C15—H15C109.5
Zr1—C2—H2118.9Si1—O1—Zr1177.55 (13)
C2—C3—H3124.3C12—Si1—C12i116.86 (18)
C2—C3—C4111.4 (9)O1i—Si1—C12106.64 (11)
C2—C3—Zr174.4 (9)O1—Si1—C12i106.64 (11)
C4—C3—H3124.3O1—Si1—C12107.93 (11)
C4—C3—Zr173.6 (5)O1i—Si1—C12i107.92 (11)
Zr1—C3—H3119.3O1—Si1—O1i110.86 (15)
C3—C4—H4127.0C1—Zr1—C234.0 (3)
C3—C4—C5106.0 (9)C1—Zr1—C354.0 (2)
C3—C4—Zr173.4 (5)C1—Zr1—C454.6 (3)
C5—C4—H4127.0C1—Zr1—C532.5 (2)
C5—C4—Zr173.7 (5)C1—Zr1—C6112.8 (3)
Zr1—C4—H4118.1C1—Zr1—C7143.7 (3)
C1—C5—C4109.0 (8)C1—Zr1—C8138.5 (2)
C1—C5—H5125.5C1—Zr1—C9107.1 (3)
C1—C5—Zr173.4 (3)C1—Zr1—C1092.6 (3)
C4—C5—H5125.5C2—Zr1—C6142.1 (5)
C4—C5—Zr173.4 (5)C2—Zr1—C7169.7 (6)
Zr1—C5—H5119.5C2—Zr1—C8158.4 (6)
C7—C6—H6125.4C2—Zr1—C9134.1 (5)
C7—C6—C10109.3 (10)C2—Zr1—C10126.7 (4)
C7—C6—Zr173.3 (7)C3—Zr1—C232.0 (5)
C10—C6—H6125.4C3—Zr1—C433.0 (4)
C10—C6—Zr173.3 (6)C3—Zr1—C553.9 (2)
Zr1—C6—H6119.7C3—Zr1—C6162.9 (3)
C6—C7—H7125.7C3—Zr1—C7157.6 (3)
C6—C7—C8108.6 (8)C3—Zr1—C8128.1 (3)
C6—C7—Zr175.3 (7)C3—Zr1—C9116.4 (3)
C8—C7—H7125.7C3—Zr1—C10131.3 (3)
C8—C7—Zr174.1 (5)C4—Zr1—C255.0 (6)
Zr1—C7—H7116.9C4—Zr1—C532.9 (2)
C7—C8—H8125.2C4—Zr1—C6132.3 (4)
C7—C8—Zr174.1 (5)C4—Zr1—C7134.7 (4)
C9—C8—C7109.6 (8)C4—Zr1—C8103.5 (4)
C9—C8—H8125.2C4—Zr1—C984.2 (4)
C9—C8—Zr173.8 (6)C4—Zr1—C10100.3 (4)
Zr1—C8—H8118.7C5—Zr1—C255.0 (4)
C8—C9—H9126.3C5—Zr1—C6109.0 (3)
C8—C9—C10107.4 (8)C5—Zr1—C7129.7 (3)
C8—C9—Zr174.8 (6)C5—Zr1—C8109.2 (2)
C10—C9—H9126.3C5—Zr1—C979.5 (3)
C10—C9—Zr174.0 (5)C5—Zr1—C1078.7 (3)
Zr1—C9—H9117.0C7—Zr1—C631.4 (3)
C6—C10—C9105.0 (8)C7—Zr1—C1053.3 (3)
C6—C10—H10127.5C8—Zr1—C652.4 (4)
C6—C10—Zr174.5 (7)C8—Zr1—C731.8 (3)
C9—C10—H10127.5C8—Zr1—C1053.6 (3)
C9—C10—Zr172.3 (6)C9—Zr1—C653.5 (4)
Zr1—C10—H10118.0C9—Zr1—C752.9 (3)
C2'—C1'—H1'126.1C9—Zr1—C831.4 (2)
C2'—C1'—C5'107.8 (10)C9—Zr1—C1033.7 (3)
C2'—C1'—Zr175.9 (8)C10—Zr1—C632.2 (3)
C5'—C1'—H1'126.1C1'—Zr1—C2'31.2 (4)
C5'—C1'—Zr175.3 (5)C1'—Zr1—C5'32.2 (3)
Zr1—C1'—H1'114.9C1'—Zr1—C6'112.1 (3)
C1'—C2'—H2'125.6C1'—Zr1—C7'138.3 (3)
C1'—C2'—C3'108.7 (14)C1'—Zr1—C8'120.2 (3)
C1'—C2'—Zr172.8 (9)C1'—Zr1—C9'90.6 (3)
C3'—C2'—H2'125.6C2'—Zr1—C9'121.7 (4)
C3'—C2'—Zr175.4 (8)C5'—Zr1—C2'52.0 (5)
Zr1—C2'—H2'118.0C5'—Zr1—C8'98.6 (4)
C2'—C3'—H3'126.5C5'—Zr1—C9'76.6 (4)
C2'—C3'—Zr172.3 (9)C6'—Zr1—C2'131.2 (4)
C4'—C3'—C2'106.9 (10)C6'—Zr1—C5'120.4 (4)
C4'—C3'—H3'126.5C6'—Zr1—C7'32.2 (3)
C4'—C3'—Zr174.4 (4)C6'—Zr1—C8'53.3 (4)
Zr1—C3'—H3'118.8C6'—Zr1—C9'52.4 (4)
C3'—C4'—H4'126.2C7'—Zr1—C2'163.4 (5)
C3'—C4'—Zr174.2 (4)C7'—Zr1—C5'128.7 (4)
C5'—C4'—C3'107.6 (8)C7'—Zr1—C8'32.7 (3)
C5'—C4'—H4'126.2C7'—Zr1—C9'52.6 (3)
C5'—C4'—Zr172.5 (6)C8'—Zr1—C2'149.9 (5)
Zr1—C4'—H4'118.9C8'—Zr1—C9'31.2 (3)
C1'—C5'—H5'125.5C10'—Zr1—C1'85.3 (3)
C1'—C5'—Zr172.5 (6)C10'—Zr1—C2'112.8 (4)
C4'—C5'—C1'108.9 (10)C10'—Zr1—C5'88.4 (4)
C4'—C5'—H5'125.5C10'—Zr1—C6'32.0 (3)
C4'—C5'—Zr176.1 (6)C10'—Zr1—C7'53.3 (3)
Zr1—C5'—H5'117.8C10'—Zr1—C8'52.9 (3)
C7'—C6'—H6'126.0C10'—Zr1—C9'31.6 (3)
C7'—C6'—Zr174.3 (7)C11—Zr1—C1135.18 (19)
C10'—C6'—H6'126.0C11—Zr1—C2103.8 (4)
C10'—C6'—C7'107.9 (10)C11—Zr1—C381.65 (19)
C10'—C6'—Zr172.9 (7)C11—Zr1—C492.5 (2)
Zr1—C6'—H6'118.7C11—Zr1—C5125.4 (2)
C6'—C7'—H7'126.5C11—Zr1—C6112.0 (3)
C6'—C7'—C8'107.1 (9)C11—Zr1—C780.8 (3)
C6'—C7'—Zr173.5 (7)C11—Zr1—C872.2 (2)
C8'—C7'—H7'126.5C11—Zr1—C997.5 (2)
C8'—C7'—Zr174.7 (6)C11—Zr1—C10125.8 (3)
Zr1—C7'—H7'117.5C11—Zr1—C1'124.8 (2)
C7'—C8'—H8'126.6C11—Zr1—C2'108.6 (4)
C7'—C8'—Zr172.6 (6)C11—Zr1—C5'100.5 (2)
C9'—C8'—C7'106.8 (9)C11—Zr1—C6'119.7 (3)
C9'—C8'—H8'126.6C11—Zr1—C7'87.9 (3)
C9'—C8'—Zr174.4 (6)C11—Zr1—C8'80.3 (3)
Zr1—C8'—H8'118.4C11—Zr1—C9'105.9 (2)
C8'—C9'—H9'125.3C11—Zr1—C10'133.2 (3)
C8'—C9'—C10'109.5 (9)O1—Zr1—C189.83 (16)
C8'—C9'—Zr174.4 (6)O1—Zr1—C281.4 (5)
C10'—C9'—H9'125.3O1—Zr1—C3107.49 (19)
C10'—C9'—Zr171.6 (6)O1—Zr1—C4136.4 (3)
Zr1—C9'—H9'120.5O1—Zr1—C5121.80 (16)
C6'—C10'—H10'125.7O1—Zr1—C681.3 (3)
C6'—C10'—Zr175.1 (7)O1—Zr1—C788.8 (3)
C9'—C10'—C6'108.6 (9)O1—Zr1—C8120.1 (2)
C9'—C10'—H10'125.7O1—Zr1—C9134.9 (3)
C9'—C10'—Zr176.8 (6)O1—Zr1—C10106.4 (3)
Zr1—C10'—H10'114.6O1—Zr1—C1'104.9 (2)
H11A—C11—H11B109.5O1—Zr1—C2'82.6 (5)
H11A—C11—H11C109.5O1—Zr1—C5'134.3 (3)
H11B—C11—H11C109.5O1—Zr1—C6'83.3 (3)
Zr1—C11—H11A109.5O1—Zr1—C7'92.9 (3)
Zr1—C11—H11B109.5O1—Zr1—C8'125.4 (3)
Zr1—C11—H11C109.5O1—Zr1—C9'135.5 (3)
C13—C12—C14109.0 (3)O1—Zr1—C10'107.2 (3)
C13—C12—C15107.5 (2)O1—Zr1—C1198.83 (11)
C13—C12—Si1108.04 (19)O1—Zr1—Cp1108.60
C14—C12—C15108.6 (2)O1—Zr1—Cp1'109.30
C14—C12—Si1110.3 (2)O1—Zr1—Cp2107.31
C15—C12—Si1113.3 (2)O1—Zr1—Cp2'110.27
C12—C13—H13A109.5C11—Zr1—Cp1109.36
C12—C13—H13B109.5C11—Zr1—Cp1'96.81
C12—C13—H13C109.5C11—Zr1—Cp298.16
H13A—C13—H13B109.5C11—Zr1—Cp2'106.27
H13A—C13—H13C109.5Cp1—Zr1—Cp2130.26
H13B—C13—H13C109.5Cp1'—Zr1—Cp2'129.80
C12—C14—H14A109.5
C1—C2—C3—C41.0 (15)C6'—C7'—C8'—C9'0.2 (11)
C1—C2—C3—Zr165.9 (10)C6'—C7'—C8'—Zr166.9 (8)
C2—C1—C5—C41.0 (10)C7'—C6'—C10'—C9'3.6 (12)
C2—C1—C5—Zr166.3 (8)C7'—C6'—C10'—Zr166.6 (8)
C2—C3—C4—C51.6 (13)C7'—C8'—C9'—C10'2.4 (11)
C2—C3—C4—Zr165.4 (10)C7'—C8'—C9'—Zr165.9 (7)
C3—C4—C5—C11.6 (9)C8'—C9'—C10'—C6'3.8 (12)
C3—C4—C5—Zr166.8 (6)C8'—C9'—C10'—Zr165.2 (7)
C5—C1—C2—C30.0 (14)C10'—C6'—C7'—C8'2.1 (12)
C5—C1—C2—Zr166.7 (6)C10'—C6'—C7'—Zr165.7 (8)
C6—C7—C8—C92.2 (11)Zr1—C1—C2—C366.7 (10)
C6—C7—C8—Zr168.0 (8)Zr1—C1—C5—C465.2 (6)
C7—C6—C10—C91.3 (11)Zr1—C2—C3—C464.9 (7)
C7—C6—C10—Zr165.1 (8)Zr1—C3—C4—C567.0 (6)
C7—C8—C9—C101.3 (10)Zr1—C4—C5—C165.2 (5)
C7—C8—C9—Zr166.0 (7)Zr1—C6—C7—C867.2 (7)
C8—C9—C10—C60.0 (10)Zr1—C6—C10—C966.3 (7)
C8—C9—C10—Zr167.9 (7)Zr1—C7—C8—C965.8 (7)
C10—C6—C7—C82.1 (12)Zr1—C8—C9—C1067.4 (6)
C10—C6—C7—Zr165.1 (8)Zr1—C9—C10—C667.9 (7)
C1'—C2'—C3'—C4'1.2 (15)Zr1—C1'—C2'—C3'67.5 (11)
C1'—C2'—C3'—Zr165.8 (11)Zr1—C1'—C5'—C4'68.0 (7)
C2'—C1'—C5'—C4'1.7 (14)Zr1—C2'—C3'—C4'66.9 (6)
C2'—C1'—C5'—Zr169.6 (10)Zr1—C3'—C4'—C5'65.4 (7)
C2'—C3'—C4'—C5'0.1 (12)Zr1—C4'—C5'—C1'65.6 (7)
C2'—C3'—C4'—Zr165.5 (9)Zr1—C6'—C7'—C8'67.7 (7)
C3'—C4'—C5'—C1'0.9 (11)Zr1—C6'—C10'—C9'70.1 (8)
C3'—C4'—C5'—Zr166.5 (5)Zr1—C7'—C8'—C9'67.1 (7)
C5'—C1'—C2'—C3'1.7 (16)Zr1—C8'—C9'—C10'63.5 (7)
C5'—C1'—C2'—Zr169.2 (8)Zr1—C9'—C10'—C6'69.0 (8)
Symmetry code: (i) x+1, y, z.
 

Funding information

Funding for this research was provided by: Natural Sciences and Engineering Research Council of Canada.

References

First citationAbrahams, I., Simon, C., Motevalli, M., Shah, S. A. A. & Sullivan, A. C. (1996). J. Organomet. Chem. 521, 301–304.  CSD CrossRef CAS Web of Science Google Scholar
First citationAskham, F. R., Carroll, K. M., Alexander, S. J., Rheingold, A. L. & Haggerty, B. S. (1993). Organometallics, 12, 4810–4815.  CSD CrossRef CAS Web of Science Google Scholar
First citationAskham, F. R., Carroll, K. M., Briggs, P. M., Rheingold, A. L. & Haggerty, B. S. (1994). Organometallics, 13, 2139–2141.  CSD CrossRef CAS Web of Science Google Scholar
First citationBabushkin, D. E., Panchenko, V. N. & Brintzinger, H.-H. (2014). Angew. Chem. Int. Ed. 53, 9645–9649.  Web of Science CrossRef CAS Google Scholar
First citationBai, G., Singh, S., Roesky, H. W., Noltemeyer, M. & Schmidt, H.-G. (2005). J. Am. Chem. Soc. 127, 3449–3455.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBestgen, S., Schoo, C., Zovko, C., Köppe, R., Kelly, R. P., Lebedkin, S., Kappes, M. M. & Roesky, P. W. (2016). Chem. Eur. J. 22, 7115–7126.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBlack, K., Aspinall, H. C., Jones, A. C., Przybylak, K., Bacsa, J., Chalker, P. R., Taylor, S., Zhao, C. Z., Elliott, S. D., Zydor, A. & Heys, P. (2008). J. Mater. Chem. 18, 4561.  Web of Science CSD CrossRef Google Scholar
First citationBolig, A. D. & Chen, E. Y. (2004). J. Am. Chem. Soc. 126, 4897–4906.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBoulho, C., Zijlstra, H. S. & Harder, S. (2015). Eur. J. Inorg. Chem. pp. 2132–2138.  Web of Science CSD CrossRef Google Scholar
First citationBoulho, C., Zijlstra, H. S., Hofmann, A., Budzelaar, P. H. M. & Harder, S. (2016). Chem. Eur. J. 22, 17450–17459.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBreen, T. L. & Stephan, D. W. (1996). Organometallics, 15, 4509–4514.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurlakov, V. V., Arndt, P., Baumann, W., Spannenberg, A. & Rosenthal, U. (2006). Organometallics, 25, 1317–1320.  Web of Science CSD CrossRef CAS Google Scholar
First citationChapman, A. M., Haddow, M. F. & Wass, D. F. (2012). Eur. J. Inorg. Chem. pp. 1546–1554.  Web of Science CSD CrossRef Google Scholar
First citationCiruelo, G., Cuenca, T., Gómez-Sal, P., Martín, A. & Royo, P. (1995). J. Chem. Soc. Dalton Trans. pp. 231–236.  CSD CrossRef Web of Science Google Scholar
First citationCummings, S. A., Radford, R., Erker, G., Kehr, G. & Fröhlich, R. (2006). Organometallics, 25, 839–842.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEnders, M., Fink, J., Maillant, V. & Pritzkow, H. (2001). Z. Anorg. Allg. Chem. 627, 2281.  Web of Science CSD CrossRef Google Scholar
First citationErker, G., Albrecht, M., Werner, S. & Krüger, C. (1990). Z. Naturforsch. Teil B, 45, 1205–1209.  CrossRef CAS Web of Science Google Scholar
First citationFrömel, S., Kehr, G., Fröhlich, R., Daniliuc, C. G. & Erker, G. (2013). Dalton Trans. 42, 14531–14536.  Web of Science PubMed Google Scholar
First citationFujdala, K. L., Oliver, A. G., Hollander, F. J. & Tilley, T. D. (2003). Inorg. Chem. 42, 1140–1150.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGambarotta, S., Strologo, S., Floriani, C., Chiesi-Villa, A. & Guastini, C. (1985). Inorg. Chem. 24, 654–660.  CSD CrossRef CAS Web of Science Google Scholar
First citationGarrison, J. C., Kim, H., Collins, S. & Youngs, W. J. (2004). Acta Cryst. C60, m357–m359.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGosink, H.-J., Roesky, H. W., Noltemeyer, M., Schmidt, H.-G., Freire-Erdbrügger, C. & Sheldrick, G. M. (1993). Chem. Ber. 126, 279–283.  CSD CrossRef CAS Web of Science Google Scholar
First citationGosink, H.-J., Roesky, H. W., Schmidt, H.-G., Noltemeyer, M., Irmer, E. & Herbst-Irmer, R. (1994). Organometallics, 13, 3420–3426.  CSD CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurubasavaraj, P. M. (2015). Private Communication (refcode WUPVUA). CCDC, Cambridge, England.  Google Scholar
First citationGurubasavaraj, P. M., Roesky, H. W., Sharma, P. M. V., Oswald, R. B., Dolle, V., Herbst-Irmer, R. & Pal, A. (2007). Organometallics, 26, 3346–3351.  Web of Science CSD CrossRef CAS Google Scholar
First citationHaoudi-Mazzah, A., Mazzah, A., Schmidt, H.-G., Noltemeyer, M. & Roesky, H. W. (1991). Z. Naturforsch. Teil B, 46, 587–592.  CAS Google Scholar
First citationHelmstedt, U., Lebedkin, S., Höcher, T., Blaurock, S. & Hey-Hawkins, E. (2008). Inorg. Chem. 47, 5815–5820.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHelmstedt, U., Lönnecke, P., Reinhold, J. & Hey-Hawkins, E. (2006). Eur. J. Inorg. Chem. pp. 4922–4930.  Web of Science CSD CrossRef Google Scholar
First citationHo, S. C. H., Straus, D. A., Armantrout, J. A., Schaefer, W. P. & Grubbs, R. H. (1984). J. Am. Chem. Soc. 106, 2210–2211.  CSD CrossRef CAS Web of Science Google Scholar
First citationHofmann, M., Malisch, W., Schumacher, D., Lager, M. & Nieger, M. (2002). Organometallics, 21, 3485–3488.  Web of Science CSD CrossRef CAS Google Scholar
First citationHüerländer, D., Kleigrewe, N., Kehr, G., Erker, G. & Fröhlich, R. (2002). Eur. J. Inorg. Chem. pp. 2633–2642.  Google Scholar
First citationHunter, W. E., Hrncir, D. C., Bynum, R. V., Penttila, R. A. & Atwood, J. L. (1983). Organometallics, 2, 750–755.  CSD CrossRef CAS Web of Science Google Scholar
First citationJian, Z., Daniliuc, C. G., Kehr, G. & Erker, G. (2018). Chem. Commun. 54, 5724–5727.  Web of Science CSD CrossRef CAS Google Scholar
First citationJohnson, M. J. A., Odom, A. L. & Cummins, C. C. (1997). Chem. Commun. pp. 1523–1524.  CSD CrossRef Web of Science Google Scholar
First citationKelsen, V., Vallée, C., Jeanneau, E., Bibal, C., Santini, C. C., Chauvin, Y. & Olivier-Bourbigou, H. (2011). Organometallics, 30, 4284–4291.  Web of Science CSD CrossRef CAS Google Scholar
First citationKoch, T., Blaurock, S., Hey-Hawkins, E., Galan-Fereres, M., Plat, D. & Eisen, M. S. (2000). J. Organomet. Chem. 595, 126–133.  Web of Science CSD CrossRef CAS Google Scholar
First citationLacroix, F., Plecnik, C. E., Liu, S., Liu, F., Meyers, E. A. & Shore, S. G. (2003). J. Organomet. Chem. 687, 69–77.  Web of Science CSD CrossRef CAS Google Scholar
First citationLickiss, P. D. & Lucas, R. (1996). J. Organomet. Chem. 521, 229–234.  CrossRef CAS Web of Science Google Scholar
First citationLiu, F.-Q., Roesky, H. W., Schmidt, H.-G. & Noltemeyer, M. (1992). Organometallics, 11, 2965–2967.  CSD CrossRef CAS Web of Science Google Scholar
First citationLiu, F.-Q., Schmidt, H.-G., Noltemeyer, M., Freire-Erdbrügger, C., Sheldrick, G. M. & Roesky, H. W. (1992). Z. Naturforsch. Teil B, 47, 1085–1090.  CrossRef CAS Google Scholar
First citationLiu, F.-Q., Usón, I. & Roesky, H. W. (1995). J. Chem. Soc. Dalton Trans. pp. 2453–2458.  CSD CrossRef Web of Science Google Scholar
First citationLiu, F.-Q., Uson, I. & Roesky, H. W. (1996). Z. Anorg. Allg. Chem. 622, 819–822.  CSD CrossRef CAS Web of Science Google Scholar
First citationLiu, Y.-L., Kehr, G., Daniliuc, C. G. & Erker, G. (2017). Organometallics, 36, 3407–3414.  Web of Science CSD CrossRef CAS Google Scholar
First citationLongato, B., Martin, B. D., Norton, J. R. & Anderson, O. P. (1985). Inorg. Chem. 24, 1389–1394.  CSD CrossRef CAS Web of Science Google Scholar
First citationMandal, S. K., Gurubasavaraj, P. M., Roesky, H. W., Schwab, G., Stalke, D., Oswald, R. B. & Dolle, V. (2007). Inorg. Chem. 46, 10158–10167.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMariott, W. R. & Chen, E. Y. X. (2005). Macromolecules, 38, 6822–6832.  Web of Science CSD CrossRef CAS Google Scholar
First citationMartin, B. D., Matchett, S. A., Norton, J. R. & Anderson, O. P. (1985). J. Am. Chem. Soc. 107, 7952–7959.  CSD CrossRef CAS Web of Science Google Scholar
First citationMatchett, S. A., Norton, J. P. & Anderson, O. P. (1988). Organometallics, 7, 2228–2230.  CSD CrossRef CAS Web of Science Google Scholar
First citationMukherjee, A., Nembenna, S., Sen, T. K., Sarish, S. P., Ghorai, P. K., Ott, H., Stalke, D., Mandal, S. K. & Roesky, H. W. (2011). Angew. Chem. Int. Ed. 50, 3968–3972.  Web of Science CSD CrossRef CAS Google Scholar
First citationMukherjee, A., Sen, T. K., Mandal, S. K., Maity, B. & Koley, D. (2013). RSC Adv. 3, 1255–1264.  Web of Science CSD CrossRef CAS Google Scholar
First citationNekoueishahraki, B., Jana, A., Roesky, H. W., Mishra, L., Stern, D. & Stalke, D. (2009). Organometallics, 28, 5733–5738.  Web of Science CSD CrossRef CAS Google Scholar
First citationNeu, R. C., Otten, E., Lough, A. & Stephan, D. W. (2011). Chem. Sci. 2, 170–176.  Web of Science CSD CrossRef CAS Google Scholar
First citationNormand, A. T., Daniliuc, C. G., Wibbeling, B., Kehr, G., Le Gendre, P. & Erker, G. (2016). Chem. Eur. J. 22, 4285–4293.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPineda, L. W., Jancik, V., Roesky, H. W. & Herbst-Irmer, R. (2005). Inorg. Chem. 44, 3537–3540.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRichers, C. P., Bertke, J. A. & Rauchfuss, T. B. (2017). Dalton Trans. 46, 8756–8762.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRoesky, H. W., Hesse, D., Bohra, R. & Noltemeyer, M. (1991). Chem. Ber. 124, 1913–1915.  CSD CrossRef CAS Web of Science Google Scholar
First citationRoesky, H. W., Mazzah, A., Hesse, D. & Noltemeyer, M. (1991). Chem. Ber. 124, 519–521.  CSD CrossRef CAS Web of Science Google Scholar
First citationRuck, R. T. & Bergman, R. G. (2004). Angew. Chem. Int. Ed. 43, 5375–5377.  Web of Science CSD CrossRef Google Scholar
First citationSamuel, E., Harrod, J. F., McGlinchey, M. J., Cabestaing, C. & Robert, F. (1994). Inorg. Chem. 33, 1292–1296.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, S., Jancik, V., Roesky, H. W. & Herbst-Irmer, R. (2006). Inorg. Chem. 45, 949–951.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSkowronska-Ptasinska, M. D., Duchateau, R., van Santen, R. A. & Yap, G. P. A. (2001). Organometallics, 20, 3519–3530.  Web of Science CSD CrossRef CAS Google Scholar
First citationStuhldreier, T., Keul, H., Höcker, H. & Englert, U. (2000). Organometallics, 19, 5231–5234.  Web of Science CSD CrossRef CAS Google Scholar
First citationThieme, K., Bourke, S. C., Zheng, J., MacLachlan, M. J., Zamanian, F., Lough, A. J. & Manners, I. (2002). Can. J. Chem. 80, 1469–1480.  Web of Science CSD CrossRef CAS Google Scholar
First citationVarga, V., Horáček, M., Bastl, Z., Merna, J., Císařová, I., Sýkora, J. & Pinkas, J. (2012). Catal. Today, 179, 130–139.  Web of Science CSD CrossRef CAS Google Scholar
First citationWada, K., Itayama, N., Watanabe, N., Bundo, M., Kondo, T. & Mitsudo, T. (2004). Organometallics, 23, 5824–5832.  Web of Science CSD CrossRef CAS Google Scholar
First citationWaymouth, R. W., Potter, K. S., Schaefer, W. P. & Grubbs, R. H. (1990). Organometallics, 9, 2843–2846.  CSD CrossRef CAS Web of Science Google Scholar
First citationWaymouth, R. W., Santarsiero, B. D. & Grubbs, R. H. (1984). J. Am. Chem. Soc. 106, 4050–4051.  CSD CrossRef CAS Web of Science Google Scholar
First citationXu, X., Kehr, G., Daniliuc, C. G. & Erker, G. (2015). Organometallics, 34, 2655–2661.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, Y., Gurubasavaraj, P. M., Ye, H., Zhang, Z., Roesky, H. W. & Jones, P. G. (2008). J. Organomet. Chem. 693, 1455–1461.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, Y., Schulz, T., John, M., Yang, Z., Jiménez-Pérez, V. M., Roesky, H. W., Gurubasavaraj, P. M., Stalke, D. & Ye, H. (2008). Organometallics, 27, 769–777.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, W., Zhang, S., Sun, X., Nishiura, M., Hou, Z. & Xi, Z. (2009). Angew. Chem. Int. Ed. 48, 7227–7231.  Web of Science CSD CrossRef CAS Google Scholar
First citationZuccaccia, C., Stahl, N. G., Macchioni, A., Chen, M. C., Roberts, J. A. & Marks, T. J. (2004). J. Am. Chem. Soc. 126, 1448–1464.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds