research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Organically pillared layer framework of [Eu(NH2–BDC)(ox)(H3O)]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand, and bMaterials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
*Correspondence e-mail: apinpus.rujiwatra@cmu.ac.th

Edited by J. Jasinski, Keene State College, USA (Received 17 October 2019; accepted 30 October 2019; online 8 November 2019)

The non-porous three-dimensional structure of poly[(μ5-2-amino­benzene-1,4-di­carboxyl­ato)(μ6-oxalato)(oxomium)europium(III)], [Eu(C8H5NO4)(C2O4)(H3O)]n or [EuIII(NH2–BDC)(ox)(H3O)]n (NH2–BDC2− = 2-amino­terephthalate and ox2− = oxalate) is constructed from two-dimensional layers of EuIII–carboxyl­ate–oxalate, which are connected by NH2–BDC2− pillars. The basic structural unit of the layer is an edge-sharing dimer of TPRS-{EuIIIO9}, which is assembled through the ox2− moiety. The intra­layer void is partially occupied by TPR-{EuIIIO6} motifs. Weak C—H⋯O and strong, classical intra­molecular N—H⋯O and inter­molecular O—H⋯O hydrogen-bonding inter­actions, as well as weak ππ stacking inter­actions, affix the organic pillars within the framework. The two-dimensional layer can be simplified to a uninodal 4-connected sql/Shubnikov tetra­gonal plane net with point symbol {44.62}.

1. Chemical context

Lanthanide coordination polymers (LnCPs) have emerged as authentic multifunctional materials finding potential in various applications, e.g. magnetism, optics, luminescence and in heterogeneous catalysis (Roy et al., 2014[Roy, S., Charkraborty, A. & Maji, T.-K. (2014). Chem. Rev. 273-274, 139-164.]). In the crystal engineering of LnCPs, the judicious choice of organic ligands is critical. Among the widely employed di­carboxyl­ates, 1,4-benzene­dicarb­oxy­lic acid (H2BDC) tends to provide three-dimensional frameworks with permanent porosity. To enhance inter­actions with guest species, additional functional groups can be introduced onto the phenyl ring of BDC2−, e.g. 2-amino-1,4-benzene­diarboxylic acid (NH2-H2BDC) in NH2-MIL-53(Al) enhanced the carbon dioxide capture capacity (Stavitski et al., 2011[Stavitski, E., Pidko, E. A., Couck, S., Remy, T., Hensen, E. J. M., Weckhuysen, B. M., Denayer, J., Gascon, J. & Kapteijn, F. (2011). Langmuir, 27, 3970-3976.]; Flaig et al., 2017[Flaig, R. W., Popp, T. M. O., Fracaroli, A. M., Kapustin, E. A., Kalmutzki, M. J., Altamimi, R. M., Fathieh, F., Reimer, J. A. & Yaghi, O. M. (2017). J. Am. Chem. Soc. 139, 12125-12128.]; Wang et al., 2012[Wang, F., Tan, Y. X., Yang, H., Kang, Y. & Zhang, J. (2012). Chem. Commun. 48, 4842-4844.]). The smallest di­carb­oxy­lic acid, i.e. oxalic acid (H2ox), on the other hand, may not facilitate the porous framework (Zhang et al., 2016[Zhang, X. T., Fan, L.-M., Fan, W.-L., Li, B., Liu, G. Z., Liu, X.-Z. & Zhao, X. (2016). Cryst. Growth & Des. 16, 3993-4004.]; Xiahou et al., 2013[Xiahou, Z.-J., Wang, Y.-L., Liu, Q.-Y., Li, L. & Zhou, L.-J. (2013). J. Coord. Chem. 66, 2910-2918.]) and its presence as a secondary ligand in the fabrication may lead to diversity in the framework structures.

[Scheme 1]

Herein, NH2-H2BDC and H2ox were employed as mixed linkers in the synthesis of a new three-dimensional framework of europium, i.e. [Eu(NH2-BDC)(ox)(H3O)] (I). The crystal structure of I, which exhibits site disorder at both the EuIII ion and the amino group, is reported. Weak inter­molecular inter­actions and the framework topology are also described.

2. Structural commentary

[Eu(NH2–BDC)(ox)(H3O)] crystallizes in the monoclinic space group P21/c. Its asymmetric unit comprises one EuIII ion, which is disordered over two crystallographic sites with an occupying ratio of 0.86 (Eu1A): 0.14 (Eu1B) and whole mol­ecules of NH2–BDC2−, ox2− and H3O+ (Fig. 1[link]). Eu1A is ninefold coordinated to nine O atoms from one chelating NH2-–BDC2−, two monodentate NH2–BDC2−, two chelating ox2− and one monodentate ox2− groups, all of which delineate into a distorted tricapped trigonal–prismatic geometry, i.e. TPRS-{EuIIIO9}. Eu1B, on the other hand, adopts a sixfold coordination of trigonal anti-prismatic geometry, i.e. TPR-{EuIIIO6}, which is completed by six O atoms from two monodentate NH2–BDC2−, three monodentate ox2− and one H3O+ moieties. Noticeably, the three monodentate ox2− moieties form one trigonal face whereas the two monodentate NH2–BDC2− and the ligated H3O+ moieties outline the other. The EuIII—O bond distances ranging between 2.375 (2) and 2.562 (2) Å, are consistent with the values observed for other EuIII coordination frameworks, e.g. [(CH3)2NH2]2[Eu6(μ3-OH)8(BDC–NH2)6(H2O)6] (Yi et al., 2016[Yi, P., Huang, H., Peng, Y., Liu, D. & Zhong, C. (2016). RSC Adv. 6, 111934-111941.]) and [Eu2(ATPA)3(DEF)2]n where ATPA2− = 2-amino­terepthalate and DEF = di­ethyl­formamide (Kariem et al., 2016[Kariem, M., Yawer, M., Sharma, S. & Sheikh, H. N. (2016). Chemistry Select, 1, 4489-4501.]). In addition to the disorder at the EuIII positions, there is an additional disorder at the amino group of NH2–BDC2−, which distributes over three crystallographic sites with site occupancies of 0.26 (N1), 0.44 (N2) and 0.31 (N3), respectively.

[Figure 1]
Figure 1
Views of (a) an extended asymmetric unit of I drawn using 60% probability ellipsoids and the coordination environments about (b) Eu1A and (c) Eu1B. [Symmetry codes: (i) −x, 1 − y, −z; (ii) 1 − x, [{1\over 2}] + y, [{1\over 2}] − z; (iii) −x, −[{1\over 2}] + y, [{1\over 2}] − z; (iv) x, [{3\over 2}] − y, −[{1\over 2}] + z; (v) x, [{1\over 2}] − y, [{1\over 2}] + z; (vi) 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z; (vii) 1 − x, 1 − y, 1 − z; (viii) 1 − x, [{3\over 2}] − y, [{1\over 2}] + z.]

As a result of the disorder of the EuIII ion, the modes of coordinations for both NH2–BDC2− and ox2− are diverse. If all of the possible sites of EuIII are concurrently included, the μ5-η1:η1:η2:η2 mode can be assigned to NH2-BDC2− as it connects three Eu1A and two Eu1B moieties together (Fig. 2[link]). In a similar fashion, three Eu1A and three Eu1B moieties may be simultaneously linked by ox2− using the μ6-η2:η2:η2:η2 mode for coordination. It is worth noting that the μ5-η1:η1:η2:η2 mode of NH2-BDC2− and the μ6-η2:η2:η2:η2 mode of ox2− are unprecedented. If only the dominating Eu1A is regarded, the adopted coordination modes would be μ3-η1:η1:η1:η1 and μ3-η1:η1:η1:η2 for NH2–BDC2− and ox2−, respectively. Likewise, there are only sixteen structures containing ox2− with a μ3-η1:η1:η1:η2 mode and only two LnCPs comprising NH2–BDC2− with a μ3-η1:η1:η1:η1 mode, i.e. [Yb2(OH)(atpt)2.5(phen)2]n·1.75nH2O where atpt2− = 2-amino­terephthalate and phen = 1,10-phenanthroline (Liu et al., 2004[Liu, C.-B., Sun, C.-Y., Jin, L.-P. & Lu, S.-Z. (2004). New J. Chem. 28, 1019-1026.]), and {[Ho2(μ3-ATA)2(μ4-ATA)(H2O)4]·2DMF·0.5H2O}n where ATA2− = 2-amino­terephthalate (Almáši et al., 2014[Almáši, M., Zeleňák, V., Galdun, L. & Kuchár, J. (2014). Inorg. Chem. Commun. 39, 39-42.]).

[Figure 2]
Figure 2
Depictions of coordination modes adopted by NH2—BDC2− and ox2−; (a) with (b) without Eu1B.

3. Supra­molecular features

The structure of I features a three-dimensional framework, which can be regarded as being built up of two-dimensional layers of EuIII-carboxyl­ate-oxalate connected by the NH2–BDC2− organic pillars (Fig. 3[link]). The basic building motif of the layer is the edge-sharing dimer of TPRS-{EuIIIO9} (Fig. 4[link]), which is fused together through two O8 atoms from two ox2− groups and two O1—C1—O2 bridges of two NH2-BDC2−. Each {Eu2IIIO16} dimer of Eu1A is tied to the other four equivalent dimers through four ox2− linkers in the bc plane. The as-described arrangement of these {Eu2IIIO16} dimers creates voids characterized as the twelve-membered rings, in which the partially occupied TPR-{EuIIIO6} motifs of Eu1B are situated. Each of the TPR-{EuIIIO6} motifs are affixed within the layer through four O atoms from four surrounding ox2− groups and an O4 atom from NH2–BDC2−. These layers are further connected by the NH2–BDC2− organic pillars along the a-axis direction providing the non-porous three-dimensional framework. The roles of ox2− and NH2–BCD2− in the framework of I are, therefore, to create the layer framework and to tether the layers, respectively.

[Figure 3]
Figure 3
The three-dimensional framework structure of I.
[Figure 4]
Figure 4
Polyhedral and space-filling representations of the EuIII–oxalate–carboxyl­ate layers (a) with TPR-{EuIIIO6} motifs and (b) without TPR-{EuIIIO6} motif.

The NH2–BDC2− pillar is apparently organized through intra­molecular hydrogen-bonding inter­actions from both strong N—H⋯O and weak C—H⋯O inter­actions (Table 1[link]), and through the face-to-face anti­parallel displaced ππ inter­actions (Banerjee et al., 2019[Banerjee, A., Saha, A. & Saha, B. K. (2019). Cryst. Growth Des. 19, 2245-2252.]) established between the phenyl rings of two adjacent NH2–BDC2− pillars (Fig. 5[link]). In addition to the intra­molecular hydrogen-bonding inter­actions, two H atoms from the H3O+ mol­ecule are also involved in providing additional strong O—H⋯O inter­molecular hydrogen-bonding inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9W—H9WA⋯O2i 1.11 (5) 1.81 (5) 2.904 (4) 171 (5)
O9W—H9WB⋯O5ii 1.10 (5) 1.87 (5) 2.943 (4) 163 (4)
C6—H6⋯O3 0.93 2.47 2.781 (6) 100
N1—H1B⋯O2 0.86 2.03 2.736 (16) 139
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 5]
Figure 5
Views of (a) the hydrogen-bonding inter­actions and (b) the ππ inter­actions.

4. Topology

The topology of the two-dimensional layer of I was analysed using TOPOS software (Blatov, 2004[Blatov, V. A. (2004). TOPOS. Samara State University, Russia.]). If only the dominating motif, i.e. the edge-sharing dimer of Eu1A, is taken as a node, which is connected to the other equivalent dimer via the ox2− linker, the two-dimensional layer of Eu1 can be simplified to a uninodal 4-connected sql/Shubnikov tetra­gonal plane net with a point symbol {44.62} (Blatov et al., 2014[Blatov, V. A., Shevchenko, A. P. & Proserpio, D. M. (2014). Cryst. Growth Des. 14, 3576-3586.]) (Fig. 6[link]). The inclusion of the partially occupied TPR-{EuIIIO6} motifs results in unknown topology. This is also the case for the three-dimensional framework with or without the TPR-{EuIIIO6} motifs.

[Figure 6]
Figure 6
The simplified two- and three-dimensional topologies of I.

5. Photoluminescent property

A room temperature photoluminescent spectrum of I was collected (Jasco FB-8500 spectro­fluoro­meter, λexcitation = 337 nm). It exhibits none of the characteristic ff emission of EuIII. Even the broad emission characteristic of the ligand-centered ππ emission was not observed. This may be attributed to a proton-induced fluorescence-quenching mechanism facilitated by the presence of H3O+ in close proximity to the phenyl ring of NH2-BDC2− (Tobita & Shizuka, 1980[Tobita, S. & Shizuka, H. (1980). Chem. Phys. Lett. 75, 140-144.]; Shizuka & Tobita, 1982[Shizuka, H. & Tobita, S. (1982). J. Am. Chem. Soc. 104, 6919-6927.]). The quenching consequently hinders the sensitization, which is important according to the antenna model (Einkauf et al., 2017[Einkauf, J. D., Clark, J. M., Paulive, A., Tanner, G. P. & de Lill, D. T. (2017). Inorg. Chem. 56, 5544-5552.]).

6. Database survey

Based on a survey of the Cambridge Structural Database (version 5.40, Nov 2018 with the update of May 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), no LnCP containing both NH2-BDC2− and ox2− has previously been reported. However, there are three closely relevant structures which have similar unit-cell parameters, i.e. catena-[(μ-tetra­cyano­borate)tetra­aqua­bis­(nitra­to)lanthanum] (Zottnick et al., 2017[Zottnick, S. H., Finze, M. & Müller-Buschbaum, K. (2017). Chem. Commun. 53, 5193-5195.]), catena-[hemikis(pip­erazinedium)(μ-benzene-1,2,4,5-tetra­carboxyl­ato)di­aqua­pras­eo­dymium(III)] (Liang et al., 2017[Liang, X.-Q. & Fan, Z.-L. (2017). Chinese J. Struc. Chem, 36, 977-984.]) and η5-inden­yl)di­chloro­tris­(tetra­hydro­furan-O)gadolinium tetra­hydro­furan solvate (Fuxing et al., 1992[Fuxing, G., Gecheng, W., Zhongsheng, J. & Wenqi, C. (1992). J. Organomet. Chem. 438, 289-295.]).

7. Synthesis and crystallization

To synthesize I, 2-amino­terephthalic acid (0.2 mmol, 0.0332 g), oxalic acid (0.2 mmol, 0.0180 g) and 1,4-di­aza­bicyclo­[2.2.2]octane (0.4 mmol, 0.0448 g) were dissolved in 8.0 mL of DMF/H2O (1 m:7 mL) to prepare solution A. Separately, solution B was prepared by dissolving Eu2O3 (0.1 mmol, 0.0180 g) in 1.0 mL of concentrated HNO3 aqueous solution, which was then adjusted to pH 7 using a 10 M NaOH aqueous solution. Solution B was then gradually introduced into solution A, and the mixture was then transferred to a 22 mL Teflon-lined stainless-steel autoclave. The reaction was carried out under an autogenous pressure generated at 393 K for 7 days. Yellow crystals of I were then recovered by filtration. FT–IR of I (KBr; cm−1): 3361, 2987, 1617, 1313, 1053, 798.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The EuIII ion was refined as being disordered over two crystallographic sites resulting in refined occupancies of 0.855 (Eu1A) and 0.145 (Eu1B). The disorder of the amino group over three crystallographic sites could be clearly seen in the electron-density map and was refined using the SUMP command providing occupancies of 0.259 (N1), 0.440 (N2) and 0.305 (N3). EADP constraints were necessary to make the anisotropic refinements of the disordered N atoms stable. The three H atoms on the ligated H3O+ (O9W) were evident in the electron-density map and therefore assigned as such. The SADI restraint was nonetheless applied on the refinements of the three O—H bonds. H atoms could be positioned from the electron-density maps and were refined as riding with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(O). Bond restraints o N—H and O—H were applied in the refunements.

Table 2
Experimental details

Crystal data
Chemical formula [Eu(C8H5NO4)(C2O4)(H3O)]
Mr 436.32
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 11.8348 (3), 11.3208 (3), 10.6531 (3)
β (°) 110.275 (3)
V3) 1338.86 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 4.73
Crystal size (mm) 0.2 × 0.05 × 0.05
 
Data collection
Diffractometer Rigaku OD SuperNova, single source at offset/far, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Cooperation, Oxford, England.])
Tmin, Tmax 0.753, 0.789
No. of measured, independent and observed [I > 2σ(I)] reflections 15479, 2882, 2458
Rint 0.050
(sin θ/λ)max−1) 0.647
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.067, 1.09
No. of reflections 2882
No. of parameters 222
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.61, −0.54
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Cooperation, Oxford, England.]), SHELXT (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXL (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015b); program(s) used to refine structure: SHELXL (Sheldrick, 2015a); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[(µ6-oxalato)(oxomium)(µ5-2-aminobenzene-1,4-dicarboxylato)europium(III)] top
Crystal data top
[Eu(C8H5NO4)(C2O4)(H3O)]F(000) = 832
Mr = 436.32Dx = 2.165 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.8348 (3) ÅCell parameters from 9488 reflections
b = 11.3208 (3) Åθ = 1.8–27.3°
c = 10.6531 (3) ŵ = 4.73 mm1
β = 110.275 (3)°T = 293 K
V = 1338.86 (7) Å3Block, clear light yellow
Z = 40.2 × 0.05 × 0.05 mm
Data collection top
Rigaku OD SuperNova, single source at offset/far, HyPix3000
diffractometer
2458 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.050
ω scansθmax = 27.4°, θmin = 1.8°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
h = 1415
Tmin = 0.753, Tmax = 0.789k = 1114
15479 measured reflectionsl = 1313
2882 independent reflections
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0305P)2 + 0.0276P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2882 reflectionsΔρmax = 0.61 e Å3
222 parametersΔρmin = 0.54 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Eu1A0.07429 (2)0.61284 (2)0.15674 (2)0.01311 (9)0.8558 (8)
O60.0486 (2)0.7311 (2)0.3456 (2)0.0298 (6)
O80.0221 (2)0.89620 (19)0.4069 (3)0.0248 (6)
O50.0175 (2)0.8135 (2)0.0928 (2)0.0314 (6)
O20.1449 (2)0.4078 (2)0.1090 (3)0.0315 (7)
O70.0772 (2)0.9814 (2)0.1603 (2)0.0298 (6)
O40.7236 (2)0.1331 (2)0.1432 (3)0.0356 (7)
O10.2130 (2)0.5301 (3)0.0649 (3)0.0385 (7)
O30.7668 (2)0.2640 (2)0.3050 (3)0.0366 (7)
C100.0008 (3)0.8307 (3)0.3236 (4)0.0212 (8)
C10.2274 (3)0.4463 (4)0.0068 (4)0.0278 (9)
C90.0344 (3)0.8795 (3)0.1784 (4)0.0229 (9)
C80.6941 (3)0.2224 (4)0.1960 (4)0.0290 (9)
C20.3499 (3)0.3911 (3)0.0360 (4)0.0319 (10)
C50.5750 (3)0.2802 (4)0.1344 (4)0.0353 (10)
C60.5557 (4)0.3900 (4)0.1808 (5)0.0502 (14)
H60.6193450.4268770.2464140.060*
C30.3677 (4)0.2839 (4)0.0150 (5)0.0513 (13)
C70.4454 (4)0.4470 (4)0.1332 (5)0.0480 (12)
C40.4805 (4)0.2271 (4)0.0321 (5)0.0528 (13)
N20.4834 (8)0.1125 (8)0.0128 (12)0.066 (3)0.439 (6)
H2A0.5127160.1137900.0785000.080*0.439 (6)
H2B0.5315210.0638700.0478410.080*0.439 (6)
N30.4511 (10)0.5604 (13)0.1717 (14)0.066 (3)0.312 (6)
H3A0.4079270.5839970.2303000.080*0.312 (6)
H3B0.5275200.5900920.2212510.080*0.312 (6)
N10.2993 (12)0.2381 (15)0.1365 (15)0.066 (3)0.261 (6)
H1A0.2866300.1645750.1258720.080*0.261 (6)
H1B0.2316690.2749540.1656620.080*0.261 (6)
Eu1B0.82330 (16)0.39654 (13)0.47691 (17)0.0427 (7)0.1442 (8)
O9W0.8080 (3)0.5707 (3)0.3580 (3)0.0593 (9)
H9WA0.816 (5)0.581 (4)0.258 (4)0.089*
H9WB0.881 (4)0.620 (4)0.433 (5)0.089*
H9WC0.725 (4)0.578 (6)0.383 (7)0.15 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu1A0.01489 (13)0.00998 (14)0.01356 (13)0.00037 (7)0.00379 (9)0.00035 (8)
O60.0446 (16)0.0207 (15)0.0244 (14)0.0096 (12)0.0121 (12)0.0042 (12)
O80.0355 (15)0.0197 (15)0.0206 (15)0.0018 (11)0.0114 (13)0.0022 (11)
O50.0494 (17)0.0224 (16)0.0230 (14)0.0099 (13)0.0133 (13)0.0000 (12)
O20.0215 (14)0.0420 (19)0.0291 (16)0.0002 (12)0.0064 (12)0.0073 (13)
O70.0425 (16)0.0182 (15)0.0244 (14)0.0085 (12)0.0060 (12)0.0020 (12)
O40.0320 (16)0.0368 (18)0.0329 (17)0.0101 (12)0.0045 (13)0.0070 (13)
O10.0243 (14)0.048 (2)0.0420 (17)0.0037 (13)0.0095 (13)0.0161 (15)
O30.0306 (15)0.0333 (18)0.0357 (17)0.0088 (13)0.0014 (13)0.0089 (14)
C100.0242 (19)0.014 (2)0.026 (2)0.0034 (16)0.0088 (16)0.0023 (17)
C10.025 (2)0.030 (2)0.029 (2)0.0008 (18)0.0107 (18)0.0008 (19)
C90.026 (2)0.021 (2)0.017 (2)0.0012 (16)0.0008 (17)0.0012 (16)
C80.028 (2)0.027 (2)0.028 (2)0.0023 (18)0.0054 (18)0.0028 (19)
C20.025 (2)0.033 (3)0.035 (2)0.0063 (17)0.0074 (19)0.0015 (19)
C50.030 (2)0.035 (3)0.036 (2)0.0084 (18)0.005 (2)0.004 (2)
C60.031 (3)0.044 (3)0.056 (3)0.013 (2)0.010 (2)0.020 (2)
C30.031 (2)0.048 (3)0.058 (3)0.009 (2)0.006 (2)0.017 (3)
C70.035 (2)0.046 (3)0.052 (3)0.015 (2)0.001 (2)0.016 (3)
C40.042 (3)0.053 (3)0.049 (3)0.018 (2)0.003 (2)0.019 (3)
N20.033 (4)0.064 (5)0.081 (6)0.026 (3)0.007 (4)0.040 (4)
N30.033 (4)0.064 (5)0.081 (6)0.026 (3)0.007 (4)0.040 (4)
N10.033 (4)0.064 (5)0.081 (6)0.026 (3)0.007 (4)0.040 (4)
Eu1B0.0590 (12)0.0319 (11)0.0319 (10)0.0013 (7)0.0090 (8)0.0028 (7)
O9W0.076 (3)0.056 (2)0.044 (2)0.014 (2)0.0174 (19)0.0008 (19)
Geometric parameters (Å, º) top
Eu1A—Eu1Ai4.0868 (4)O4—C81.264 (4)
Eu1A—O62.521 (2)O4—Eu1Bvii2.468 (3)
Eu1A—O8ii2.562 (2)O1—C11.266 (4)
Eu1A—O8iii2.508 (3)O3—C81.272 (4)
Eu1A—O52.508 (2)O3—Eu1B2.281 (3)
Eu1A—O2i2.476 (2)C10—C91.558 (5)
Eu1A—O7ii2.444 (3)C1—C21.497 (5)
Eu1A—O4iv2.604 (3)C8—C51.484 (5)
Eu1A—O12.375 (2)C2—C31.375 (5)
Eu1A—O3iv2.470 (3)C2—C71.393 (6)
O6—C101.247 (4)C5—C61.386 (6)
O6—Eu1Bv2.445 (3)C5—C41.398 (6)
O8—C101.256 (4)C6—C71.386 (6)
O5—C91.247 (4)C3—C41.408 (6)
O5—Eu1Biv2.811 (3)C3—N11.368 (14)
O2—C11.261 (4)C7—N31.343 (13)
O7—C91.247 (4)C4—N21.387 (8)
O7—Eu1Bvi2.349 (3)Eu1B—O9W2.317 (4)
O6—Eu1A—Eu1Ai147.91 (6)Eu1Bvi—O7—Eu1Aix99.74 (10)
O6—Eu1A—O8ii129.40 (8)C8—O4—Eu1Ax91.4 (2)
O6—Eu1A—O4iv68.33 (9)C8—O4—Eu1Bvii134.7 (3)
O8iii—Eu1A—Eu1Ai36.75 (5)Eu1Bvii—O4—Eu1Ax92.50 (9)
O8ii—Eu1A—Eu1Ai35.85 (6)C1—O1—Eu1A143.2 (2)
O8iii—Eu1A—O6137.05 (8)C8—O3—Eu1Ax97.5 (2)
O8iii—Eu1A—O8ii72.60 (9)C8—O3—Eu1B153.3 (3)
O8ii—Eu1A—O4iv111.70 (8)Eu1B—O3—Eu1Ax109.19 (11)
O8iii—Eu1A—O4iv145.39 (9)O6—C10—O8126.6 (3)
O5—Eu1A—Eu1Ai108.73 (6)O6—C10—C9117.1 (3)
O5—Eu1A—O664.84 (8)O8—C10—C9116.3 (3)
O5—Eu1A—O8iii75.76 (8)O2—C1—O1123.6 (3)
O5—Eu1A—O8ii138.85 (8)O2—C1—C2119.8 (4)
O5—Eu1A—O4iv109.32 (8)O1—C1—C2116.6 (3)
O2i—Eu1A—Eu1Ai69.48 (6)O5—C9—C10117.2 (3)
O2i—Eu1A—O678.84 (8)O7—C9—O5126.9 (4)
O2i—Eu1A—O8iii73.70 (9)O7—C9—C10115.9 (3)
O2i—Eu1A—O8ii73.49 (8)O4—C8—Eu1Ax63.02 (19)
O2i—Eu1A—O572.87 (8)O4—C8—O3119.9 (3)
O2i—Eu1A—O4iv140.91 (9)O4—C8—C5121.5 (3)
O7ii—Eu1A—Eu1Ai98.87 (6)O3—C8—Eu1Ax56.94 (18)
O7ii—Eu1A—O670.07 (9)O3—C8—C5118.6 (4)
O7ii—Eu1A—O8ii64.12 (8)C5—C8—Eu1Ax174.2 (3)
O7ii—Eu1A—O8iii134.20 (8)C3—C2—C1120.9 (4)
O7ii—Eu1A—O5130.79 (9)C3—C2—C7119.9 (4)
O7ii—Eu1A—O2i80.22 (9)C7—C2—C1119.1 (4)
O7ii—Eu1A—O4iv69.26 (8)C6—C5—C8119.1 (4)
O7ii—Eu1A—O3iv119.41 (9)C6—C5—C4118.5 (4)
O4iv—Eu1A—Eu1Ai137.47 (6)C4—C5—C8122.4 (4)
O1—Eu1A—Eu1Ai65.16 (6)C5—C6—C7122.5 (4)
O1—Eu1A—O6146.09 (8)C2—C3—C4121.2 (4)
O1—Eu1A—O8ii69.59 (9)N1—C3—C2125.9 (7)
O1—Eu1A—O8iii70.84 (8)N1—C3—C4109.9 (7)
O1—Eu1A—O5122.76 (9)C6—C7—C2118.6 (4)
O1—Eu1A—O2i134.63 (9)N3—C7—C2127.1 (6)
O1—Eu1A—O7ii105.55 (9)N3—C7—C6113.1 (6)
O1—Eu1A—O4iv78.60 (9)C5—C4—C3119.0 (4)
O1—Eu1A—O3iv75.28 (9)N2—C4—C5124.2 (5)
O3iv—Eu1A—Eu1Ai130.96 (7)N2—C4—C3116.0 (5)
O3iv—Eu1A—O678.21 (9)O6v—Eu1B—O5x70.24 (9)
O3iv—Eu1A—O8iii104.11 (8)O6v—Eu1B—O4xi71.76 (10)
O3iv—Eu1A—O8ii143.79 (9)O7xii—Eu1B—O6v72.95 (10)
O3iv—Eu1A—O569.54 (8)O7xii—Eu1B—O5x101.31 (10)
O3iv—Eu1A—O2i141.55 (9)O7xii—Eu1B—O4xi73.14 (10)
O3iv—Eu1A—O4iv51.17 (8)O4xi—Eu1B—O5x141.46 (10)
C10—O6—Eu1A120.2 (2)O3—Eu1B—O6v99.37 (11)
C10—O6—Eu1Bv143.1 (2)O3—Eu1B—O5x66.84 (9)
C10—O8—Eu1Aviii126.6 (2)O3—Eu1B—O7xii167.83 (13)
C10—O8—Eu1Aix118.0 (2)O3—Eu1B—O4xi114.01 (12)
C9—O5—Eu1A120.6 (2)O3—Eu1B—O9W100.09 (12)
C9—O5—Eu1Biv110.2 (2)O9W—Eu1B—O6v146.74 (13)
C1—O2—Eu1Ai130.7 (2)O9W—Eu1B—O5x93.23 (12)
C9—O7—Eu1Aix123.2 (2)O9W—Eu1B—O7xii82.84 (12)
C9—O7—Eu1Bvi137.1 (2)O9W—Eu1B—O4xi122.82 (13)
Symmetry codes: (i) x, y+1, z; (ii) x, y1/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x+1, y+1/2, z+1/2; (v) x+1, y+1, z+1; (vi) x1, y+3/2, z1/2; (vii) x, y+1/2, z1/2; (viii) x, y+3/2, z+1/2; (ix) x, y+1/2, z+1/2; (x) x+1, y1/2, z+1/2; (xi) x, y+1/2, z+1/2; (xii) x+1, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9W—H9WA···O2xiii1.11 (5)1.81 (5)2.904 (4)171 (5)
O9W—H9WB···O5xii1.10 (5)1.87 (5)2.943 (4)163 (4)
C6—H6···O30.932.472.781 (6)100
N1—H1B···O20.862.032.736 (16)139
Symmetry codes: (xii) x+1, y+3/2, z+1/2; (xiii) x+1, y+1, z.
 

Funding information

Funding for this research was co-provided by: Chiang Mai University and Thailand Research Fund (grant No. RSA6280003 to Apinpus Rujiwatra); Science Achievement Scholarship of Thailand (to Supaphorn Thammakan).

References

First citationAlmáši, M., Zeleňák, V., Galdun, L. & Kuchár, J. (2014). Inorg. Chem. Commun. 39, 39–42.  Google Scholar
First citationBanerjee, A., Saha, A. & Saha, B. K. (2019). Cryst. Growth Des. 19, 2245–2252.  Web of Science CrossRef CAS Google Scholar
First citationBlatov, V. A. (2004). TOPOS. Samara State University, Russia.  Google Scholar
First citationBlatov, V. A., Shevchenko, A. P. & Proserpio, D. M. (2014). Cryst. Growth Des. 14, 3576–3586.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEinkauf, J. D., Clark, J. M., Paulive, A., Tanner, G. P. & de Lill, D. T. (2017). Inorg. Chem. 56, 5544–5552.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFlaig, R. W., Popp, T. M. O., Fracaroli, A. M., Kapustin, E. A., Kalmutzki, M. J., Altamimi, R. M., Fathieh, F., Reimer, J. A. & Yaghi, O. M. (2017). J. Am. Chem. Soc. 139, 12125–12128.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFuxing, G., Gecheng, W., Zhongsheng, J. & Wenqi, C. (1992). J. Organomet. Chem. 438, 289–295.  CSD CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKariem, M., Yawer, M., Sharma, S. & Sheikh, H. N. (2016). Chemistry Select, 1, 4489–4501.  CAS Google Scholar
First citationLiang, X.-Q. & Fan, Z.-L. (2017). Chinese J. Struc. Chem, 36, 977–984.  CAS Google Scholar
First citationLiu, C.-B., Sun, C.-Y., Jin, L.-P. & Lu, S.-Z. (2004). New J. Chem. 28, 1019–1026.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Cooperation, Oxford, England.  Google Scholar
First citationRoy, S., Charkraborty, A. & Maji, T.-K. (2014). Chem. Rev. 273–274, 139–164.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShizuka, H. & Tobita, S. (1982). J. Am. Chem. Soc. 104, 6919–6927.  CrossRef CAS Web of Science Google Scholar
First citationStavitski, E., Pidko, E. A., Couck, S., Remy, T., Hensen, E. J. M., Weckhuysen, B. M., Denayer, J., Gascon, J. & Kapteijn, F. (2011). Langmuir, 27, 3970–3976.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTobita, S. & Shizuka, H. (1980). Chem. Phys. Lett. 75, 140–144.  CrossRef CAS Web of Science Google Scholar
First citationWang, F., Tan, Y. X., Yang, H., Kang, Y. & Zhang, J. (2012). Chem. Commun. 48, 4842–4844.  Web of Science CSD CrossRef CAS Google Scholar
First citationXiahou, Z.-J., Wang, Y.-L., Liu, Q.-Y., Li, L. & Zhou, L.-J. (2013). J. Coord. Chem. 66, 2910–2918.  Web of Science CSD CrossRef CAS Google Scholar
First citationYi, P., Huang, H., Peng, Y., Liu, D. & Zhong, C. (2016). RSC Adv. 6, 111934–111941.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X. T., Fan, L.-M., Fan, W.-L., Li, B., Liu, G. Z., Liu, X.-Z. & Zhao, X. (2016). Cryst. Growth & Des. 16, 3993–4004.  Web of Science CSD CrossRef CAS Google Scholar
First citationZottnick, S. H., Finze, M. & Müller-Buschbaum, K. (2017). Chem. Commun. 53, 5193–5195.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds