research communications
(μ-Di-tert-butylsilanediolato)bis[bis(η5-cyclopentadienyl)methylzirconium]
aDepartment of Chemistry, University of Victoria, PO Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada, and bSchool of Chemistry, Trinity College Dublin, University of Dublin, Dublin 2, Ireland
*Correspondence e-mail: djberg@uvic.ca
The reaction of t-Bu2Si(OH)2 with two equivalents of Cp2Zr(CH3)2 produces the title t-Bu2SiO2-siloxide bridged dimer, [Zr2(CH3)2(C5H5)4(C8H18O2Si)] or [Cp2Zr(CH3)]2[μ-t-Bu2SiO2] (1), where one methyl group is retained per zirconium atom. The same product is obtained at room temperature even when equimolar ratios of the silanediol and Cp2Zr(CH3)2 are used. Attempts to thermally eliminate methane and produce a bridging methylene complex resulted in decomposition. The of 1 displays typical Zr—CH3 and Zr—O distances but the Si—O distance [1.628 (2) Å] and O—Si—O angle [110.86 (15)°] are among the largest observed in this family of compounds suggesting steric crowding between the t-Bu substituents of the silicon atom and the cyclopentadienyl groups. The silicon atom lies on a crystallographic twofold axis and both Cp rings are disordered over two orientations of equal occupancy.
Keywords: crystal structure; siloxide; zirconium; metallocene; organometallic.
1. Chemical context
Zirconocene siloxides have been investigated for their ability to bond reactive metal centers to solid glass supports (Samuel et al., 1994) and as potential precursors to novel inorganic polymers by cyclic siloxane (Thieme et al., 2002). In both of these examples, two diorganosilicon dioxide (μ-R2SiO22−) ligands span two zirconocene units in a cyclic dimer. In contrast, the structure of the title compound 1, shows only one bridging di-tert-butylsilicon dioxide ligand and each zirconocene unit retains one reactive methyl group. The same product is obtained regardless of whether one or two equivalents of Cp2Zr(CH3)2 are used per equivalent of silanediol at room temperature. At higher temperatures, the NMR of the reaction mixture becomes more complicated but we were unable to cleanly obtain the cyclic equivalent of the compounds mentioned above, [Cp2Zr]2[μ-t-Bu2SiO2]2. This compound could potentially serve as an olefin polymerization pre-catalyst by methyl abstraction with [Ph3C]+[B(C6F5)4]− or similar activators (see for e.g., Babushkin et al., 2014). Initial attempts to thermally eliminate methane and form a bridging methylene complex, [Cp2Zr]2[μ-t-Bu2SiO2][μ-CH2], led to decomposition.
2. Structural commentary
The molecular structure of 1 is shown in Fig. 1 and a packing diagram is given in Fig. 2. The cyclopentadienyl groups on Zr1 are both disordered and were modelled over two positions with 50% occupancy each. The diagrams in Figs. 1 and 2 show only one of the two disordered cyclopentadienyl positions.
The Zr1—CH3 (C11) distance in 1 of 2.307 (3) Å is typical of other zirconocene methyl complexes (range: 2.24–2.39 Å, median: 2.29 Å). The Zr1—O1 and O1—Si1 distances of 1.960 (2) and 1.628 (2) Å, respectively, are typical of other zirconocene siloxides, although the latter distance is at the long end of the observed range (Zr—O range: 1.94–2.01 Å, median: 1.98 Å; Si—O range: 1.56–1.65 Å, median: 1.61 Å). The O1—Si1—O1(1 − x, −y, z) angle is 110.86 (15)°, which is the widest yet observed in an R2SiO2 bridged transition metal dimer (range: 103.7—110.2°). The wider O—Si—O angle and longer Si—O bond likely reflect increased steric crowding between the t-butyl substituents on Si and the Cp rings on Zr. Other key geometrical data are listed in Table 1.
|
3. Supramolecular features
Assuming that they are not artifacts of disorder, there are some short intermolecular π–π contacts between the Cp rings [shortest centroid–centroid separation = 3.862 (8) Å]. Otherwise, there are no exceptional features in the packing of 1.
4. Database survey
There are 60 structures in the CSD (November 2018 version; Groom et al., 2016) containing zirconocene units bonded to an anionic oxygen atom and a methyl group, Cp2Zr(CH3)(OX), that were used to compare the Zr—CH3 distance in 1. Many of these structures contain a bridging oxo (O2−) group bridged to another metal, which is obviously quite different than the siloxide in 1. A smaller subset of this group (19 structures) contain simple as the anionic oxygen unit [i.e. Cp2Zr(CH3)(OR)]. If the comparison is restricted to just the latter structures, the Zr—C bond length range is somewhat narrower from 2.26–2.33 Å with a median of 2.29 Å (Bestgen et al., 2016; Black et al., 2008; Breen & Stephan, 1996; Chapman et al., 2012; Frömel et al., 2013; Gambarotta et al., 1985; Jian et al., 2018; Koch et al., 2000; Mariott & Chen, 2005; Matchett et al., 1988; Normand et al., 2016; Stuhldreier et al., 2000). There are 15 structures containing siloxide ligands bonded to a zirconocene unit in a pseudo-tetrahedral environment used to compare Zr—O and O—Si distances in 1. Of those structures, there are nine that contain simple siloxides that are not part of a polysiloxane cluster or a chelate ring system; using those structures for comparison results in no substantial change in the range or median Si—O or Zr—O bond lengths (Abrahams et al., 1996; Burlakov et al., 2006; Enders et al., 2001; Hofmann et al., 2002; Richers et al., 2017; Samuel et al., 1994; Thieme et al., 2002; Zhang et al., 2009). In addition, there are 14 structures containing the O2Si—t-Bu2 unit bridging two transition metals that were used for comparison to the O—Si—O angles in 1. These structures include Ti (six structures: Haoudi-Mazzah et al., 1991; Liu, Schmidt et al., 1992; Liu, Roesky et al., 1992; Liu et al., 1995), Zr (Haoudi-Mazzah et al., 1991), Hf (Liu et al., 1996), V (Gosink et al., 1993), Nb (Gosink et al., 1994), Mo (Gosink et al., 1993), W (Gosink et al., 1994), Re (two structures: Roesky, Mazzah, et al., 1991; Roesky, Hesse et al., 1991).
Crystal structures with Cp2Zr—CH3 units for Zr—C distance comparisons:
AQESIZ (Mukherjee et al., 2011); AXIBOA (Boulho et al.2016); BESGOW (Bolig & Chen, 2004); BODMIR (Helmstedt et al., 2008); BUHVAD (Xu et al., 2015); BUYSOD10 (Longato et al., 1985); CADRUU (Hunter et al., 1983); COHTEY (Waymouth et al., 1984); COPRII (Ho et al., 1984); DAGKAX and DAGKIF (Gambarotta et al., 1985); DITHAP (Martin et al., 1985); EHEFUT (Neu et al., 2011); EKEVEX, EKEVIB, EKEVOH, EKEVUN, EKEWAU and EKEWEY (Normand et al., 2016); ESISAA (Zuccaccia et al., 2004); GIPYUZ (Matchett et al., 1988); HEMCOR (Askham et al., 1994); HIKHUF and HIKJAN (Gurubasavaraj et al., 2007); HUVLAL (Fujdala et al., 2003); IGUDOD (Hüerländer et al., 2002); JITVAK and JITVEO (Mandal et al., 2007); JUGCIZ (Boulho et al., 2015); KEXYER (Erker et al., 1990); KODQAV (Koch et al., 2000); KUPQAP (Mariott & Chen, 2005); LEDBEB (Askham et al., 1993); LEPXAH (Mukherjee et al., 2013); MOJHEZ (Black et al., 2008); NAHYOL (Bai et al., 2005); NAPXUY (Pineda et al., 2005); NIMNOM (Johnson et al., 1997); ODOBIU, ODOBOA and ODOBUG (Frömel et al., 2013); OKUFUX (Bestgen et al., 2016); OZUCAO (Kelsen et al., 2011); PEDFUA (Singh et al., 2006); QIZCEI (Yang, Gurubasavaraj et al., 2008); REDTUQ (Cummings et al., 2006); TIWKUG (Yang, Schulz et al., 2008); TOWMUN (Breen & Stephan, 1996); VIBSOO (Waymouth et al., 1990); WAJLOJ (Ruck & Bergman, 2004); WATSOB, WATSUH and WATTAO (Chapman et al., 2012); WAYMER (Liu et al., (2017); WETJEL (Helmstedt et al., 2006); WEWRUO (Jian et al., 2018); WEXWED (Nekoueishahraki et al., 2009); WUPVUA (Gurubasavaraj (2015); XESDEE Stuhldreier et al., 2000); YIMKAG (Ciruelo et al., 1995).
Crystal structures with Cp2Zr–O–Si units for Zr—O and O—Si distance comparisons:
EXUBII (Garrison et al., 2004); HECZEU (Samuel et al., 1994); JANYEF (Richers et al., 2017); LEJSEZ (Burlakov et al., 2006); QAMLEW (Wada et al., 2004); REWKIN (Abrahams et al., 1996); ROCWIP (Enders et al., 2001); TUDQEP (Zhang et al., 2009); UGINIH and UGINON; UMOWUO (Lacroix et al., 2003); VAQMEH (Varga et al., 2012); WUSWAI and WUSWEM (Thieme et al., 2002); XIXDIR (Skowronska-Ptasinska et al., 2001).
Crystal structures with M–O–Si(t-Bu)2–O–M units for O—Si—O angle comparisons:
HETRED and HETRON (Gosink et al., 1994); JIYBEY (Roesky, Hesse et al., 1991); KIPGUL (Roesky, Mazzah et al., 1991); NADDAX (Liu et al., 1996); PAHZED (Liu, Schmidt et al., 1992); TAJYOS, TAJYUY and TAJZAF (Haoudi-Mazzah et al., 1991); VUMNUM (Liu, Roesky et al., 1992); WAGVIJ and WAGVOP (Gosink et al., 1993); ZEKKAB and ZEKKEF (Liu et al., 1995).
5. Synthesis and crystallization
General. All solvents were purchased from Sigma–Aldrich Chemicals and dried by distillation from sodium under nitrogen. Cp2Zr(CH3)2 was purchased from Sigma–Aldrich Chemicals and used as received. Di-t-butylsilanediol was prepared by the oxidation of t-Bu2Si(H)Cl (Sigma–Aldrich) with aqueous KMnO4 following the procedure of Lickiss & Lucas (1996). NMR spectra were recorded on a Bruker AVIII 300 MHz Spectrometer in sealable Teflon-valved tube and were referenced to residual solvent resonances. Elemental analyses were performed by Canadian Microanalytical Ltd.
Synthesis. The title compound was prepared (Fig. 3) by adding a toluene solution (5 ml) of di-t-butylsilanediol (0.080 g, 0.45 mmol) to a stirred solution of dimethylzirconocene, Cp2Zr(CH3)2 (0.228 g, 0.907 mmol), in toluene (5 ml) in a 50 ml Erlenmyer flask in an inert atmosphere glovebox. After stirring overnight, the solution was concentrated under vacuum, layered with hexane and stored in a 243 K freezer. Large, colourless crystals of 1 deposited within a few days. Yield: 0.196 g (67%). 1H NMR (C6D6, 300 MHz): δ 5.905 (s, 20H, CpH), 1.091 [s, 18H, C(CH3)3], 0.465 (s, 6H, CH3); 13C{1H} NMR (C6D6, 125 MHz): δ 111.32 (CpC), 28.92 (C(CH3)3), 22.63 (CH3); C(CH3)3 not observed. Analysis calculated for C30H44O2SiZr2 (%): C, 55.68; H, 6.85. Found: C, 55.33; H, 6.71.
6. Refinement
Crystal data, data collection and structure . Both Cp rings were found to be disordered and modelled over two sets of sites with 50% occupancy with restraints (SIMU cards). H atoms were positioned geometrically and refined as riding, with C—H = 0.95–0.98 Å and Uiso(H = 1.2Ueq(C) or 1.5Ueq(C-methyl).
details are summarized in Table 2Supporting information
https://doi.org/10.1107/S2056989019014762/hb4319sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019014762/hb4319Isup2.hkl
CSD refcodes and references for structures used for comparisons. DOI: https://doi.org/10.1107/S2056989019014762/hb4319sup3.docx
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Zr2(CH3)2(C5H5)4(C8H18O2Si)] | Dx = 1.438 Mg m−3 |
Mr = 647.18 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Fdd2 | Cell parameters from 5368 reflections |
a = 21.673 (4) Å | θ = 2.4–29.7° |
b = 28.296 (6) Å | µ = 0.76 mm−1 |
c = 9.7466 (19) Å | T = 83 K |
V = 5977 (2) Å3 | Pyramidal, colorless |
Z = 8 | 0.35 × 0.27 × 0.17 mm |
F(000) = 2672 |
Bruker P4 diffractometer | 4237 independent reflections |
Parallel,graphite monochromator | 4172 reflections with I > 2σ(I) |
Detector resolution: 8.3 pixels mm-1 | Rint = 0.025 |
ω scans | θmax = 30.1°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | h = −29→29 |
Tmin = 0.777, Tmax = 0.882 | k = −39→39 |
18986 measured reflections | l = −13→13 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.024 | w = 1/[σ2(Fo2) + (0.022P)2 + 9.9744P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.055 | (Δ/σ)max = 0.001 |
S = 1.12 | Δρmax = 0.52 e Å−3 |
4237 reflections | Δρmin = −0.53 e Å−3 |
253 parameters | Absolute structure: Flack x determined using 1892 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
319 restraints | Absolute structure parameter: −0.001 (16) |
Primary atom site location: structure-invariant direct methods |
Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 5 sets of ω scans each set at different φ and/or 2θ angles and each scan (5 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 5.035 cm. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Each Cp was disordered and modelled over two positions with 50% occupancy with restraints (SIMU). |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.4149 (3) | 0.1012 (2) | 0.1240 (7) | 0.0231 (10) | 0.5 |
H1 | 0.429216 | 0.120919 | 0.051940 | 0.028* | 0.5 |
C2 | 0.4512 (10) | 0.0654 (5) | 0.197 (2) | 0.0246 (15) | 0.5 |
H2 | 0.493233 | 0.057360 | 0.181473 | 0.030* | 0.5 |
C3 | 0.4115 (4) | 0.0457 (2) | 0.2919 (7) | 0.0264 (10) | 0.5 |
H3 | 0.422729 | 0.021677 | 0.355079 | 0.032* | 0.5 |
C4 | 0.3518 (6) | 0.0661 (3) | 0.2832 (11) | 0.0264 (14) | 0.5 |
H4 | 0.316544 | 0.057877 | 0.336223 | 0.032* | 0.5 |
C5 | 0.3553 (3) | 0.1011 (2) | 0.1793 (7) | 0.0266 (10) | 0.5 |
H5 | 0.322527 | 0.121326 | 0.151809 | 0.032* | 0.5 |
C6 | 0.3122 (7) | 0.0244 (3) | −0.1688 (15) | 0.0269 (16) | 0.5 |
H6 | 0.334822 | 0.029135 | −0.251210 | 0.032* | 0.5 |
C7 | 0.2998 (5) | −0.0191 (3) | −0.1095 (13) | 0.0272 (15) | 0.5 |
H7 | 0.313560 | −0.048819 | −0.142771 | 0.033* | 0.5 |
C8 | 0.2638 (4) | −0.0119 (3) | 0.0073 (12) | 0.0260 (15) | 0.5 |
H8 | 0.247994 | −0.036139 | 0.064640 | 0.031* | 0.5 |
C9 | 0.2547 (5) | 0.0358 (3) | 0.0267 (13) | 0.0300 (16) | 0.5 |
H9 | 0.232528 | 0.050052 | 0.099854 | 0.036* | 0.5 |
C10 | 0.2859 (5) | 0.0607 (4) | −0.0871 (12) | 0.0306 (15) | 0.5 |
H10 | 0.287840 | 0.093848 | −0.102312 | 0.037* | 0.5 |
C1' | 0.3957 (4) | 0.0989 (2) | 0.1826 (8) | 0.0294 (10) | 0.5 |
H1' | 0.389903 | 0.126670 | 0.129223 | 0.035* | 0.5 |
C2' | 0.4486 (9) | 0.0729 (4) | 0.191 (2) | 0.0235 (15) | 0.5 |
H2' | 0.486339 | 0.080007 | 0.145464 | 0.028* | 0.5 |
C3' | 0.4379 (3) | 0.0332 (2) | 0.2784 (6) | 0.0253 (11) | 0.5 |
H3' | 0.466623 | 0.009067 | 0.300743 | 0.030* | 0.5 |
C4' | 0.3769 (3) | 0.0368 (2) | 0.3251 (7) | 0.0281 (10) | 0.5 |
H4' | 0.356658 | 0.015415 | 0.385330 | 0.034* | 0.5 |
C5' | 0.3514 (6) | 0.0774 (3) | 0.2672 (13) | 0.0280 (15) | 0.5 |
H5' | 0.310669 | 0.088612 | 0.282472 | 0.034* | 0.5 |
C6' | 0.3136 (7) | 0.0370 (4) | −0.1603 (15) | 0.0280 (17) | 0.5 |
H6' | 0.337190 | 0.041941 | −0.241098 | 0.034* | 0.5 |
C7' | 0.2922 (5) | −0.0066 (4) | −0.1119 (15) | 0.0302 (15) | 0.5 |
H7' | 0.299610 | −0.036621 | −0.152015 | 0.036* | 0.5 |
C8' | 0.2570 (5) | 0.0027 (4) | 0.0094 (12) | 0.0303 (16) | 0.5 |
H8' | 0.236792 | −0.019994 | 0.065327 | 0.036* | 0.5 |
C9' | 0.2582 (5) | 0.0507 (3) | 0.0295 (14) | 0.0315 (16) | 0.5 |
H9' | 0.237352 | 0.067093 | 0.100873 | 0.038* | 0.5 |
C10' | 0.2943 (5) | 0.0715 (4) | −0.0698 (13) | 0.0331 (17) | 0.5 |
H10' | 0.304285 | 0.104167 | −0.075173 | 0.040* | 0.5 |
C11 | 0.36287 (17) | −0.04990 (13) | 0.1677 (4) | 0.0385 (8) | |
H11A | 0.351416 | −0.073878 | 0.099754 | 0.058* | |
H11B | 0.331532 | −0.048788 | 0.240107 | 0.058* | |
H11C | 0.402937 | −0.057999 | 0.207962 | 0.058* | |
C12 | 0.51765 (14) | 0.05586 (10) | −0.2559 (3) | 0.0239 (6) | |
C13 | 0.54483 (15) | 0.09254 (10) | −0.1573 (3) | 0.0289 (6) | |
H13A | 0.581961 | 0.079605 | −0.113902 | 0.043* | |
H13B | 0.514340 | 0.100272 | −0.086530 | 0.043* | |
H13C | 0.555584 | 0.121209 | −0.208403 | 0.043* | |
C14 | 0.56515 (18) | 0.04516 (12) | −0.3690 (3) | 0.0364 (8) | |
H14A | 0.578096 | 0.074766 | −0.412501 | 0.055* | |
H14B | 0.546486 | 0.024413 | −0.437995 | 0.055* | |
H14C | 0.601131 | 0.029476 | −0.328548 | 0.055* | |
C15 | 0.46013 (17) | 0.07800 (10) | −0.3227 (3) | 0.0304 (7) | |
H15A | 0.430632 | 0.087027 | −0.251124 | 0.046* | |
H15B | 0.440912 | 0.054981 | −0.384471 | 0.046* | |
H15C | 0.472226 | 0.106096 | −0.374981 | 0.046* | |
O1 | 0.43966 (9) | 0.01044 (7) | −0.0586 (2) | 0.0188 (4) | |
Si1 | 0.500000 | 0.000000 | −0.15337 (9) | 0.01599 (18) | |
Zr1 | 0.36931 (2) | 0.02294 (2) | 0.06245 (3) | 0.01769 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.027 (2) | 0.019 (2) | 0.024 (2) | −0.0031 (19) | 0.004 (2) | −0.0088 (19) |
C2 | 0.026 (2) | 0.025 (3) | 0.022 (2) | −0.001 (3) | −0.005 (2) | −0.006 (3) |
C3 | 0.033 (2) | 0.028 (2) | 0.019 (2) | −0.003 (2) | −0.004 (2) | −0.0031 (18) |
C4 | 0.031 (2) | 0.027 (3) | 0.021 (3) | −0.007 (3) | 0.006 (2) | −0.006 (3) |
C5 | 0.028 (2) | 0.023 (2) | 0.029 (2) | 0.000 (2) | 0.002 (2) | −0.0147 (19) |
C6 | 0.023 (2) | 0.032 (4) | 0.025 (2) | 0.004 (3) | −0.010 (2) | −0.001 (3) |
C7 | 0.021 (3) | 0.031 (4) | 0.029 (2) | 0.001 (2) | −0.011 (2) | −0.004 (3) |
C8 | 0.016 (2) | 0.027 (4) | 0.034 (2) | −0.001 (2) | −0.004 (2) | −0.005 (3) |
C9 | 0.016 (2) | 0.036 (4) | 0.037 (2) | 0.003 (3) | −0.0038 (19) | −0.003 (3) |
C10 | 0.022 (3) | 0.035 (4) | 0.035 (3) | 0.003 (2) | −0.013 (2) | −0.002 (3) |
C1' | 0.036 (2) | 0.022 (2) | 0.030 (2) | −0.005 (2) | −0.001 (2) | −0.005 (2) |
C2' | 0.028 (3) | 0.021 (3) | 0.021 (2) | −0.009 (3) | 0.001 (2) | −0.005 (3) |
C3' | 0.027 (2) | 0.029 (2) | 0.020 (2) | 0.002 (2) | −0.005 (2) | −0.006 (2) |
C4' | 0.031 (2) | 0.032 (2) | 0.022 (2) | −0.007 (2) | 0.005 (2) | −0.004 (2) |
C5' | 0.031 (2) | 0.025 (3) | 0.028 (3) | 0.003 (3) | 0.003 (2) | −0.008 (2) |
C6' | 0.021 (2) | 0.036 (4) | 0.027 (3) | 0.000 (3) | −0.010 (2) | 0.006 (3) |
C7' | 0.021 (2) | 0.036 (4) | 0.033 (2) | 0.001 (3) | −0.011 (2) | −0.001 (3) |
C8' | 0.019 (2) | 0.038 (4) | 0.035 (2) | −0.002 (3) | −0.005 (2) | 0.003 (3) |
C9' | 0.018 (2) | 0.037 (4) | 0.039 (3) | 0.005 (3) | −0.004 (2) | 0.000 (3) |
C10' | 0.023 (3) | 0.037 (4) | 0.040 (3) | 0.008 (3) | −0.012 (2) | 0.003 (3) |
C11 | 0.0400 (19) | 0.0380 (18) | 0.0376 (19) | 0.0013 (14) | 0.0140 (15) | 0.0159 (15) |
C12 | 0.0353 (15) | 0.0190 (12) | 0.0175 (12) | 0.0011 (11) | 0.0031 (11) | 0.0039 (10) |
C13 | 0.0398 (16) | 0.0215 (12) | 0.0256 (15) | −0.0065 (11) | −0.0006 (12) | 0.0056 (11) |
C14 | 0.053 (2) | 0.0285 (15) | 0.0278 (16) | 0.0030 (15) | 0.0166 (15) | 0.0103 (12) |
C15 | 0.0468 (19) | 0.0221 (13) | 0.0224 (14) | 0.0047 (13) | −0.0058 (13) | 0.0029 (11) |
O1 | 0.0199 (9) | 0.0173 (8) | 0.0193 (9) | 0.0003 (7) | −0.0017 (7) | 0.0000 (7) |
Si1 | 0.0220 (4) | 0.0152 (4) | 0.0108 (4) | 0.0005 (3) | 0.000 | 0.000 |
Zr1 | 0.01532 (10) | 0.01792 (10) | 0.01984 (11) | 0.00056 (9) | −0.00167 (9) | −0.00222 (9) |
C1—H1 | 0.9500 | C4'—Zr1 | 2.595 (7) |
C1—C2 | 1.465 (16) | C5'—H5' | 0.9500 |
C1—C5 | 1.399 (9) | C5'—Zr1 | 2.550 (12) |
C1—Zr1 | 2.497 (6) | C6'—H6' | 0.9500 |
C2—H2 | 0.9500 | C6'—C7' | 1.398 (13) |
C2—C3 | 1.38 (2) | C6'—C10' | 1.381 (14) |
C2—Zr1 | 2.51 (2) | C6'—Zr1 | 2.516 (14) |
C3—H3 | 0.9500 | C7'—H7' | 0.9500 |
C3—C4 | 1.419 (15) | C7'—C8' | 1.431 (15) |
C3—Zr1 | 2.500 (6) | C7'—Zr1 | 2.525 (13) |
C4—H4 | 0.9500 | C8'—H8' | 0.9500 |
C4—C5 | 1.420 (11) | C8'—C9' | 1.373 (11) |
C4—Zr1 | 2.503 (11) | C8'—Zr1 | 2.552 (11) |
C5—H5 | 0.9500 | C9'—H9' | 0.9500 |
C5—Zr1 | 2.507 (6) | C9'—C10' | 1.376 (15) |
C6—H6 | 0.9500 | C9'—Zr1 | 2.553 (11) |
C6—C7 | 1.385 (13) | C10'—H10' | 0.9500 |
C6—C10 | 1.421 (13) | C10'—Zr1 | 2.489 (12) |
C6—Zr1 | 2.572 (14) | C11—H11A | 0.9800 |
C7—H7 | 0.9500 | C11—H11B | 0.9800 |
C7—C8 | 1.395 (14) | C11—H11C | 0.9800 |
C7—Zr1 | 2.547 (12) | C11—Zr1 | 2.307 (3) |
C8—H8 | 0.9500 | C12—C13 | 1.532 (4) |
C8—C9 | 1.376 (10) | C12—C14 | 1.538 (4) |
C8—Zr1 | 2.547 (10) | C12—C15 | 1.540 (4) |
C9—H9 | 0.9500 | C12—Si1 | 1.909 (3) |
C9—C10 | 1.478 (15) | C13—H13A | 0.9800 |
C9—Zr1 | 2.534 (11) | C13—H13B | 0.9800 |
C10—H10 | 0.9500 | C13—H13C | 0.9800 |
C10—Zr1 | 2.557 (12) | C14—H14A | 0.9800 |
C1'—H1' | 0.9500 | C14—H14B | 0.9800 |
C1'—C2' | 1.364 (19) | C14—H14C | 0.9800 |
C1'—C5' | 1.406 (15) | C15—H15A | 0.9800 |
C1'—Zr1 | 2.514 (6) | C15—H15B | 0.9800 |
C2'—H2' | 0.9500 | C15—H15C | 0.9800 |
C2'—C3' | 1.431 (17) | O1—Si1 | 1.628 (2) |
C2'—Zr1 | 2.553 (19) | O1—Zr1 | 1.9599 (19) |
C3'—H3' | 0.9500 | Zr1—Cp1 | 2.196 |
C3'—C4' | 1.401 (9) | Zr1—Cp1' | 2.258 |
C3'—Zr1 | 2.593 (6) | Zr1—Cp2 | 2.202 |
C4'—H4' | 0.9500 | Zr1—Cp2' | 2.233 |
C4'—C5' | 1.394 (11) | ||
C2—C1—H1 | 126.0 | C12—C14—H14B | 109.5 |
C2—C1—Zr1 | 73.5 (8) | C12—C14—H14C | 109.5 |
C5—C1—H1 | 126.0 | H14A—C14—H14B | 109.5 |
C5—C1—C2 | 108.0 (10) | H14A—C14—H14C | 109.5 |
C5—C1—Zr1 | 74.2 (3) | H14B—C14—H14C | 109.5 |
Zr1—C1—H1 | 118.3 | C12—C15—H15A | 109.5 |
C1—C2—H2 | 127.3 | C12—C15—H15B | 109.5 |
C1—C2—Zr1 | 72.5 (8) | C12—C15—H15C | 109.5 |
C3—C2—C1 | 105.5 (14) | H15A—C15—H15B | 109.5 |
C3—C2—H2 | 127.3 | H15A—C15—H15C | 109.5 |
C3—C2—Zr1 | 73.6 (9) | H15B—C15—H15C | 109.5 |
Zr1—C2—H2 | 118.9 | Si1—O1—Zr1 | 177.55 (13) |
C2—C3—H3 | 124.3 | C12—Si1—C12i | 116.86 (18) |
C2—C3—C4 | 111.4 (9) | O1i—Si1—C12 | 106.64 (11) |
C2—C3—Zr1 | 74.4 (9) | O1—Si1—C12i | 106.64 (11) |
C4—C3—H3 | 124.3 | O1—Si1—C12 | 107.93 (11) |
C4—C3—Zr1 | 73.6 (5) | O1i—Si1—C12i | 107.92 (11) |
Zr1—C3—H3 | 119.3 | O1—Si1—O1i | 110.86 (15) |
C3—C4—H4 | 127.0 | C1—Zr1—C2 | 34.0 (3) |
C3—C4—C5 | 106.0 (9) | C1—Zr1—C3 | 54.0 (2) |
C3—C4—Zr1 | 73.4 (5) | C1—Zr1—C4 | 54.6 (3) |
C5—C4—H4 | 127.0 | C1—Zr1—C5 | 32.5 (2) |
C5—C4—Zr1 | 73.7 (5) | C1—Zr1—C6 | 112.8 (3) |
Zr1—C4—H4 | 118.1 | C1—Zr1—C7 | 143.7 (3) |
C1—C5—C4 | 109.0 (8) | C1—Zr1—C8 | 138.5 (2) |
C1—C5—H5 | 125.5 | C1—Zr1—C9 | 107.1 (3) |
C1—C5—Zr1 | 73.4 (3) | C1—Zr1—C10 | 92.6 (3) |
C4—C5—H5 | 125.5 | C2—Zr1—C6 | 142.1 (5) |
C4—C5—Zr1 | 73.4 (5) | C2—Zr1—C7 | 169.7 (6) |
Zr1—C5—H5 | 119.5 | C2—Zr1—C8 | 158.4 (6) |
C7—C6—H6 | 125.4 | C2—Zr1—C9 | 134.1 (5) |
C7—C6—C10 | 109.3 (10) | C2—Zr1—C10 | 126.7 (4) |
C7—C6—Zr1 | 73.3 (7) | C3—Zr1—C2 | 32.0 (5) |
C10—C6—H6 | 125.4 | C3—Zr1—C4 | 33.0 (4) |
C10—C6—Zr1 | 73.3 (6) | C3—Zr1—C5 | 53.9 (2) |
Zr1—C6—H6 | 119.7 | C3—Zr1—C6 | 162.9 (3) |
C6—C7—H7 | 125.7 | C3—Zr1—C7 | 157.6 (3) |
C6—C7—C8 | 108.6 (8) | C3—Zr1—C8 | 128.1 (3) |
C6—C7—Zr1 | 75.3 (7) | C3—Zr1—C9 | 116.4 (3) |
C8—C7—H7 | 125.7 | C3—Zr1—C10 | 131.3 (3) |
C8—C7—Zr1 | 74.1 (5) | C4—Zr1—C2 | 55.0 (6) |
Zr1—C7—H7 | 116.9 | C4—Zr1—C5 | 32.9 (2) |
C7—C8—H8 | 125.2 | C4—Zr1—C6 | 132.3 (4) |
C7—C8—Zr1 | 74.1 (5) | C4—Zr1—C7 | 134.7 (4) |
C9—C8—C7 | 109.6 (8) | C4—Zr1—C8 | 103.5 (4) |
C9—C8—H8 | 125.2 | C4—Zr1—C9 | 84.2 (4) |
C9—C8—Zr1 | 73.8 (6) | C4—Zr1—C10 | 100.3 (4) |
Zr1—C8—H8 | 118.7 | C5—Zr1—C2 | 55.0 (4) |
C8—C9—H9 | 126.3 | C5—Zr1—C6 | 109.0 (3) |
C8—C9—C10 | 107.4 (8) | C5—Zr1—C7 | 129.7 (3) |
C8—C9—Zr1 | 74.8 (6) | C5—Zr1—C8 | 109.2 (2) |
C10—C9—H9 | 126.3 | C5—Zr1—C9 | 79.5 (3) |
C10—C9—Zr1 | 74.0 (5) | C5—Zr1—C10 | 78.7 (3) |
Zr1—C9—H9 | 117.0 | C7—Zr1—C6 | 31.4 (3) |
C6—C10—C9 | 105.0 (8) | C7—Zr1—C10 | 53.3 (3) |
C6—C10—H10 | 127.5 | C8—Zr1—C6 | 52.4 (4) |
C6—C10—Zr1 | 74.5 (7) | C8—Zr1—C7 | 31.8 (3) |
C9—C10—H10 | 127.5 | C8—Zr1—C10 | 53.6 (3) |
C9—C10—Zr1 | 72.3 (6) | C9—Zr1—C6 | 53.5 (4) |
Zr1—C10—H10 | 118.0 | C9—Zr1—C7 | 52.9 (3) |
C2'—C1'—H1' | 126.1 | C9—Zr1—C8 | 31.4 (2) |
C2'—C1'—C5' | 107.8 (10) | C9—Zr1—C10 | 33.7 (3) |
C2'—C1'—Zr1 | 75.9 (8) | C10—Zr1—C6 | 32.2 (3) |
C5'—C1'—H1' | 126.1 | C1'—Zr1—C2' | 31.2 (4) |
C5'—C1'—Zr1 | 75.3 (5) | C1'—Zr1—C5' | 32.2 (3) |
Zr1—C1'—H1' | 114.9 | C1'—Zr1—C6' | 112.1 (3) |
C1'—C2'—H2' | 125.6 | C1'—Zr1—C7' | 138.3 (3) |
C1'—C2'—C3' | 108.7 (14) | C1'—Zr1—C8' | 120.2 (3) |
C1'—C2'—Zr1 | 72.8 (9) | C1'—Zr1—C9' | 90.6 (3) |
C3'—C2'—H2' | 125.6 | C2'—Zr1—C9' | 121.7 (4) |
C3'—C2'—Zr1 | 75.4 (8) | C5'—Zr1—C2' | 52.0 (5) |
Zr1—C2'—H2' | 118.0 | C5'—Zr1—C8' | 98.6 (4) |
C2'—C3'—H3' | 126.5 | C5'—Zr1—C9' | 76.6 (4) |
C2'—C3'—Zr1 | 72.3 (9) | C6'—Zr1—C2' | 131.2 (4) |
C4'—C3'—C2' | 106.9 (10) | C6'—Zr1—C5' | 120.4 (4) |
C4'—C3'—H3' | 126.5 | C6'—Zr1—C7' | 32.2 (3) |
C4'—C3'—Zr1 | 74.4 (4) | C6'—Zr1—C8' | 53.3 (4) |
Zr1—C3'—H3' | 118.8 | C6'—Zr1—C9' | 52.4 (4) |
C3'—C4'—H4' | 126.2 | C7'—Zr1—C2' | 163.4 (5) |
C3'—C4'—Zr1 | 74.2 (4) | C7'—Zr1—C5' | 128.7 (4) |
C5'—C4'—C3' | 107.6 (8) | C7'—Zr1—C8' | 32.7 (3) |
C5'—C4'—H4' | 126.2 | C7'—Zr1—C9' | 52.6 (3) |
C5'—C4'—Zr1 | 72.5 (6) | C8'—Zr1—C2' | 149.9 (5) |
Zr1—C4'—H4' | 118.9 | C8'—Zr1—C9' | 31.2 (3) |
C1'—C5'—H5' | 125.5 | C10'—Zr1—C1' | 85.3 (3) |
C1'—C5'—Zr1 | 72.5 (6) | C10'—Zr1—C2' | 112.8 (4) |
C4'—C5'—C1' | 108.9 (10) | C10'—Zr1—C5' | 88.4 (4) |
C4'—C5'—H5' | 125.5 | C10'—Zr1—C6' | 32.0 (3) |
C4'—C5'—Zr1 | 76.1 (6) | C10'—Zr1—C7' | 53.3 (3) |
Zr1—C5'—H5' | 117.8 | C10'—Zr1—C8' | 52.9 (3) |
C7'—C6'—H6' | 126.0 | C10'—Zr1—C9' | 31.6 (3) |
C7'—C6'—Zr1 | 74.3 (7) | C11—Zr1—C1 | 135.18 (19) |
C10'—C6'—H6' | 126.0 | C11—Zr1—C2 | 103.8 (4) |
C10'—C6'—C7' | 107.9 (10) | C11—Zr1—C3 | 81.65 (19) |
C10'—C6'—Zr1 | 72.9 (7) | C11—Zr1—C4 | 92.5 (2) |
Zr1—C6'—H6' | 118.7 | C11—Zr1—C5 | 125.4 (2) |
C6'—C7'—H7' | 126.5 | C11—Zr1—C6 | 112.0 (3) |
C6'—C7'—C8' | 107.1 (9) | C11—Zr1—C7 | 80.8 (3) |
C6'—C7'—Zr1 | 73.5 (7) | C11—Zr1—C8 | 72.2 (2) |
C8'—C7'—H7' | 126.5 | C11—Zr1—C9 | 97.5 (2) |
C8'—C7'—Zr1 | 74.7 (6) | C11—Zr1—C10 | 125.8 (3) |
Zr1—C7'—H7' | 117.5 | C11—Zr1—C1' | 124.8 (2) |
C7'—C8'—H8' | 126.6 | C11—Zr1—C2' | 108.6 (4) |
C7'—C8'—Zr1 | 72.6 (6) | C11—Zr1—C5' | 100.5 (2) |
C9'—C8'—C7' | 106.8 (9) | C11—Zr1—C6' | 119.7 (3) |
C9'—C8'—H8' | 126.6 | C11—Zr1—C7' | 87.9 (3) |
C9'—C8'—Zr1 | 74.4 (6) | C11—Zr1—C8' | 80.3 (3) |
Zr1—C8'—H8' | 118.4 | C11—Zr1—C9' | 105.9 (2) |
C8'—C9'—H9' | 125.3 | C11—Zr1—C10' | 133.2 (3) |
C8'—C9'—C10' | 109.5 (9) | O1—Zr1—C1 | 89.83 (16) |
C8'—C9'—Zr1 | 74.4 (6) | O1—Zr1—C2 | 81.4 (5) |
C10'—C9'—H9' | 125.3 | O1—Zr1—C3 | 107.49 (19) |
C10'—C9'—Zr1 | 71.6 (6) | O1—Zr1—C4 | 136.4 (3) |
Zr1—C9'—H9' | 120.5 | O1—Zr1—C5 | 121.80 (16) |
C6'—C10'—H10' | 125.7 | O1—Zr1—C6 | 81.3 (3) |
C6'—C10'—Zr1 | 75.1 (7) | O1—Zr1—C7 | 88.8 (3) |
C9'—C10'—C6' | 108.6 (9) | O1—Zr1—C8 | 120.1 (2) |
C9'—C10'—H10' | 125.7 | O1—Zr1—C9 | 134.9 (3) |
C9'—C10'—Zr1 | 76.8 (6) | O1—Zr1—C10 | 106.4 (3) |
Zr1—C10'—H10' | 114.6 | O1—Zr1—C1' | 104.9 (2) |
H11A—C11—H11B | 109.5 | O1—Zr1—C2' | 82.6 (5) |
H11A—C11—H11C | 109.5 | O1—Zr1—C5' | 134.3 (3) |
H11B—C11—H11C | 109.5 | O1—Zr1—C6' | 83.3 (3) |
Zr1—C11—H11A | 109.5 | O1—Zr1—C7' | 92.9 (3) |
Zr1—C11—H11B | 109.5 | O1—Zr1—C8' | 125.4 (3) |
Zr1—C11—H11C | 109.5 | O1—Zr1—C9' | 135.5 (3) |
C13—C12—C14 | 109.0 (3) | O1—Zr1—C10' | 107.2 (3) |
C13—C12—C15 | 107.5 (2) | O1—Zr1—C11 | 98.83 (11) |
C13—C12—Si1 | 108.04 (19) | O1—Zr1—Cp1 | 108.60 |
C14—C12—C15 | 108.6 (2) | O1—Zr1—Cp1' | 109.30 |
C14—C12—Si1 | 110.3 (2) | O1—Zr1—Cp2 | 107.31 |
C15—C12—Si1 | 113.3 (2) | O1—Zr1—Cp2' | 110.27 |
C12—C13—H13A | 109.5 | C11—Zr1—Cp1 | 109.36 |
C12—C13—H13B | 109.5 | C11—Zr1—Cp1' | 96.81 |
C12—C13—H13C | 109.5 | C11—Zr1—Cp2 | 98.16 |
H13A—C13—H13B | 109.5 | C11—Zr1—Cp2' | 106.27 |
H13A—C13—H13C | 109.5 | Cp1—Zr1—Cp2 | 130.26 |
H13B—C13—H13C | 109.5 | Cp1'—Zr1—Cp2' | 129.80 |
C12—C14—H14A | 109.5 | ||
C1—C2—C3—C4 | 1.0 (15) | C6'—C7'—C8'—C9' | 0.2 (11) |
C1—C2—C3—Zr1 | 65.9 (10) | C6'—C7'—C8'—Zr1 | −66.9 (8) |
C2—C1—C5—C4 | −1.0 (10) | C7'—C6'—C10'—C9' | −3.6 (12) |
C2—C1—C5—Zr1 | −66.3 (8) | C7'—C6'—C10'—Zr1 | 66.6 (8) |
C2—C3—C4—C5 | −1.6 (13) | C7'—C8'—C9'—C10' | −2.4 (11) |
C2—C3—C4—Zr1 | 65.4 (10) | C7'—C8'—C9'—Zr1 | −65.9 (7) |
C3—C4—C5—C1 | 1.6 (9) | C8'—C9'—C10'—C6' | 3.8 (12) |
C3—C4—C5—Zr1 | 66.8 (6) | C8'—C9'—C10'—Zr1 | −65.2 (7) |
C5—C1—C2—C3 | 0.0 (14) | C10'—C6'—C7'—C8' | 2.1 (12) |
C5—C1—C2—Zr1 | 66.7 (6) | C10'—C6'—C7'—Zr1 | −65.7 (8) |
C6—C7—C8—C9 | −2.2 (11) | Zr1—C1—C2—C3 | −66.7 (10) |
C6—C7—C8—Zr1 | −68.0 (8) | Zr1—C1—C5—C4 | 65.2 (6) |
C7—C6—C10—C9 | −1.3 (11) | Zr1—C2—C3—C4 | −64.9 (7) |
C7—C6—C10—Zr1 | 65.1 (8) | Zr1—C3—C4—C5 | −67.0 (6) |
C7—C8—C9—C10 | 1.3 (10) | Zr1—C4—C5—C1 | −65.2 (5) |
C7—C8—C9—Zr1 | −66.0 (7) | Zr1—C6—C7—C8 | 67.2 (7) |
C8—C9—C10—C6 | 0.0 (10) | Zr1—C6—C10—C9 | −66.3 (7) |
C8—C9—C10—Zr1 | −67.9 (7) | Zr1—C7—C8—C9 | 65.8 (7) |
C10—C6—C7—C8 | 2.1 (12) | Zr1—C8—C9—C10 | 67.4 (6) |
C10—C6—C7—Zr1 | −65.1 (8) | Zr1—C9—C10—C6 | 67.9 (7) |
C1'—C2'—C3'—C4' | −1.2 (15) | Zr1—C1'—C2'—C3' | −67.5 (11) |
C1'—C2'—C3'—Zr1 | 65.8 (11) | Zr1—C1'—C5'—C4' | 68.0 (7) |
C2'—C1'—C5'—C4' | −1.7 (14) | Zr1—C2'—C3'—C4' | −66.9 (6) |
C2'—C1'—C5'—Zr1 | −69.6 (10) | Zr1—C3'—C4'—C5' | −65.4 (7) |
C2'—C3'—C4'—C5' | 0.1 (12) | Zr1—C4'—C5'—C1' | −65.6 (7) |
C2'—C3'—C4'—Zr1 | 65.5 (9) | Zr1—C6'—C7'—C8' | 67.7 (7) |
C3'—C4'—C5'—C1' | 0.9 (11) | Zr1—C6'—C10'—C9' | −70.1 (8) |
C3'—C4'—C5'—Zr1 | 66.5 (5) | Zr1—C7'—C8'—C9' | 67.1 (7) |
C5'—C1'—C2'—C3' | 1.7 (16) | Zr1—C8'—C9'—C10' | 63.5 (7) |
C5'—C1'—C2'—Zr1 | 69.2 (8) | Zr1—C9'—C10'—C6' | 69.0 (8) |
Symmetry code: (i) −x+1, −y, z. |
Funding information
Funding for this research was provided by: Natural Sciences and Engineering Research Council of Canada.
References
Abrahams, I., Simon, C., Motevalli, M., Shah, S. A. A. & Sullivan, A. C. (1996). J. Organomet. Chem. 521, 301–304. CSD CrossRef CAS Web of Science Google Scholar
Askham, F. R., Carroll, K. M., Alexander, S. J., Rheingold, A. L. & Haggerty, B. S. (1993). Organometallics, 12, 4810–4815. CSD CrossRef CAS Web of Science Google Scholar
Askham, F. R., Carroll, K. M., Briggs, P. M., Rheingold, A. L. & Haggerty, B. S. (1994). Organometallics, 13, 2139–2141. CSD CrossRef CAS Web of Science Google Scholar
Babushkin, D. E., Panchenko, V. N. & Brintzinger, H.-H. (2014). Angew. Chem. Int. Ed. 53, 9645–9649. Web of Science CrossRef CAS Google Scholar
Bai, G., Singh, S., Roesky, H. W., Noltemeyer, M. & Schmidt, H.-G. (2005). J. Am. Chem. Soc. 127, 3449–3455. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bestgen, S., Schoo, C., Zovko, C., Köppe, R., Kelly, R. P., Lebedkin, S., Kappes, M. M. & Roesky, P. W. (2016). Chem. Eur. J. 22, 7115–7126. Web of Science CSD CrossRef CAS PubMed Google Scholar
Black, K., Aspinall, H. C., Jones, A. C., Przybylak, K., Bacsa, J., Chalker, P. R., Taylor, S., Zhao, C. Z., Elliott, S. D., Zydor, A. & Heys, P. (2008). J. Mater. Chem. 18, 4561. Web of Science CSD CrossRef Google Scholar
Bolig, A. D. & Chen, E. Y. (2004). J. Am. Chem. Soc. 126, 4897–4906. Web of Science CSD CrossRef PubMed CAS Google Scholar
Boulho, C., Zijlstra, H. S. & Harder, S. (2015). Eur. J. Inorg. Chem. pp. 2132–2138. Web of Science CSD CrossRef Google Scholar
Boulho, C., Zijlstra, H. S., Hofmann, A., Budzelaar, P. H. M. & Harder, S. (2016). Chem. Eur. J. 22, 17450–17459. Web of Science CSD CrossRef CAS PubMed Google Scholar
Breen, T. L. & Stephan, D. W. (1996). Organometallics, 15, 4509–4514. CSD CrossRef CAS Web of Science Google Scholar
Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burlakov, V. V., Arndt, P., Baumann, W., Spannenberg, A. & Rosenthal, U. (2006). Organometallics, 25, 1317–1320. Web of Science CSD CrossRef CAS Google Scholar
Chapman, A. M., Haddow, M. F. & Wass, D. F. (2012). Eur. J. Inorg. Chem. pp. 1546–1554. Web of Science CSD CrossRef Google Scholar
Ciruelo, G., Cuenca, T., Gómez-Sal, P., Martín, A. & Royo, P. (1995). J. Chem. Soc. Dalton Trans. pp. 231–236. CSD CrossRef Web of Science Google Scholar
Cummings, S. A., Radford, R., Erker, G., Kehr, G. & Fröhlich, R. (2006). Organometallics, 25, 839–842. Web of Science CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Enders, M., Fink, J., Maillant, V. & Pritzkow, H. (2001). Z. Anorg. Allg. Chem. 627, 2281. Web of Science CSD CrossRef Google Scholar
Erker, G., Albrecht, M., Werner, S. & Krüger, C. (1990). Z. Naturforsch. Teil B, 45, 1205–1209. CrossRef CAS Web of Science Google Scholar
Frömel, S., Kehr, G., Fröhlich, R., Daniliuc, C. G. & Erker, G. (2013). Dalton Trans. 42, 14531–14536. Web of Science PubMed Google Scholar
Fujdala, K. L., Oliver, A. G., Hollander, F. J. & Tilley, T. D. (2003). Inorg. Chem. 42, 1140–1150. Web of Science CSD CrossRef PubMed CAS Google Scholar
Gambarotta, S., Strologo, S., Floriani, C., Chiesi-Villa, A. & Guastini, C. (1985). Inorg. Chem. 24, 654–660. CSD CrossRef CAS Web of Science Google Scholar
Garrison, J. C., Kim, H., Collins, S. & Youngs, W. J. (2004). Acta Cryst. C60, m357–m359. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Gosink, H.-J., Roesky, H. W., Noltemeyer, M., Schmidt, H.-G., Freire-Erdbrügger, C. & Sheldrick, G. M. (1993). Chem. Ber. 126, 279–283. CSD CrossRef CAS Web of Science Google Scholar
Gosink, H.-J., Roesky, H. W., Schmidt, H.-G., Noltemeyer, M., Irmer, E. & Herbst-Irmer, R. (1994). Organometallics, 13, 3420–3426. CSD CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurubasavaraj, P. M. (2015). Private Communication (refcode WUPVUA). CCDC, Cambridge, England. Google Scholar
Gurubasavaraj, P. M., Roesky, H. W., Sharma, P. M. V., Oswald, R. B., Dolle, V., Herbst-Irmer, R. & Pal, A. (2007). Organometallics, 26, 3346–3351. Web of Science CSD CrossRef CAS Google Scholar
Haoudi-Mazzah, A., Mazzah, A., Schmidt, H.-G., Noltemeyer, M. & Roesky, H. W. (1991). Z. Naturforsch. Teil B, 46, 587–592. CAS Google Scholar
Helmstedt, U., Lebedkin, S., Höcher, T., Blaurock, S. & Hey-Hawkins, E. (2008). Inorg. Chem. 47, 5815–5820. Web of Science CSD CrossRef PubMed CAS Google Scholar
Helmstedt, U., Lönnecke, P., Reinhold, J. & Hey-Hawkins, E. (2006). Eur. J. Inorg. Chem. pp. 4922–4930. Web of Science CSD CrossRef Google Scholar
Ho, S. C. H., Straus, D. A., Armantrout, J. A., Schaefer, W. P. & Grubbs, R. H. (1984). J. Am. Chem. Soc. 106, 2210–2211. CSD CrossRef CAS Web of Science Google Scholar
Hofmann, M., Malisch, W., Schumacher, D., Lager, M. & Nieger, M. (2002). Organometallics, 21, 3485–3488. Web of Science CSD CrossRef CAS Google Scholar
Hüerländer, D., Kleigrewe, N., Kehr, G., Erker, G. & Fröhlich, R. (2002). Eur. J. Inorg. Chem. pp. 2633–2642. Google Scholar
Hunter, W. E., Hrncir, D. C., Bynum, R. V., Penttila, R. A. & Atwood, J. L. (1983). Organometallics, 2, 750–755. CSD CrossRef CAS Web of Science Google Scholar
Jian, Z., Daniliuc, C. G., Kehr, G. & Erker, G. (2018). Chem. Commun. 54, 5724–5727. Web of Science CSD CrossRef CAS Google Scholar
Johnson, M. J. A., Odom, A. L. & Cummins, C. C. (1997). Chem. Commun. pp. 1523–1524. CSD CrossRef Web of Science Google Scholar
Kelsen, V., Vallée, C., Jeanneau, E., Bibal, C., Santini, C. C., Chauvin, Y. & Olivier-Bourbigou, H. (2011). Organometallics, 30, 4284–4291. Web of Science CSD CrossRef CAS Google Scholar
Koch, T., Blaurock, S., Hey-Hawkins, E., Galan-Fereres, M., Plat, D. & Eisen, M. S. (2000). J. Organomet. Chem. 595, 126–133. Web of Science CSD CrossRef CAS Google Scholar
Lacroix, F., Plecnik, C. E., Liu, S., Liu, F., Meyers, E. A. & Shore, S. G. (2003). J. Organomet. Chem. 687, 69–77. Web of Science CSD CrossRef CAS Google Scholar
Lickiss, P. D. & Lucas, R. (1996). J. Organomet. Chem. 521, 229–234. CrossRef CAS Web of Science Google Scholar
Liu, F.-Q., Roesky, H. W., Schmidt, H.-G. & Noltemeyer, M. (1992). Organometallics, 11, 2965–2967. CSD CrossRef CAS Web of Science Google Scholar
Liu, F.-Q., Schmidt, H.-G., Noltemeyer, M., Freire-Erdbrügger, C., Sheldrick, G. M. & Roesky, H. W. (1992). Z. Naturforsch. Teil B, 47, 1085–1090. CrossRef CAS Google Scholar
Liu, F.-Q., Usón, I. & Roesky, H. W. (1995). J. Chem. Soc. Dalton Trans. pp. 2453–2458. CSD CrossRef Web of Science Google Scholar
Liu, F.-Q., Uson, I. & Roesky, H. W. (1996). Z. Anorg. Allg. Chem. 622, 819–822. CSD CrossRef CAS Web of Science Google Scholar
Liu, Y.-L., Kehr, G., Daniliuc, C. G. & Erker, G. (2017). Organometallics, 36, 3407–3414. Web of Science CSD CrossRef CAS Google Scholar
Longato, B., Martin, B. D., Norton, J. R. & Anderson, O. P. (1985). Inorg. Chem. 24, 1389–1394. CSD CrossRef CAS Web of Science Google Scholar
Mandal, S. K., Gurubasavaraj, P. M., Roesky, H. W., Schwab, G., Stalke, D., Oswald, R. B. & Dolle, V. (2007). Inorg. Chem. 46, 10158–10167. Web of Science CSD CrossRef PubMed CAS Google Scholar
Mariott, W. R. & Chen, E. Y. X. (2005). Macromolecules, 38, 6822–6832. Web of Science CSD CrossRef CAS Google Scholar
Martin, B. D., Matchett, S. A., Norton, J. R. & Anderson, O. P. (1985). J. Am. Chem. Soc. 107, 7952–7959. CSD CrossRef CAS Web of Science Google Scholar
Matchett, S. A., Norton, J. P. & Anderson, O. P. (1988). Organometallics, 7, 2228–2230. CSD CrossRef CAS Web of Science Google Scholar
Mukherjee, A., Nembenna, S., Sen, T. K., Sarish, S. P., Ghorai, P. K., Ott, H., Stalke, D., Mandal, S. K. & Roesky, H. W. (2011). Angew. Chem. Int. Ed. 50, 3968–3972. Web of Science CSD CrossRef CAS Google Scholar
Mukherjee, A., Sen, T. K., Mandal, S. K., Maity, B. & Koley, D. (2013). RSC Adv. 3, 1255–1264. Web of Science CSD CrossRef CAS Google Scholar
Nekoueishahraki, B., Jana, A., Roesky, H. W., Mishra, L., Stern, D. & Stalke, D. (2009). Organometallics, 28, 5733–5738. Web of Science CSD CrossRef CAS Google Scholar
Neu, R. C., Otten, E., Lough, A. & Stephan, D. W. (2011). Chem. Sci. 2, 170–176. Web of Science CSD CrossRef CAS Google Scholar
Normand, A. T., Daniliuc, C. G., Wibbeling, B., Kehr, G., Le Gendre, P. & Erker, G. (2016). Chem. Eur. J. 22, 4285–4293. Web of Science CSD CrossRef CAS PubMed Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pineda, L. W., Jancik, V., Roesky, H. W. & Herbst-Irmer, R. (2005). Inorg. Chem. 44, 3537–3540. Web of Science CSD CrossRef PubMed CAS Google Scholar
Richers, C. P., Bertke, J. A. & Rauchfuss, T. B. (2017). Dalton Trans. 46, 8756–8762. Web of Science CSD CrossRef CAS PubMed Google Scholar
Roesky, H. W., Hesse, D., Bohra, R. & Noltemeyer, M. (1991). Chem. Ber. 124, 1913–1915. CSD CrossRef CAS Web of Science Google Scholar
Roesky, H. W., Mazzah, A., Hesse, D. & Noltemeyer, M. (1991). Chem. Ber. 124, 519–521. CSD CrossRef CAS Web of Science Google Scholar
Ruck, R. T. & Bergman, R. G. (2004). Angew. Chem. Int. Ed. 43, 5375–5377. Web of Science CSD CrossRef Google Scholar
Samuel, E., Harrod, J. F., McGlinchey, M. J., Cabestaing, C. & Robert, F. (1994). Inorg. Chem. 33, 1292–1296. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, S., Jancik, V., Roesky, H. W. & Herbst-Irmer, R. (2006). Inorg. Chem. 45, 949–951. Web of Science CSD CrossRef PubMed CAS Google Scholar
Skowronska-Ptasinska, M. D., Duchateau, R., van Santen, R. A. & Yap, G. P. A. (2001). Organometallics, 20, 3519–3530. Web of Science CSD CrossRef CAS Google Scholar
Stuhldreier, T., Keul, H., Höcker, H. & Englert, U. (2000). Organometallics, 19, 5231–5234. Web of Science CSD CrossRef CAS Google Scholar
Thieme, K., Bourke, S. C., Zheng, J., MacLachlan, M. J., Zamanian, F., Lough, A. J. & Manners, I. (2002). Can. J. Chem. 80, 1469–1480. Web of Science CSD CrossRef CAS Google Scholar
Varga, V., Horáček, M., Bastl, Z., Merna, J., Císařová, I., Sýkora, J. & Pinkas, J. (2012). Catal. Today, 179, 130–139. Web of Science CSD CrossRef CAS Google Scholar
Wada, K., Itayama, N., Watanabe, N., Bundo, M., Kondo, T. & Mitsudo, T. (2004). Organometallics, 23, 5824–5832. Web of Science CSD CrossRef CAS Google Scholar
Waymouth, R. W., Potter, K. S., Schaefer, W. P. & Grubbs, R. H. (1990). Organometallics, 9, 2843–2846. CSD CrossRef CAS Web of Science Google Scholar
Waymouth, R. W., Santarsiero, B. D. & Grubbs, R. H. (1984). J. Am. Chem. Soc. 106, 4050–4051. CSD CrossRef CAS Web of Science Google Scholar
Xu, X., Kehr, G., Daniliuc, C. G. & Erker, G. (2015). Organometallics, 34, 2655–2661. Web of Science CSD CrossRef CAS Google Scholar
Yang, Y., Gurubasavaraj, P. M., Ye, H., Zhang, Z., Roesky, H. W. & Jones, P. G. (2008). J. Organomet. Chem. 693, 1455–1461. Web of Science CSD CrossRef CAS Google Scholar
Yang, Y., Schulz, T., John, M., Yang, Z., Jiménez-Pérez, V. M., Roesky, H. W., Gurubasavaraj, P. M., Stalke, D. & Ye, H. (2008). Organometallics, 27, 769–777. Web of Science CSD CrossRef CAS Google Scholar
Zhang, W., Zhang, S., Sun, X., Nishiura, M., Hou, Z. & Xi, Z. (2009). Angew. Chem. Int. Ed. 48, 7227–7231. Web of Science CSD CrossRef CAS Google Scholar
Zuccaccia, C., Stahl, N. G., Macchioni, A., Chen, M. C., Roberts, J. A. & Marks, T. J. (2004). J. Am. Chem. Soc. 126, 1448–1464. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.