research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of pyridinium tetra­iso­thio­cyanato­di­pyridine­chromium(III) pyridine monosolvate

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Strasse 2, D-24118 Kiel, Germany
*Correspondence e-mail: t.neumann@ac.uni-kiel.de

Edited by A. J. Lough, University of Toronto, Canada (Received 14 October 2019; accepted 24 October 2019; online 15 November 2019)

In the crystal structure of the title compound, (C5H6N)[Cr(NCS)4(C5H5N)2]·C5H5N, the CrIII ions are octa­hedrally coordinated by four N-bonding thio­cyanate anions and two pyridine ligands into discrete negatively charged complexes, with the CrIII ion, as well as the two pyridine ligands, located on crystallographic mirror planes. The mean planes of the two pyridine ligands are rotated with respect to each other by 90°. Charge balance is achieved by one protonated pyridine mol­ecule that is hydrogen bonded to one additional pyridine solvent mol­ecule, with both located on crystallographic mirror planes and again rotated by exactly 90°. The pyridinium H atom was refined as disordered between both pyridine N atoms in a 70:30 ratio, leading to a linear N—H⋯N hydrogen bond. In the crystal, discrete complexes are linked by weak C—H⋯S hydrogen bonds into chains that are connected by additional C—H⋯S hydrogen bonding via the pyridinium cations and solvent mol­ecules into layers and finally into a three-dimensional network.

1. Chemical context

Coordination compounds with paramagnetic transition metals are of great inter­est because of their diverse magnetic properties (Cirera et al., 2009[Cirera, J., Ruiz, E., Alvarez, S., Neese, F. & Kortus, J. (2009). Chem. Eur. J. 15, 4078-4087.]; Giannopoulos et al., 2014[Giannopoulos, D. P., Thuijs, A., Wernsdorfer, W., Pilkington, M., Christou, G. & Stamatatos, T. C. (2014). Chem. Commun. 50, 779-781.]; Glaser, 2011[Glaser, T. (2011). Chem. Commun. 47, 116-130.]; Yuan et al., 2007[Yuan, M., Zhao, F., Zhang, W., Pan, F., Wang, Z.-M. & Gao, S. (2007). Chem. Eur. J. 13, 2937-2952.]). Those in which the metal cations are linked by small-sized ligands that can mediate magnetic exchange are of special importance because co-operative magnetic phenomena can be expected. Prominent examples for this class of ligands are azides, oxalates and cyanides (Wang et al., 2005[Wang, X.-Y., Wang, L., Wang, Z.-M., Su, G. & Gao, S. (2005). Chem. Mater. 17, 6369-6380.], 2008[Wang, X.-Y., Wang, Z.-M. & Gao, S. (2008). Chem. Commun. pp. 281-294.]; Zhang et al., 2012[Zhang, X.-M., Wang, Y.-Q., Li, X.-B. & Gao, E.-Q. (2012). Dalton Trans. 41, 2026-2033.]; Manson et al., 2005[Manson, J. L., Lancaster, T., Chapon, L. C., Blundell, S. J., Schlueter, J. A., Brooks, M. L., Pratt, F. L., Nygren, C. L. & Qualls, J. S. (2005). Inorg. Chem. 44, 989-995.]; Ding et al., 2012[Ding, M., Wang, B., Wang, Z., Zhang, J., Fuhr, O., Fenske, D. & Gao, S. (2012). Chem. Eur. J. 18, 915-924.]). In this context also, thio­cyanate ligands are useful because they show a large variety of coordination modes, with the μ-1,3-bridging mode as the most important (Jochim et al., 2018[Jochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. 2018, 4779-4789.]; Mautner et al., 2016[Mautner, F. A., Berger, C., Fischer, R. C. & Massoud, S. S. (2016). Inorg. Chim. Acta, 439, 69-76.], 2017[Mautner, F. A., Fischer, R. C., Rashmawi, L. G., Louka, F. R. & Massoud, S. S. (2017). Polyhedron, 124, 237-242.]; Shurdha et al., 2013[Shurdha, E., Moore, C. E., Rheingold, A. L., Lapidus, S. H., Stephens, P. W., Arif, A. M. & Miller, J. S. (2013). Inorg. Chem. 52, 10583-10594.]; Mekuimemba et al., 2018[Mekuimemba, C. D., Conan, F., Mota, A. J., Palacios, M. A., Colacio, E. & Triki, S. (2018). Inorg. Chem. 57, 2184-2192.]; Wöhlert et al., 2014a[Wöhlert, S., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G. & Näther, C. (2014a). Cryst. Growth Des. 14, 1902-1913.]; Werner et al., 2015[Werner, J., Runčevski, T., Dinnebier, R., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015). Eur. J. Inorg. Chem. 2015, 3236-3245.]). It is noted that these compounds are frequently difficult to prepare because terminal N-coordination is usually preferred for 3d metal cations. Nevertheless, in recent years, an increasing number of bridging compounds have been reported, which might be traced back to the fact that several of them were prepared by thermal decomposition of precursors that contain terminal anionic ligands (Näther et al., 2013[Näther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696-2714.]). In this context, we and others have reported on several new thio­cyanate coordination polymers based on transition-metal thio­cyanates, in which the metal cations are linked by bridging anionic ligands into chains (Rams et al., 2017[Rams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 24534-24544.]; Baran et al., 2019[Baran, S., Hoser, A., Rams, M., Ostrovsky, S., Neumann, T., Näther, C. & Tomkowicz, Z. (2019). J. Phys. Chem. Solids, 130, 290-297.]; Wöhlert et al., 2013[Wöhlert, S., Fic, T., Tomkowicz, Z., Ebbinghaus, S. G., Rams, M., Haase, W. & Näther, C. (2013). Inorg. Chem. 52, 12947-12957.], 2014b[Wöhlert, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Fink, L., Schmidt, M. U. & Näther, C. (2014b). Inorg. Chem. 53, 8298-8310.]; Mautner et al., 2018[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.]). Most of these compounds contain MnII, FeII, CoII, NiII or CuII cations, whereas no bridging compounds are reported with chromium. There is only one compound in which alternating CrIII and K+ cations are bridged by μ-1,3-coordinating thio­cyanate anions into chains in which each cation is octa­hedrally sourrounded by two bridging thio­cyanate anions and four pyridine ligands (Kitanovski et al., 2007[Kitanovski, N., Golobič, A. & Čeh, B. (2007). Croat. Chem. Acta, 80, 127-134.]). Therefore, we decided to investigated if similar compounds are available with chromium. Hence, CrCl2 was reacted with NH4NCS to prepare Cr(NCS)2 in situ, which is similar to the procedure we frequently use for the synthesis of thio­cyanate coordination polymers with other metal cations. Initially, pyridine was selected as the N-donor ligand, because most of our compounds are based on pyridine derivatives as co-ligands. In this reaction, crystals were obtained that were identified by single-crystal X-ray diffraction. This proved that a discrete cationic complex had formed.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound consists of one half of the cation, namely a CrIII ion, two pyridine ligands which lie on a crystallographic mirror plane and two iso­thio­cyanate anions that occupy general positions, as well as one pyridinium cation and a pyridine mol­ecule that are also located on a crystallographic mirror plane (Fig. 1[link]). The CrIII ion is sixfold coordinated by four N-bonding iso­thio­cyanate anions and two pyridine ligands, within a slightly distorted octa­hedral geometry (Figs. 1[link] and 2[link]). The Cr—N bond lengths (Table 1[link]) to the pyridine ligands (N11 and N21) are slightly longer than that to the iso­thio­cyanate anions (N1 and N2). The distortion of the octa­hedron is also obvious from the mean quadratic elongation of 1.0015 and the octa­hedral angle variance of 0.9447° calculated according to Robinson et al. (1971[Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567-570.]). The four iso­thio­cyanate anions are located in the basal plane of the octa­hedron, whereas the pyridine ligands are in apical positions with the pyridine ring planes rotated by 90° (Fig. 2[link]). Charge balance is achieved by a pyridinium cation that is hydrogen bonded to a pyridine solvent mol­ecule via N—H⋯N hydrogen bonding, forming pyridinium–pyridine dimers (Fig. 3[link]). Several models were tested, but in the final refinement, a split model was used, in which the pyridinium H atom is disordered over two sites in a ratio of 70:30. Presumably, because of sterical reasons, the pyridine-ring planes are perpendicular to each other (Fig. 3[link]).

Table 1
Selected geometric parameters (Å, °)

Cr1—N2i 1.980 (5) Cr1—N1i 1.991 (5)
Cr1—N2 1.980 (5) Cr1—N21 2.080 (6)
Cr1—N1 1.991 (5) Cr1—N11 2.102 (6)
       
N2i—Cr1—N2 88.4 (3) N1—Cr1—N21 90.39 (18)
N2i—Cr1—N1 91.33 (18) N1i—Cr1—N21 90.40 (18)
N2—Cr1—N1 178.9 (2) N2i—Cr1—N11 88.98 (18)
N2i—Cr1—N1i 178.9 (2) N2—Cr1—N11 88.98 (18)
N2—Cr1—N1i 91.33 (18) N1—Cr1—N11 90.00 (18)
N1—Cr1—N1i 88.9 (3) N1i—Cr1—N11 90.00 (18)
N2i—Cr1—N21 90.62 (18) N21—Cr1—N11 179.4 (3)
N2—Cr1—N21 90.62 (18)    
Symmetry code: (i) -x+1, y, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom labelling and displacement ellipsoids drawn at the 50% probability level. The pyridinium N-bound H atom is disordered over two sets of sites.
[Figure 2]
Figure 2
View of the coordination sphere of the CrIII ion.
[Figure 3]
Figure 3
View of the pyridinium–pyridine dimer, with N–H⋯N hydrogen bonding shown as dashed lines. The pyridinium N-bound H atom is disordered over two sets of sites.

3. Supra­molecular features

In the crystal, discrete complexes and pyridinium cations are arranged in alternating layers parallel to the bc plane (Fig. 4[link], bottom). The discrete complexes are linked by pairs of C—H⋯S hydrogen bonds between the thio­cyanate S atoms of one complex and two H atoms of one of the pyridine ligands of a neighbouring complex into chains, that elongate along the crystallographic b axis (Fig. 4[link], top). The bond lengths and angles of these hydrogen bonds show that this is only a very weak inter­action (Table 2[link]). These chains are further linked by additional very weak C—H⋯S inter­actions between the thio­cyanate S atoms that are not involved in chain formation and one H atom of the pyridinium–pyridine dimers (Fig. 4[link], bottom, and Table 2[link]). Finally, further C—H⋯S inter­actions link all building blocks into a three-dimensional network. It is noted that both the discrete complexes, as well as the pyridinium–pyridine dimers, point in the same direction along the crystallographic c axis, clearly showing the presence of a polar structure (Fig. 4[link], bottom).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯S1ii 0.93 2.93 3.647 (6) 135
C32—H32⋯S2iii 0.93 3.01 3.719 (8) 134
C32—H32⋯S2iv 0.93 3.01 3.719 (8) 134
C35—H35⋯S2v 0.93 2.90 3.494 (7) 123
C35—H35⋯S2vi 0.93 2.90 3.494 (7) 123
N31—H31A⋯N41 0.86 1.82 2.684 (11) 179
N41—H41A⋯N31 0.86 1.82 2.684 (11) 180
Symmetry codes: (ii) x, y+1, z; (iii) [-x, -y+2, z-{\script{1\over 2}}]; (iv) [x, -y+2, z-{\script{1\over 2}}]; (v) x, y, z-1; (vi) -x, y, z-1.
[Figure 4]
Figure 4
View of a chain (top) and the crystal structure of the title compound viewed along the crystallographic b-axis and with the inter­molecular hydrogen bonding shown as dashed lines.

4. Database survey

There are four structures published in the CSD (Version 5.4, Update 1, February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) that consist of chromium(II) and thio­cyanate anions. In all of them, the CrII cations are square-planar coordinated by two iso­thio­cyanate anions and two co-ligands (Jubb et al., 1989[Jubb, J., Larkworthy, L. F., Leonard, G. A., Povey, D. C. & Tucker, B. J. (1989). J. Chem. Soc. Dalton Trans. pp. 1631-1633.], 1991[Jubb, J., Larkworthy, L. F., Oliver, L. F., Povey, D. C. & Smith, G. W. (1991). J. Chem. Soc. Dalton Trans. pp. 2045-2050.]; Shurdha et al., 2012[Shurdha, E., Lapidus, S. H., Stephens, P. W., Moore, C. E., Rheingold, A. L. & Miller, J. S. (2012). Inorg. Chem. 51, 9655-9665.], 2013[Shurdha, E., Moore, C. E., Rheingold, A. L., Lapidus, S. H., Stephens, P. W., Arif, A. M. & Miller, J. S. (2013). Inorg. Chem. 52, 10583-10594.]). With chromium(III) there are two structures in which the cations are octa­hedrally coordinated by only two terminal iso­thio­cyanate anions and by two 4,4′-dimethyl-2,2′-pyridine ligands and the positive charge is neutralized by iodide or triiodide anions (Walter & Elliott, 2001[Walter, B. J. & Elliott, C. M. (2001). Inorg. Chem. 40, 5924-5927.]). In most of the reported structures with CrIII, the cations are surrounded by four or six iso­thio­cyanate anions and the positive charges are neutralized by protonated solvent or ligand mol­ecules. There is also one discrete complex with pyridine as co-ligand, in which the CrIII cations are coordinated by three iso­thio­cyanate anions and three pyridine ligands (Malecki, 2016[Malecki, J. G. (2016). CSD Communication, CCDC 767462. CCDC, Cambridge, England.]). A similar structure is also known with 4-methyl­pyridine (Kitanovski et al., 2007[Kitanovski, N., Golobič, A. & Čeh, B. (2007). Croat. Chem. Acta, 80, 127-134.]). Finally, there is one structure reported that is comparable to that of the title compound with 4-methyl­pyridine, in which the CrIII cations are coordinated by two 4-methyl­pyridine ligands and four N-terminal thio­cyanate anions. Charge balance is achieved by one 4-methyl­pyridinium cation that is hydrogen bonded to one 4-methyl­pyridine solvent mol­ecule (Young et al., 2011[Young, J. L., Harris, J. D., Benjamin, J. A., Fitch, J. E., Nogales, D. F., Walker, J. R., Frost, B. J., Thurber, A. & Punnoose, A. (2011). Inorg. Chim. Acta, 377, 14-19.]). In contrast to the title compound, the N—H distances are not symmetrical (N—H = 1.16 Å and N⋯H = 1.5 Å), but the N—H⋯N hydrogen-bond distance is comparable (2.686 Å) to that in the title compound (2.684 Å).

5. Synthesis and crystallization

CrCl2 (0.5 mmol, 66.5 mg) was reacted with NH4NCS (1.0 mmol, 76.1 mg) in 2.0 ml pyridine. The precipitate was filtered off and the filtrate was stored at room temperature. After a few days, crystals of the title compound suitable for single-crystal x-ray diffraction were obtained.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atoms were positioned with idealized geometry and refined with Uiso(H) = 1.2Ueq(C) using a riding model. The pyridinium H atom was located in a difference map and was initially freely refined. In this case, it is located nearly in the middle between both pyridine N atoms, leading to very long N—H bonds of 1.32 (16) and 1.35 (16) Å, an N—H⋯N angle close to linearity and a relatively large isotropic displacement parameter. For such N—H⋯N hydrogen bonds, both symmetric and asymmetric hydrogen bonds were determined by neutron diffraction, but the symmetric bonds are usually observed at shorter N⋯N distances (Rozière et al., 1980[Rozière, J., Williams, J. M., Grech, E., Malarski, Z. & Sobcyzk, L. (1980). J. Chem. Phys. 72, 6117-6122.], 1982[Rozière, J., Belin, C. & Lehman, M. S. (1982). J. Chem. Soc. Chem. Commun. pp. 388-389.]). Therefore, the pyridinium H atom was placed at an ideal distance and the displacement parameter was refined. In this case, there is a strong indication that the H atom is disordered and therefore a split model was used with the site-occupation factor for each H atom in a ratio of 70:30, which leads to similar isotropic displacement parameters that are lower than that obtained by the refinement of a symmetrical hydrogen bond. In the final refinement, both H atoms were placed in ideal positions and were refined with Uiso(H) = 1.2Ueq(N) using a riding model.

Table 3
Experimental details

Crystal data
Chemical formula (C5H6N)[Cr(NCS)4(C5H5N)2]·C5H5N
Mr 601.73
Crystal system, space group Orthorhombic, Pmc21
Temperature (K) 293
a, b, c (Å) 10.1068 (5), 8.8168 (6), 16.2628 (9)
V3) 1449.17 (15)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.71
Crystal size (mm) 0.12 × 0.07 × 0.02
 
Data collection
Diffractometer Stoe IPDS1
Absorption correction Numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.786, 0.966
No. of measured, independent and observed [I > 2σ(I)] reflections 12253, 3153, 2452
Rint 0.062
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.106, 1.02
No. of reflections 3153
No. of parameters 193
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.42
Absolute structure Flack x determined using 925 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.027 (19)
Computer programs: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Pyridinium tetraisothiocyanatobis(pyridine)chromium(III) pyridine monosolvate top
Crystal data top
(C5H6N)[Cr(NCS)4(C5H5N)2]·C5H5NDx = 1.379 Mg m3
Mr = 601.73Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pmc21Cell parameters from 12253 reflections
a = 10.1068 (5) Åθ = 2.6–28.1°
b = 8.8168 (6) ŵ = 0.71 mm1
c = 16.2628 (9) ÅT = 293 K
V = 1449.17 (15) Å3Plate, green
Z = 20.12 × 0.07 × 0.02 mm
F(000) = 618
Data collection top
Stoe IPDS1
diffractometer
2452 reflections with I > 2σ(I)
Phi scansRint = 0.062
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
θmax = 27.0°, θmin = 2.6°
Tmin = 0.786, Tmax = 0.966h = 1112
12253 measured reflectionsk = 1111
3153 independent reflectionsl = 2020
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0503P)2 + 0.4808P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.106(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.30 e Å3
3153 reflectionsΔρmin = 0.42 e Å3
193 parametersAbsolute structure: Flack x determined using 925 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.027 (19)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cr10.5000000.64497 (13)0.99944 (7)0.0350 (3)
N10.6380 (5)0.5526 (5)0.9278 (3)0.0456 (11)
C10.7030 (6)0.4870 (6)0.8803 (3)0.0409 (12)
S10.7901 (2)0.39515 (18)0.81396 (11)0.0671 (5)
N20.3635 (5)0.7405 (5)1.0697 (3)0.0453 (11)
C20.2924 (6)0.8219 (6)1.1063 (3)0.0410 (12)
S20.1955 (2)0.9312 (2)1.15735 (11)0.0689 (5)
N110.5000000.8403 (7)0.9254 (4)0.0378 (13)
C110.6137 (6)0.9059 (6)0.9028 (3)0.0446 (13)
H110.6930810.8596370.9172620.053*
C120.6175 (7)1.0412 (6)0.8584 (4)0.0522 (14)
H120.6978581.0846740.8435150.063*
C130.5000001.1087 (10)0.8372 (5)0.054 (2)
H130.4999991.2000330.8086000.065*
N210.5000000.4529 (7)1.0738 (4)0.0380 (14)
C210.5000000.4633 (10)1.1565 (5)0.051 (2)
H210.5000000.5589531.1806370.061*
C220.5000000.3371 (11)1.2067 (6)0.065 (3)
H220.5000000.3480731.2635840.078*
C230.5000000.1953 (12)1.1719 (6)0.068 (3)
H230.5000000.1094351.2050880.082*
C240.5000000.1805 (10)1.0868 (6)0.059 (2)
H240.5000000.0854451.0619460.070*
C250.5000000.3110 (9)1.0405 (5)0.0441 (18)
H250.5000000.3019810.9835430.053*
N310.0000001.0017 (9)0.4322 (5)0.061 (2)
H31A0.0000000.9209550.4618810.073*0.3
C310.0000000.9933 (10)0.3502 (6)0.057 (2)
H310.0000000.8983800.3252640.068*
C320.0000001.1428 (12)0.4678 (6)0.062 (2)
H320.0000001.1508490.5248120.075*
C330.0000001.2701 (11)0.4217 (6)0.060 (2)
H330.0000001.3646550.4471300.072*
C340.0000001.2604 (10)0.3374 (5)0.051 (2)
H340.0000001.3474380.3050680.061*
C350.0000001.1195 (10)0.3021 (5)0.051 (2)
H350.0000001.1099840.2451760.062*
N410.0000000.7526 (8)0.5271 (5)0.0557 (19)
H41A0.0000000.8321780.4965300.067*0.7
C410.1138 (8)0.6919 (8)0.5505 (5)0.0686 (19)
H410.1928590.7355310.5332950.082*
C420.1165 (8)0.5636 (8)0.6004 (5)0.071 (2)
H420.1969430.5224860.6170400.085*
C430.0000000.4985 (10)0.6248 (5)0.057 (2)
H430.0000010.4116850.6572680.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.0346 (6)0.0369 (5)0.0333 (5)0.0000.0000.0032 (5)
N10.048 (3)0.049 (3)0.039 (2)0.001 (2)0.000 (2)0.001 (2)
C10.040 (3)0.037 (3)0.045 (3)0.001 (2)0.006 (3)0.001 (2)
S10.0761 (13)0.0503 (8)0.0749 (11)0.0015 (8)0.0372 (9)0.0093 (8)
N20.045 (3)0.047 (3)0.044 (3)0.002 (2)0.006 (2)0.003 (2)
C20.040 (3)0.045 (3)0.038 (3)0.001 (2)0.003 (2)0.001 (2)
S20.0684 (12)0.0846 (12)0.0537 (9)0.0326 (9)0.0046 (9)0.0143 (8)
N110.036 (4)0.040 (3)0.037 (3)0.0000.0000.001 (3)
C110.041 (3)0.046 (3)0.047 (3)0.003 (2)0.001 (2)0.004 (2)
C120.059 (4)0.045 (3)0.052 (3)0.007 (3)0.010 (3)0.005 (3)
C130.071 (6)0.045 (4)0.046 (5)0.0000.0000.006 (4)
N210.040 (4)0.035 (3)0.039 (3)0.0000.0000.004 (2)
C210.064 (6)0.054 (5)0.035 (4)0.0000.0000.001 (3)
C220.090 (8)0.064 (6)0.042 (4)0.0000.0000.007 (4)
C230.096 (8)0.059 (6)0.050 (5)0.0000.0000.022 (5)
C240.074 (7)0.047 (5)0.055 (5)0.0000.0000.007 (4)
C250.051 (5)0.042 (4)0.039 (4)0.0000.0000.001 (3)
N310.051 (5)0.055 (4)0.075 (5)0.0000.0000.020 (4)
C310.059 (6)0.045 (4)0.066 (6)0.0000.0000.005 (4)
C320.066 (6)0.076 (6)0.045 (4)0.0000.0000.003 (5)
C330.073 (7)0.051 (5)0.055 (5)0.0000.0000.010 (4)
C340.054 (5)0.053 (5)0.045 (4)0.0000.0000.001 (4)
C350.052 (5)0.059 (5)0.043 (4)0.0000.0000.009 (4)
N410.054 (5)0.050 (4)0.063 (5)0.0000.0000.014 (3)
C410.051 (4)0.064 (4)0.091 (5)0.000 (3)0.004 (4)0.017 (4)
C420.056 (5)0.071 (4)0.086 (5)0.016 (3)0.002 (4)0.018 (4)
C430.079 (7)0.045 (4)0.047 (5)0.0000.0000.009 (4)
Geometric parameters (Å, º) top
Cr1—N2i1.980 (5)C23—H230.9300
Cr1—N21.980 (5)C24—C251.375 (11)
Cr1—N11.991 (5)C24—H240.9300
Cr1—N1i1.991 (5)C25—H250.9300
Cr1—N212.080 (6)N31—C311.336 (13)
Cr1—N112.102 (6)N31—C321.372 (13)
N1—C11.168 (7)N31—H31A0.8600
C1—S11.610 (6)C31—C351.360 (13)
N2—C21.177 (7)C31—H310.9300
C2—S21.605 (6)C32—C331.350 (13)
N11—C111.338 (7)C32—H320.9300
N11—C11i1.338 (7)C33—C341.375 (12)
C11—C121.395 (7)C33—H330.9300
C11—H110.9300C34—C351.368 (11)
C12—C131.373 (8)C34—H340.9300
C12—H120.9300C35—H350.9300
C13—H130.9300N41—C411.324 (8)
N21—C211.349 (10)N41—C41ii1.324 (8)
N21—C251.363 (10)N41—H41A0.8600
C21—C221.379 (12)C41—C421.393 (9)
C21—H210.9300C41—H410.9300
C22—C231.373 (15)C42—C431.369 (9)
C22—H220.9300C42—H420.9300
C23—C241.390 (13)C43—H430.9300
N2i—Cr1—N288.4 (3)C22—C23—C24119.8 (9)
N2i—Cr1—N191.33 (18)C22—C23—H23120.1
N2—Cr1—N1178.9 (2)C24—C23—H23120.1
N2i—Cr1—N1i178.9 (2)C25—C24—C23117.8 (9)
N2—Cr1—N1i91.33 (18)C25—C24—H24121.1
N1—Cr1—N1i88.9 (3)C23—C24—H24121.1
N2i—Cr1—N2190.62 (18)N21—C25—C24123.5 (7)
N2—Cr1—N2190.62 (18)N21—C25—H25118.3
N1—Cr1—N2190.39 (18)C24—C25—H25118.3
N1i—Cr1—N2190.40 (18)C31—N31—C32118.1 (8)
N2i—Cr1—N1188.98 (18)C31—N31—H31A120.9
N2—Cr1—N1188.98 (18)C32—N31—H31A120.9
N1—Cr1—N1190.00 (18)N31—C31—C35121.9 (8)
N1i—Cr1—N1190.00 (18)N31—C31—H31119.0
N21—Cr1—N11179.4 (3)C35—C31—H31119.0
C1—N1—Cr1169.7 (5)C33—C32—N31121.4 (9)
N1—C1—S1178.9 (6)C33—C32—H32119.3
C2—N2—Cr1167.6 (5)N31—C32—H32119.3
N2—C2—S2179.1 (5)C32—C33—C34120.1 (9)
C11—N11—C11i118.4 (7)C32—C33—H33119.9
C11—N11—Cr1120.8 (3)C34—C33—H33119.9
C11i—N11—Cr1120.7 (3)C35—C34—C33118.3 (8)
N11—C11—C12122.4 (6)C35—C34—H34120.8
N11—C11—H11118.8C33—C34—H34120.8
C12—C11—H11118.8C31—C35—C34120.1 (8)
C13—C12—C11118.5 (6)C31—C35—H35119.9
C13—C12—H12120.8C34—C35—H35119.9
C11—C12—H12120.8C41—N41—C41ii120.6 (8)
C12i—C13—C12119.8 (8)C41—N41—H41A119.7
C12i—C13—H13120.1C41ii—N41—H41A119.7
C12—C13—H13120.1N41—C41—C42120.9 (7)
C21—N21—C25117.3 (7)N41—C41—H41119.6
C21—N21—Cr1121.6 (5)C42—C41—H41119.6
C25—N21—Cr1121.1 (5)C43—C42—C41119.5 (7)
N21—C21—C22122.4 (8)C43—C42—H42120.3
N21—C21—H21118.8C41—C42—H42120.3
C22—C21—H21118.8C42—C43—C42ii118.7 (8)
C23—C22—C21119.4 (8)C42—C43—H43120.6
C23—C22—H22120.3C42ii—C43—H43120.6
C21—C22—H22120.3
Symmetry codes: (i) x+1, y, z; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···S1iii0.932.933.647 (6)135
C32—H32···S2iv0.933.013.719 (8)134
C32—H32···S2v0.933.013.719 (8)134
C35—H35···S2vi0.932.903.494 (7)123
C35—H35···S2vii0.932.903.494 (7)123
N31—H31A···N410.861.822.684 (11)179
N41—H41A···N310.861.822.684 (11)180
Symmetry codes: (iii) x, y+1, z; (iv) x, y+2, z1/2; (v) x, y+2, z1/2; (vi) x, y, z1; (vii) x, y, z1.
 

Acknowledgements

We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

Funding information

Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. NA 720/5-2).

References

First citationBaran, S., Hoser, A., Rams, M., Ostrovsky, S., Neumann, T., Näther, C. & Tomkowicz, Z. (2019). J. Phys. Chem. Solids, 130, 290–297.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCirera, J., Ruiz, E., Alvarez, S., Neese, F. & Kortus, J. (2009). Chem. Eur. J. 15, 4078–4087.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDing, M., Wang, B., Wang, Z., Zhang, J., Fuhr, O., Fenske, D. & Gao, S. (2012). Chem. Eur. J. 18, 915–924.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGiannopoulos, D. P., Thuijs, A., Wernsdorfer, W., Pilkington, M., Christou, G. & Stamatatos, T. C. (2014). Chem. Commun. 50, 779–781.  Web of Science CSD CrossRef CAS Google Scholar
First citationGlaser, T. (2011). Chem. Commun. 47, 116–130.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. 2018, 4779–4789.  Web of Science CSD CrossRef CAS Google Scholar
First citationJubb, J., Larkworthy, L. F., Leonard, G. A., Povey, D. C. & Tucker, B. J. (1989). J. Chem. Soc. Dalton Trans. pp. 1631–1633.  CSD CrossRef Web of Science Google Scholar
First citationJubb, J., Larkworthy, L. F., Oliver, L. F., Povey, D. C. & Smith, G. W. (1991). J. Chem. Soc. Dalton Trans. pp. 2045–2050.  CSD CrossRef Web of Science Google Scholar
First citationKitanovski, N., Golobič, A. & Čeh, B. (2007). Croat. Chem. Acta, 80, 127–134.  CAS Google Scholar
First citationMalecki, J. G. (2016). CSD Communication, CCDC 767462. CCDC, Cambridge, England.  Google Scholar
First citationManson, J. L., Lancaster, T., Chapon, L. C., Blundell, S. J., Schlueter, J. A., Brooks, M. L., Pratt, F. L., Nygren, C. L. & Qualls, J. S. (2005). Inorg. Chem. 44, 989–995.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMautner, F. A., Berger, C., Fischer, R. C. & Massoud, S. S. (2016). Inorg. Chim. Acta, 439, 69–76.  Web of Science CSD CrossRef CAS Google Scholar
First citationMautner, F. A., Fischer, R. C., Rashmawi, L. G., Louka, F. R. & Massoud, S. S. (2017). Polyhedron, 124, 237–242.  Web of Science CSD CrossRef CAS Google Scholar
First citationMautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436–442.  Web of Science CSD CrossRef CAS Google Scholar
First citationMekuimemba, C. D., Conan, F., Mota, A. J., Palacios, M. A., Colacio, E. & Triki, S. (2018). Inorg. Chem. 57, 2184–2192.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNäther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696–2714.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 24534–24544.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRobinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570.  CrossRef PubMed CAS Web of Science Google Scholar
First citationRozière, J., Belin, C. & Lehman, M. S. (1982). J. Chem. Soc. Chem. Commun. pp. 388–389.  Google Scholar
First citationRozière, J., Williams, J. M., Grech, E., Malarski, Z. & Sobcyzk, L. (1980). J. Chem. Phys. 72, 6117–6122.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShurdha, E., Lapidus, S. H., Stephens, P. W., Moore, C. E., Rheingold, A. L. & Miller, J. S. (2012). Inorg. Chem. 51, 9655–9665.  Web of Science CrossRef ICSD CAS PubMed Google Scholar
First citationShurdha, E., Moore, C. E., Rheingold, A. L., Lapidus, S. H., Stephens, P. W., Arif, A. M. & Miller, J. S. (2013). Inorg. Chem. 52, 10583–10594.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWalter, B. J. & Elliott, C. M. (2001). Inorg. Chem. 40, 5924–5927.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWang, X.-Y., Wang, L., Wang, Z.-M., Su, G. & Gao, S. (2005). Chem. Mater. 17, 6369–6380.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, X.-Y., Wang, Z.-M. & Gao, S. (2008). Chem. Commun. pp. 281–294.  Web of Science CrossRef CAS Google Scholar
First citationWerner, J., Runčevski, T., Dinnebier, R., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015). Eur. J. Inorg. Chem. 2015, 3236–3245.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWöhlert, S., Fic, T., Tomkowicz, Z., Ebbinghaus, S. G., Rams, M., Haase, W. & Näther, C. (2013). Inorg. Chem. 52, 12947–12957.  Web of Science PubMed Google Scholar
First citationWöhlert, S., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G. & Näther, C. (2014a). Cryst. Growth Des. 14, 1902–1913.  Google Scholar
First citationWöhlert, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Fink, L., Schmidt, M. U. & Näther, C. (2014b). Inorg. Chem. 53, 8298–8310.  Web of Science PubMed Google Scholar
First citationYoung, J. L., Harris, J. D., Benjamin, J. A., Fitch, J. E., Nogales, D. F., Walker, J. R., Frost, B. J., Thurber, A. & Punnoose, A. (2011). Inorg. Chim. Acta, 377, 14–19.  Web of Science CSD CrossRef CAS Google Scholar
First citationYuan, M., Zhao, F., Zhang, W., Pan, F., Wang, Z.-M. & Gao, S. (2007). Chem. Eur. J. 13, 2937–2952.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, X.-M., Wang, Y.-Q., Li, X.-B. & Gao, E.-Q. (2012). Dalton Trans. 41, 2026–2033.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds