research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4,6-di­methyl-2-[(2,3,4,6-tetra-O-acetyl-β-D-galacto­pyranos­yl)sulfan­yl]pyrimidine

CROSSMARK_Color_square_no_text.svg

aGreen Chemistry Department, National Research Centre, 33 El Bohouth Street, Dokki, Giza, Egypt, bChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and cInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 17 October 2019; accepted 24 October 2019; online 5 November 2019)

In the title com­pound, C20H26N2O9S, the S atom is attached equatorially to the sugar ring. The C—S bond lengths are unequal, with S—Cs = 1.8018 (13) Å and S—Cp = 1.7662 (13) Å (s = sugar and p = pyrimid­yl). In the crystal, a system of three weak hydrogen bonds, sharing an oxygen acceptor, links the mol­ecules to form chains propagating parallel to the b-axis direction.

1. Chemical context

Nucleosides are building blocks of biological systems and display a wide range of biological activities (Ding et al., 2003[Ding, Y., Hofstadler, S. A., Swayze, E. E., Risen, L. & Griffey, R. H. (2003). Angew. Chem. Int. Ed. 42, 3409-3412.]). Pyrimidine nucleoside analogues provide diverse and novel moieties for pharmacological targets, and they play basic and com­prehensive roles in the field of medicinal chemistry (Xu et al., 2017[Xu, J., Tsanakopoulou, M., Magnani, C. J., Szabla, R., Šponer, J. E., Šponer, J., Góra, R. W. & Sutherland, J. D. (2017). Nat. Chem. 9, 303-309.]). Different strategies for the synthesis of many pyrimidine nucleoside analogues have been developed to access new and potent pharmacological agents (Cao et al., 2011[Cao, S., Okamoto, I., Tsunoda, H., Ohkubo, A., Seio, K. & Sekine, M. (2011). Tetrahedron Lett. 52, 407-410.]). Many such derivatives are manufactured as potential chemotherapeutic agents and have a significant impact on current medicinal research (Ohkubo et al., 2012[Ohkubo, A., Nishino, Y., Ito, Y., Tsunoda, H., Seio, K. & Sekine, M. (2012). Org. Biomol. Chem. 10, 2008-2010.]). Recently, thio­glycosides have proved to be important in the production of medically important carbohydrate com­pounds, because of their ease of preparation and chemical stability (Gourdain et al., 2011[Gourdain, S., Petermann, C., Martinez, A., Harakat, D. & Clivio, P. (2011). J. Org. Chem. 76, 1906-1909.]).

We have recently described the preparation of various pyrimidine and pyridine thio­glycosides that displayed antagonistic activity (Hammad et al., 2018[Hammad, S. F., Masoud, D. M., Elgemeie, G. H. & Jones, P. G. (2018). Acta Cryst. E74, 853-856.]; Elgemeie et al., 2010[Elgemeie, G. H., Mahdy, E. M., Elgawish, M. A., Ahmed, M. M., Shousha, W. G. & Eldin, M. E. (2010). Z. Naturforsch. Teil C, 65, 577-587.]). We have also reported the use of di­hydro­pyridine thio­glycosides as substrates or inhibitors of protein glycosyl­ation (Scale et al., 1997[Scale, S., Akhmed, N., Rao, U. S., Paul, K., Lan, L., Dickstein, B., Lee, J., Elgemeie, G. H., Stein, W. D. & Bates, S. E. P. (1997). Mol. Pharmacol. 51, 1024-1033.]; Elgemeie et al., 2015[Elgemeie, G. H., Abou-Zeid, M., Alsaid, S., Hebishy, A. & Essa, H. (2015). Nucleosides Nucleotides, 34, 659-673.], 2016[Elgemeie, G. H., Abu-Zaied, M. A. & Azzam, R. (2016). Nucleosides Nucleotides, 35, 211-222.], 2017[Elgemeie, G. H., Abu-Zaied, M. A. & Loutfy, S. A. (2017). Tetrahedron, 73, 5853-5861.]) and the use of pyrimidine thio­glycosides as anti­hepatocellular carcinoma agents (Elgemeie & Farag, 2017[Elgemeie, G. H. & Farag, A. B. (2017). Nucleosides Nucleotides, 36, 328-342.]). Continuing our efforts to develop simple and cost-effective methodologies for the synthesis of pyrimidine thio­glycosides, we report here the one-step synthesis of a pyrimidine-2-thio­galactoside derivative by the reaction of 4,6-di­methyl­pyrimidine-2(1H)-thione (1) with 2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl bromide (2). This reaction in NaH/DMF at room temperature gave a product for which two isomeric structures seemed possible, corresponding to two possible modes of glysosylation to give the pyrimidine-N-galactoside (3) or its regioisomer pyrimidine-2-thio­galac­to­side 4 (see Scheme). Spectroscopic data cannot differentiate between these structures. It has been suggested that 1 reacts with 2 via a simple SN2 reaction to give the β-glycoside product 4 (Davis, 2000[Davis, B. G. (2000). J. Chem. Soc. Perkin Trans. 1, 14, 2137-2160.]).

2. Structural commentary

The crystal structure determination indicated unambiguously the formation of the pyrimidine-2-thio­galactoside, 4, as the only product in the solid state.

[Scheme 1]

The mol­ecular structure of 4 is shown in Fig. 1[link] (for selected torsion angles, see Table 1[link]) and the S atom is attached equatorially to the sugar ring. Similar to the structure of a related glucose derivative (Masoud et al., 2017[Masoud, D. M., Hammad, S. F., Elgemeie, G. H. & Jones, P. G. (2017). Acta Cryst. E73, 1751-1754.]), the C—S bond lengths are unequal, with S—Cs = 1.8018 (13) Å and S—Cp = 1.7662 (13) Å (s = sugar and p = pyrimid­yl). The relative orientation of the pyridyl ring and the sugar moiety is defined by the torsion angles N2—C1—S1—C11 [−7.85 (12)°] and C1—S1—C11—C12 [165.01 (9)°]. All the acetyl groups show extended conformations, with absolute C—O—C—C torsion angles in the range 173–179°.

Table 1
Selected torsion angles (°)

S1—C11—C12—C13 178.21 (9) C22—C21—O4—C14 177.90 (11)
S1—C11—O1—C15 171.60 (8) C24—C23—O5—C16 178.85 (13)
C18—C17—O2—C12 176.21 (11) C15—C16—O5—C23 174.82 (12)
C20—C19—O3—C13 −173.83 (12)    
[Figure 1]
Figure 1
The mol­ecular structure of the title com­pound, 4, in the crystal. Displacement ellipsoids represent 50% probability levels.

3. Supra­molecular features

Some short C—H⋯O and C—H⋯S contacts are listed in Table 2[link], but these are at best borderline `weak' hydrogen bonds, particularly in view of their narrow angles. The mol­ecular packing is thus rather featureless. However, a motif of three sugar-ring C—H groups (C13—H13, C14—H14 and C15—H15) sharing a common acceptor (O8) can be recognized (Fig. 2[link]). Neighbouring mol­ecules are connected via the 21 operator, leading to chains of mol­ecules propagating parallel to the b-axis direction.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7C⋯O9i 0.98 2.57 3.495 (2) 157
C8—H8B⋯O1ii 0.98 2.52 3.2499 (18) 131
C13—H13⋯O8iii 1.00 2.65 3.2998 (16) 123
C14—H14⋯O8iii 1.00 2.53 3.0626 (16) 113
C15—H15⋯O8iii 1.00 2.50 3.1759 (16) 124
C18—H18B⋯S1iv 0.98 2.95 3.7876 (19) 144
C22—H22C⋯O6v 0.98 2.51 3.1911 (19) 127
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+2]; (ii) [-x, y-{\script{1\over 2}}, -z+1]; (iii) [-x+1, y-{\script{1\over 2}}, -z+2]; (iv) [-x+1, y-{\script{1\over 2}}, -z+1]; (v) [-x+1, y+{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
Packing diagram of 4 projected parallel to the ab plane in the region z ≃ 1. Dashed lines indicate weak C—H⋯O hydrogen bonds. H atoms not involved in this hydrogen bonding system have been omitted.

4. Database survey

A search of the Cambridge Structural Database (Vwersion 2.0.0; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for tetra­acetyl thio­glycosides with an S-bonded heterocycle [linkage S—C(—N)2, restricted to hexoses] gave one hit, a 1,2,4-triazole derivative of tetra­acetyl­glucose (refcode HEKPUL; El Ashry et al., 2018[El Ashry El, S. H., Awad, L. F., Al Moaty, M. N. A., Ghabbour, H. A. & Barakwat, A. (2018). J. Mol. Struct. 1152, 87-95.]).

5. Synthesis and crystallization

To a solution of pyrimidine-2(1H)-thione (1; 1.40 g, 0.01 mol) in dry DMF (20 ml), NaH (15 mmol) was added gradually over a period of 15 min and the solution was stirred at room temperature for another 30 min. A solution of 2,3,4,6-tetra-O-acetyl-α-D-galacto­pyranosyl bromide (2; 4.52 g, 0.011 mol) in DMF (20 ml) was then added dropwise over a period of 30 min and the reaction mixture was stirred at room temperature until the reaction was judged com­plete by thin-layer chromatography (3–6 h). The mixture was evaporated under reduced pressure at 333 K and the residue was washed with distilled water to remove potassium bromide. The crude solid was collected by filtration and purified using column chromatography (the solvent system was petroleum ether/ethyl acetate, 3:1 v/v; RF = 0.35); after evaporation of the solvent, this afforded com­pound 4 as colourless crystals in 85% yield (m.p. 441.2 K). IR (KBr, cm−1): ν 1752 (C=O); 1H NMR (500 MHz, DMSO-d6): δ 2.11 (s, 12H, 4 × OAc), 2.45 (s, 6H, 2CH3), 4.01–4.12 (m, 2H, 2H-6′), 4.35–4.37 (m, 1H, H-5′), 5.21 (t, 1H, J4′-3′ = 2.6, J4′-5′ = 2.4 Hz, H-4′), 5.42–5.46 (m, 2H, H-3′, H-2′), 5.98 (d, 1H, J1′-2′ = 10.65 Hz, H-1′), 7.01 (s, 1H, pyrimidine H-5); 13C NMR: δ 21.43 (4 × OAc), 22.4 (2CH3), 62.13 (C-6′), 68.41 (C-5′), 71.12 (C-4′), 74.43 (C-3′), 77.56 (C-2′), 82.12 (C-1′), 118.41 (C-5), 168.35 (C-4), 170.45 (C-6), 172.78 (4 × C=O). Analysis calculated (%) for C20H26N2O9S: C 51.06, H 5.57, N 5.95, S 6.82; found: C 51.16, H 5.46, N 5.82, S 6.75.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Methyl groups were refined as idealized rigid groups allowed to rotate but not tip (C—H = 0.98 Å and H—C—H = 109.5°). Other H atoms were included using a riding model starting from calculated positions (aromatic C—H = 0.95 Å, methyl­ene C—H = 0.99 Å and methine C—H = 1.00 Å).

Table 3
Experimental details

Crystal data
Chemical formula C20H26N2O9S
Mr 470.49
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 11.4868 (2), 8.6444 (2), 11.5561 (2)
β (°) 91.3762 (16)
V3) 1147.14 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.40 × 0.40 × 0.08
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.896, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 107162, 7825, 7530
Rint 0.034
(sin θ/λ)max−1) 0.757
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.073, 1.04
No. of reflections 7825
No. of parameters 295
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.21
Absolute structure Flack x determined using 3355 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.003 (11)
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-ray Instruments, Madison, Wisconsin, USA.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL2017 (Sheldrick, 2015).

4,6-Dimethyl-2-[(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)sulfanyl]pyrimidine top
Crystal data top
C20H26N2O9SF(000) = 496
Mr = 470.49Dx = 1.362 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 11.4868 (2) ÅCell parameters from 34705 reflections
b = 8.6444 (2) Åθ = 2.5–31.9°
c = 11.5561 (2) ŵ = 0.19 mm1
β = 91.3762 (16)°T = 100 K
V = 1147.14 (4) Å3Plate, colourless
Z = 20.40 × 0.40 × 0.08 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
7825 independent reflections
Radiation source: fine-focus sealed X-ray tube7530 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.034
ω–scanθmax = 32.6°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 1617
Tmin = 0.896, Tmax = 1.000k = 1312
107162 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.1562P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.003
7825 reflectionsΔρmax = 0.34 e Å3
295 parametersΔρmin = 0.21 e Å3
1 restraintAbsolute structure: Flack x determined using 3355 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.003 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.31717 (3)0.37712 (4)0.52391 (3)0.01490 (7)
C10.20586 (11)0.24276 (15)0.55326 (12)0.0142 (2)
N20.19449 (10)0.18868 (14)0.65991 (10)0.0157 (2)
C30.10603 (12)0.08858 (17)0.67531 (12)0.0172 (2)
C40.03201 (12)0.04670 (18)0.58372 (14)0.0206 (3)
H40.0309200.0226270.5947910.025*
C50.05295 (11)0.10958 (19)0.47507 (13)0.0199 (3)
N60.14080 (10)0.20913 (15)0.45864 (10)0.0171 (2)
C70.09350 (14)0.0274 (2)0.79576 (14)0.0245 (3)
H7A0.1686050.0130570.8241510.037*
H7B0.0355070.0557840.7952170.037*
H7C0.0682100.1109570.8466390.037*
C80.02150 (15)0.0695 (3)0.37087 (15)0.0321 (4)
H8A0.0067400.1433330.3085900.048*
H8B0.1037880.0741090.3911030.048*
H8C0.0025820.0352840.3448630.048*
C110.36873 (11)0.41461 (15)0.66971 (11)0.0131 (2)
H110.3752900.3146640.7129430.016*
C120.48727 (11)0.49574 (15)0.67193 (11)0.0128 (2)
H120.4834200.5938880.6261930.015*
C130.52391 (10)0.52856 (15)0.79714 (11)0.0126 (2)
H130.5435130.4289680.8371010.015*
C140.42901 (11)0.61209 (15)0.86310 (10)0.0125 (2)
H140.4503590.6159250.9474500.015*
C150.31396 (11)0.52721 (16)0.84512 (11)0.0134 (2)
H150.3203870.4219660.8806260.016*
C160.21073 (12)0.61091 (19)0.89541 (11)0.0182 (2)
H16A0.1995820.7128220.8576620.022*
H16B0.1387320.5493290.8837780.022*
C170.60600 (13)0.42066 (17)0.51651 (12)0.0189 (3)
C180.70211 (15)0.3144 (2)0.48332 (15)0.0268 (3)
H18A0.7012480.3019100.3990200.040*
H18B0.6911630.2134380.5200120.040*
H18C0.7770160.3582410.5091500.040*
C190.70586 (11)0.60977 (19)0.88007 (12)0.0195 (3)
C200.80074 (13)0.7270 (2)0.86755 (15)0.0289 (3)
H20A0.7773570.8244630.9035110.043*
H20B0.8146940.7442610.7852310.043*
H20C0.8722520.6888850.9057290.043*
C210.47753 (11)0.87850 (18)0.87510 (11)0.0161 (2)
C220.46064 (15)1.03358 (18)0.81936 (13)0.0229 (3)
H22A0.4841691.1149200.8741640.034*
H22B0.3783971.0470570.7971180.034*
H22C0.5082941.0402090.7503220.034*
C230.15859 (13)0.71433 (19)1.07533 (13)0.0219 (3)
C240.19319 (16)0.7243 (3)1.20142 (14)0.0306 (4)
H24A0.1354760.7856141.2424270.046*
H24B0.2697210.7737111.2095400.046*
H24C0.1969230.6199291.2344810.046*
O10.28647 (8)0.51166 (12)0.72429 (8)0.01402 (17)
O20.57416 (8)0.39412 (12)0.62726 (8)0.01502 (18)
O30.62667 (8)0.62251 (13)0.79139 (8)0.01642 (18)
O40.41523 (8)0.76733 (12)0.81822 (8)0.01450 (18)
O50.23709 (9)0.63008 (14)1.01710 (9)0.0198 (2)
O60.56194 (12)0.51912 (15)0.45620 (10)0.0278 (2)
O70.69797 (10)0.51640 (16)0.95647 (10)0.0266 (2)
O80.53897 (9)0.85198 (13)0.95903 (9)0.0201 (2)
O90.07262 (10)0.76925 (17)1.03075 (11)0.0295 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01701 (13)0.01501 (14)0.01247 (12)0.00376 (11)0.00397 (9)0.00027 (11)
C10.0126 (5)0.0123 (6)0.0177 (5)0.0001 (4)0.0024 (4)0.0023 (4)
N20.0156 (5)0.0138 (5)0.0176 (5)0.0000 (4)0.0019 (4)0.0000 (4)
C30.0151 (5)0.0148 (6)0.0218 (6)0.0007 (4)0.0013 (4)0.0003 (5)
C40.0143 (5)0.0210 (7)0.0265 (7)0.0033 (5)0.0001 (5)0.0024 (5)
C50.0136 (5)0.0224 (7)0.0235 (6)0.0022 (5)0.0030 (5)0.0043 (5)
N60.0144 (5)0.0191 (6)0.0177 (5)0.0013 (4)0.0037 (4)0.0033 (4)
C70.0223 (6)0.0257 (8)0.0257 (7)0.0023 (6)0.0014 (5)0.0072 (6)
C80.0232 (7)0.0468 (11)0.0260 (7)0.0135 (7)0.0066 (6)0.0073 (7)
C110.0139 (5)0.0129 (6)0.0123 (5)0.0003 (4)0.0036 (4)0.0004 (4)
C120.0139 (5)0.0126 (6)0.0120 (5)0.0005 (4)0.0026 (4)0.0009 (4)
C130.0118 (5)0.0136 (6)0.0122 (5)0.0016 (4)0.0029 (4)0.0008 (4)
C140.0142 (5)0.0118 (5)0.0114 (5)0.0002 (4)0.0031 (4)0.0011 (4)
C150.0139 (5)0.0149 (6)0.0112 (5)0.0009 (4)0.0027 (4)0.0009 (4)
C160.0159 (5)0.0242 (7)0.0142 (5)0.0030 (5)0.0017 (4)0.0005 (5)
C170.0222 (6)0.0199 (7)0.0148 (5)0.0085 (5)0.0028 (4)0.0051 (5)
C180.0255 (7)0.0288 (8)0.0266 (7)0.0049 (6)0.0080 (6)0.0112 (6)
C190.0132 (5)0.0263 (7)0.0188 (6)0.0007 (5)0.0036 (4)0.0079 (5)
C200.0169 (6)0.0392 (10)0.0303 (8)0.0094 (6)0.0020 (5)0.0098 (7)
C210.0202 (5)0.0137 (6)0.0142 (5)0.0009 (5)0.0014 (4)0.0028 (5)
C220.0356 (8)0.0137 (6)0.0189 (6)0.0028 (6)0.0062 (5)0.0010 (5)
C230.0187 (6)0.0250 (7)0.0221 (6)0.0031 (5)0.0056 (5)0.0031 (5)
C240.0286 (7)0.0445 (11)0.0189 (7)0.0026 (7)0.0045 (6)0.0080 (7)
O10.0138 (4)0.0156 (4)0.0125 (4)0.0015 (3)0.0042 (3)0.0007 (3)
O20.0156 (4)0.0163 (5)0.0131 (4)0.0001 (3)0.0001 (3)0.0018 (3)
O30.0141 (4)0.0201 (5)0.0149 (4)0.0046 (4)0.0029 (3)0.0025 (4)
O40.0195 (4)0.0108 (4)0.0129 (4)0.0004 (3)0.0055 (3)0.0005 (3)
O50.0183 (4)0.0270 (6)0.0142 (4)0.0031 (4)0.0005 (3)0.0020 (4)
O60.0396 (6)0.0273 (6)0.0167 (5)0.0032 (5)0.0034 (4)0.0030 (4)
O70.0231 (5)0.0330 (7)0.0233 (5)0.0017 (5)0.0102 (4)0.0011 (5)
O80.0243 (5)0.0184 (5)0.0173 (4)0.0006 (4)0.0076 (4)0.0046 (4)
O90.0207 (5)0.0371 (7)0.0310 (6)0.0060 (5)0.0038 (4)0.0013 (5)
Geometric parameters (Å, º) top
S1—C11.7662 (13)C23—O91.201 (2)
S1—C111.8018 (13)C23—O51.3511 (18)
C1—N21.3275 (18)C23—C241.504 (2)
C1—N61.3414 (17)C4—H40.9500
N2—C31.3497 (18)C7—H7A0.9800
C3—C41.390 (2)C7—H7B0.9800
C3—C71.499 (2)C7—H7C0.9800
C4—C51.394 (2)C8—H8A0.9800
C5—N61.3432 (18)C8—H8B0.9800
C5—C81.501 (2)C8—H8C0.9800
C11—O11.4223 (15)C11—H111.0000
C11—C121.5314 (17)C12—H121.0000
C12—O21.4349 (16)C13—H131.0000
C12—C131.5239 (17)C14—H141.0000
C13—O31.4356 (15)C15—H151.0000
C13—C141.5267 (18)C16—H16A0.9900
C14—O41.4460 (16)C16—H16B0.9900
C14—C151.5214 (17)C18—H18A0.9800
C15—O11.4305 (15)C18—H18B0.9800
C15—C161.5168 (19)C18—H18C0.9800
C16—O51.4409 (16)C20—H20A0.9800
C17—O61.204 (2)C20—H20B0.9800
C17—O21.3591 (16)C20—H20C0.9800
C17—C181.493 (2)C22—H22A0.9800
C19—O71.201 (2)C22—H22B0.9800
C19—O31.3583 (16)C22—H22C0.9800
C19—C201.498 (2)C24—H24A0.9800
C21—O81.2077 (16)C24—H24B0.9800
C21—O41.3584 (16)C24—H24C0.9800
C21—C221.498 (2)
C1—S1—C1199.32 (6)H7A—C7—H7C109.5
N2—C1—N6127.96 (13)H7B—C7—H7C109.5
N2—C1—S1119.85 (10)C5—C8—H8A109.5
N6—C1—S1112.19 (10)C5—C8—H8B109.5
C1—N2—C3116.07 (12)H8A—C8—H8B109.5
N2—C3—C4121.02 (13)C5—C8—H8C109.5
N2—C3—C7115.98 (13)H8A—C8—H8C109.5
C4—C3—C7123.00 (13)H8B—C8—H8C109.5
C3—C4—C5117.95 (13)O1—C11—H11109.3
N6—C5—C4121.56 (13)C12—C11—H11109.3
N6—C5—C8116.76 (14)S1—C11—H11109.3
C4—C5—C8121.68 (14)O2—C12—H12110.6
C1—N6—C5115.43 (12)C13—C12—H12110.6
O1—C11—C12108.80 (10)C11—C12—H12110.6
O1—C11—S1108.29 (8)O3—C13—H13109.4
C12—C11—S1111.73 (9)C12—C13—H13109.4
O2—C12—C13106.07 (10)C14—C13—H13109.4
O2—C12—C11109.85 (10)O4—C14—H14109.9
C13—C12—C11109.05 (10)C15—C14—H14109.9
O3—C13—C12105.66 (10)C13—C14—H14109.9
O3—C13—C14110.69 (10)O1—C15—H15109.1
C12—C13—C14112.20 (10)C16—C15—H15109.1
O4—C14—C15108.14 (10)C14—C15—H15109.1
O4—C14—C13109.47 (10)O5—C16—H16A110.5
C15—C14—C13109.39 (10)C15—C16—H16A110.5
O1—C15—C16105.22 (10)O5—C16—H16B110.5
O1—C15—C14110.44 (10)C15—C16—H16B110.5
C16—C15—C14113.71 (11)H16A—C16—H16B108.7
O5—C16—C15106.32 (10)C17—C18—H18A109.5
O6—C17—O2123.07 (14)C17—C18—H18B109.5
O6—C17—C18126.10 (14)H18A—C18—H18B109.5
O2—C17—C18110.82 (13)C17—C18—H18C109.5
O7—C19—O3123.23 (13)H18A—C18—H18C109.5
O7—C19—C20126.41 (14)H18B—C18—H18C109.5
O3—C19—C20110.37 (13)C19—C20—H20A109.5
O8—C21—O4123.04 (13)C19—C20—H20B109.5
O8—C21—C22125.63 (13)H20A—C20—H20B109.5
O4—C21—C22111.33 (11)C19—C20—H20C109.5
O9—C23—O5123.46 (14)H20A—C20—H20C109.5
O9—C23—C24126.07 (15)H20B—C20—H20C109.5
O5—C23—C24110.45 (14)C21—C22—H22A109.5
C11—O1—C15110.79 (9)C21—C22—H22B109.5
C17—O2—C12116.15 (11)H22A—C22—H22B109.5
C19—O3—C13117.11 (11)C21—C22—H22C109.5
C21—O4—C14115.54 (10)H22A—C22—H22C109.5
C23—O5—C16114.90 (11)H22B—C22—H22C109.5
C3—C4—H4121.0C23—C24—H24A109.5
C5—C4—H4121.0C23—C24—H24B109.5
C3—C7—H7A109.5H24A—C24—H24B109.5
C3—C7—H7B109.5C23—C24—H24C109.5
H7A—C7—H7B109.5H24A—C24—H24C109.5
C3—C7—H7C109.5H24B—C24—H24C109.5
C11—S1—C1—N27.85 (12)C12—C13—C14—C1549.77 (14)
C11—S1—C1—N6171.73 (10)O4—C14—C15—O163.93 (13)
N6—C1—N2—C30.6 (2)C13—C14—C15—O155.22 (14)
S1—C1—N2—C3178.90 (10)O4—C14—C15—C1654.09 (13)
C1—N2—C3—C40.2 (2)C13—C14—C15—C16173.24 (11)
C1—N2—C3—C7179.87 (13)O1—C15—C16—O5179.18 (11)
N2—C3—C4—C50.9 (2)C14—C15—C16—O558.19 (14)
C7—C3—C4—C5179.23 (15)C12—C11—O1—C1566.76 (12)
C3—C4—C5—N60.8 (2)S1—C11—O1—C15171.60 (8)
C3—C4—C5—C8179.22 (15)C16—C15—O1—C11171.37 (11)
N2—C1—N6—C50.7 (2)C14—C15—O1—C1165.52 (13)
S1—C1—N6—C5178.84 (10)O6—C17—O2—C122.78 (19)
C4—C5—N6—C10.1 (2)C18—C17—O2—C12176.21 (11)
C8—C5—N6—C1179.96 (14)C13—C12—O2—C17140.59 (11)
C1—S1—C11—O175.17 (9)C11—C12—O2—C17101.70 (12)
C1—S1—C11—C12165.01 (9)O7—C19—O3—C136.0 (2)
O1—C11—C12—O2174.55 (9)C20—C19—O3—C13173.83 (12)
S1—C11—C12—O265.93 (12)C12—C13—O3—C19150.10 (11)
O1—C11—C12—C1358.70 (13)C14—C13—O3—C1988.21 (13)
S1—C11—C12—C13178.21 (9)O8—C21—O4—C141.39 (18)
O2—C12—C13—O369.45 (12)C22—C21—O4—C14177.90 (11)
C11—C12—C13—O3172.30 (10)C15—C14—O4—C21146.97 (11)
O2—C12—C13—C14169.84 (10)C13—C14—O4—C2193.93 (12)
C11—C12—C13—C1451.59 (14)O9—C23—O5—C160.4 (2)
O3—C13—C14—O449.20 (13)C24—C23—O5—C16178.85 (13)
C12—C13—C14—O468.56 (13)C15—C16—O5—C23174.82 (12)
O3—C13—C14—C15167.53 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7C···O9i0.982.573.495 (2)157
C8—H8B···O1ii0.982.523.2499 (18)131
C13—H13···O8iii1.002.653.2998 (16)123
C14—H14···O8iii1.002.533.0626 (16)113
C15—H15···O8iii1.002.503.1759 (16)124
C18—H18B···S1iv0.982.953.7876 (19)144
C22—H22C···O6v0.982.513.1911 (19)127
Symmetry codes: (i) x, y1/2, z+2; (ii) x, y1/2, z+1; (iii) x+1, y1/2, z+2; (iv) x+1, y1/2, z+1; (v) x+1, y+1/2, z+1.
 

Acknowledgements

GHE would like to thank the Egyptian Academy of Scientific Research & Technology (ASRT), Jesor program, for awarding a grant.

References

First citationCao, S., Okamoto, I., Tsunoda, H., Ohkubo, A., Seio, K. & Sekine, M. (2011). Tetrahedron Lett. 52, 407–410.  Web of Science CrossRef CAS Google Scholar
First citationDavis, B. G. (2000). J. Chem. Soc. Perkin Trans. 1, 14, 2137–2160.  Web of Science CrossRef Google Scholar
First citationDing, Y., Hofstadler, S. A., Swayze, E. E., Risen, L. & Griffey, R. H. (2003). Angew. Chem. Int. Ed. 42, 3409–3412.  Web of Science CrossRef CAS Google Scholar
First citationEl Ashry El, S. H., Awad, L. F., Al Moaty, M. N. A., Ghabbour, H. A. & Barakwat, A. (2018). J. Mol. Struct. 1152, 87–95.  Google Scholar
First citationElgemeie, G. H., Abou-Zeid, M., Alsaid, S., Hebishy, A. & Essa, H. (2015). Nucleosides Nucleotides, 34, 659–673.  Web of Science CrossRef CAS Google Scholar
First citationElgemeie, G. H., Abu-Zaied, M. A. & Azzam, R. (2016). Nucleosides Nucleotides, 35, 211–222.  Web of Science CrossRef CAS Google Scholar
First citationElgemeie, G. H., Abu-Zaied, M. A. & Loutfy, S. A. (2017). Tetrahedron, 73, 5853–5861.  Web of Science CrossRef CAS Google Scholar
First citationElgemeie, G. H. & Farag, A. B. (2017). Nucleosides Nucleotides, 36, 328–342.  CAS Google Scholar
First citationElgemeie, G. H., Mahdy, E. M., Elgawish, M. A., Ahmed, M. M., Shousha, W. G. & Eldin, M. E. (2010). Z. Naturforsch. Teil C, 65, 577–587.  CrossRef CAS Google Scholar
First citationGourdain, S., Petermann, C., Martinez, A., Harakat, D. & Clivio, P. (2011). J. Org. Chem. 76, 1906–1909.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHammad, S. F., Masoud, D. M., Elgemeie, G. H. & Jones, P. G. (2018). Acta Cryst. E74, 853–856.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMasoud, D. M., Hammad, S. F., Elgemeie, G. H. & Jones, P. G. (2017). Acta Cryst. E73, 1751–1754.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOhkubo, A., Nishino, Y., Ito, Y., Tsunoda, H., Seio, K. & Sekine, M. (2012). Org. Biomol. Chem. 10, 2008–2010.  Web of Science CrossRef CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationScale, S., Akhmed, N., Rao, U. S., Paul, K., Lan, L., Dickstein, B., Lee, J., Elgemeie, G. H., Stein, W. D. & Bates, S. E. P. (1997). Mol. Pharmacol. 51, 1024–1033.  PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-ray Instruments, Madison, Wisconsin, USA.  Google Scholar
First citationXu, J., Tsanakopoulou, M., Magnani, C. J., Szabla, R., Šponer, J. E., Šponer, J., Góra, R. W. & Sutherland, J. D. (2017). Nat. Chem. 9, 303–309.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds