research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of a zinc xanthate complex containing the 2,2′-bi­pyridine ligand

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, College of Science, Salahaddin University, Erbil, Iraq, bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139, Kurupelit, Samsun, Turkey, cInstitute of Chemical Sciences, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK, and dDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64, Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: sevgi.kansiz85@gmail.com, sssafyanova@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 18 October 2019; accepted 5 November 2019; online 12 November 2019)

In the title compound, (2,2′-bi­pyridine-κ2N,N′)bis­(2-meth­oxy­ethyl xanthato-κS)zinc(II), [Zn(C4H7O2S2)2(C10H8N2)], the ZnII ion is coordinated to two N atoms of the 2,2′-bi­pyridine ligand and two S atoms from two 2-meth­oxy­ethyl xanthate ligands. The ZnII ion lies on a crystallographic twofold rotation axis and has distorted tetra­hedral coordination geometry. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming supramolecular chains propagating along the a-axis direction. Weak intra­molecular C—H⋯S hydrogen bonds are also observed. The inter­molecular contacts in the crystal were further analysed using Hirshfield surface analysis, which indicates that the most significant contacts are H⋯H (36.3%), followed by S⋯H/H⋯S (24.7%), C⋯H/H⋯C (15.1%), O⋯H/H⋯O (14.4%), N⋯H/H⋯N (4.1%) and C⋯C (2.9%).

1. Chemical context

Xanthates (di­thio­carbonates, ROCS2) have attracted the attention of scientific groups of researchers due to their diverse applications. Metal xanthates have been used as single-source precursors to metal sulfide materials (Kociok-Köhn et al., 2015[Kociok-Köhn, G., Molloy, K. C. & Sudlow, A. L. (2015). Main Group Met. Chem. 38, 61-67.]). It was reported that metal xanthates have cytotoxic activity on human cancer cells (Efrima et al., 2003[Efrima, S. & Pradhan, N. (2003). C. R. Chim. 6, 1035-1045.]; Friebolin et al., 2005[Friebolin, W., Schilling, G., Zöller, M. & Amtmann, E. (2005). J. Med. Chem. 48, 7925-7931.]). Cellulose xanthate have been used for the column separation of alcohols by chromatographic methods (Friebolin et al., 2004[Friebolin, W., Schilling, G., Zöller, M. & Amtmann, E. (2004). J. Med. Chem. 47, 2256-2263.]). Zinc(II) xanthate complexes have a tetra­hedral geometry, while zinc(II) xanthate complexes with neutral bidentate nitro­gen donor ligands are either strongly distorted octa­hedral or tetra­hedral. In our previous work, ZnII 2-meth­oxy­ethylxanthate with N,N,N′,N′-tetra­methyl­ethyl­ene­di­amine was synthesized, structurally characterized and studied by density functional theory (Qadir et al., 2019[Qadir, A. M., Kansiz, S., Dege, N., Rosair, G. M. & Fritsky, I. O. (2019). Acta Cryst. E75, 1582-1585.]). The complex showed a tetra­hedral environment around metal center and the HOMO–LUMO band gap was 3.9 eV. Aromatic heterocyclic nitro­gen donor ligands have been used by researchers to prepare mixed-ligand complexes of transition metals with supra­moleculer architectures. In this work, the synthesis and crystal structure of a zinc(II) 2-meth­oxy­ethyl xanthate involving 2,2′-bi­pyridine is reported. Hirshfeld surface analysis was used to further investigate the inter­molecular inter­actions.

[Scheme 1]

2. Structural commentary

The title complex (Fig. 1[link]) comprises one ZnII ion, one 2,2′-bi­pyridine ligand and two 2-meth­oxy­ethyl xanthate ligands. The ZnII ion is coordinated to two N atoms of the 2,2′-bi­pyridine ligand and two S atoms from two 2-meth­oxy­ethyl xanthate ligands in a distorted tetra­hedral environment and lies on a crystallographic twofold rotation axis. The Zn—N and Zn—S bond lengths are 2.083 (5) and 2.295 (2) Å, respectively, whereas the bond angles around the central ZnII ion are in the range 78.7 (3)–126.64 (10)° (Table 1[link]). The bond lengths and angles of the ZnN2S2 coordination units correspond to those in the structures of mixed-ligand ZnII coordination compounds (see; Database Survey). The C—O bond lengths range from 1.346 (8) to 1.453 (8) Å although all of the C—O bonds show single-bond character. In the {S2C} part of the xanthate ligands, the C1—S1 distance is 1.727 (7) Å, which is typical of a single bond whereas the C1—S2 distance of 1.652 (7) Å is typical of a carbon-to-sulfur double bond. The C—N and C—C bond lengths in 2,2′-bi­pyridine are normal for 2-substituted pyridine derivatives (Strotmeyer et al., 2003[Strotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529-547.]; Iskenderov et al., 2009[Iskenderov, T. S., Golenya, I. A., Gumienna-Kontecka, E., Fritsky, I. O. & Prisyazhnaya, E. V. (2009). Acta Cryst. E65, o2123-o2124.]; Golenya et al., 2012[Golenya, I. A., Gumienna-Kontecka, E., Boyko, A. N., Haukka, M. & Fritsky, I. O. (2012). Inorg. Chem. 51, 6221-6227.]).

Table 1
Selected geometric parameters (Å, °)

Zn1—S1 2.2954 (18) Zn1—N1 2.083 (5)
       
S1i—Zn1—S1 126.64 (10) N1—Zn1—S1 100.54 (15)
N1i—Zn1—S1 120.78 (15) N1—Zn1—N1i 78.7 (3)
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title complex, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Symmetry code: (i) 1 − x, y, [{1\over 2}] − z.

3. Supra­molecular features

The crystal packing of the title compound (Fig. 2[link]) features inter­molecular C8—H8⋯O5ii hydrogen bonds (Table 2[link]), which connect the mol­ecules into supramolecular chains propagating along the a-axis direction. Weak intra­molecular C—H⋯S hydrogen bonds are also observed.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O5i 0.95 2.51 3.246 (9) 134
C7—H7⋯S2ii 0.95 2.90 3.552 (7) 127
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A view of the crystal packing of the title complex. Dashed lines denote the inter­molecular hydrogen bonds (Table 2[link]). Symmetry codes: (i) [{1\over 2}] + x, [{3\over 2}] − y, [{1\over 2}] + z, (ii) 1 − x, y, [{1\over 2}] − z, (iii) [{1\over 2}] − x, [{3\over 2}] − y, −z.

4. Hirshfeld surface analysis

The Hirshfeld surface analysis and the associated two-dimensional fingerprint plots were performed with CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. https://hirshfeldsurface.net.]). The Hirshfeld surface of the title complex is shown in Fig. 3[link]a and 3b. The inter­molecular inter­actions are represented using different colours, red indicating distances closer than the sum of the van der Waals radii, white indicating distances near the van der Waals radii separation, and blue indicating distances longer than the van der Waals radii (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). The weak C—H⋯O and C—H⋯S hydrogen bonding in the crystal of the title complex are represented as red spots on dnorm. Selected two-dimensional fingerprint plots are shown in Fig. 4[link] for all contacts as well as those delineated into H⋯H, S⋯H/H⋯S and C⋯H/H⋯C contacts, whose percentage contribution is also given. H⋯H inter­molecular contacts make the highest percentage contribution (36.3%), a result of the prevalence of hydrogen from the organic ligands. The S⋯H/H⋯S and O⋯H/H⋯O inter­molecular contacts are due to the attractive C—H⋯S and C—H⋯O hydrogen-bonding inter­actions and make percentage contributions of 24.7 and 14.4%, respectively, indicating these to be the dominant stabilizing inter­actions in this crystal. In addition, C⋯H/H⋯C contacts contribute 15.1% to the Hirshfeld surface. The small percentage contributions from the other different inter­atomic contacts to the Hirshfeld surfaces are as follows: N⋯H/H⋯N (4.1%), C⋯C (2.9%), S⋯S (1.1%), S⋯O/O⋯S (0.8%) and S⋯C/C⋯S (0.3%).

[Figure 3]
Figure 3
The Hirshfeld surfaces mapped over dnorm in the range −0.1353 to +1.0127 (arbitrary units) for visualizing the weak inter­molecular (a) C—H⋯O and (b) C—H⋯S hydrogen bonding.
[Figure 4]
Figure 4
Hirshfeld surface fingerprint plots for the H⋯H, S⋯H/H⋯S, C⋯H/H⋯C and N⋯H/H⋯N contacts of the title complex.

5. Database survey

A search of the Cambridge Structural Database (CSD, version 5.40, update of February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for compounds related to the title complex revealed five hits: (2,2′-dipyrid­yl)bis­(butylxanthato)zinc(II) (DIFBOK; Klevtsova et al., 2006[Klevtsova, R. F., Leonova, T. G., Glinskaya, L. A. & Larionov, S. V. (2006). J. Struct. Chem. 47, 504-512.]), (2,2′-bi­pyridine)(O-n-propyl­dithio­carbo­n­ato-κ2S,S′)(O-n-propyl­dithio­carbonato-S)zinc(II) (IGUGUO; Jeremias et al., 2014[Jeremias, L., Demo, G., Kubát, V., Trávníček, Z. & Novosad, J. (2014). Phosphorus Sulfur Silicon, 189, 1475-1488.]), (2,2′-bi­pyridine)-bis­(O-iso­prop­yl­xan­thato)zinc(II) and (2,2′-bi­pyridine)­bis­(O-iso­butyl­xan­th­ato)zinc(II) (with refcodes MUJJOQ and MUJJUW, respectively; Klevtsova et al., 2002[Klevtsova, R. F., Glinskaya, L. A., Leonova, T. G. & Larionov, S. V. (2002). J. Struct. Chem. 43, 125-132.]) and (2,2′-bipyrid­yl)bis­(ethyl­xan­th­ato)zinc(II) (WITLAM; Glinskaya et al., 2000[Glinskaya, L. A., Klevtsova, R. F., Leonova, T. G. & Larionov, S. V. (2000). J. Struct. Chem. 41, 161-165.]). All of these complexes except IGUGUO have tetra­hedral environments around the metal center. The Zn—N and Zn—S bond lengths range from 2.065 to 2.147 Å and 2.284 to 2.341 Å, respectively. The Zn—N and Zn—S bond lengths in the title complex [2.083 (5) and 2.295 (2) Å, respectively] fall within these limits. The structure with refcode IGUGUO has a distorted trigonal–bipyramidal coordination environment.

6. Synthesis and crystallization

To a hot solution of Zn(CH3CO2). 2H2O (10 mmol, 2.20 g) in 2-meth­oxy­ethanol, was added a hot solution of 2,2′-bipy (10 mmol, 1.56 g) in 2-meth­oxy­ethanol. A hot solution of potassium 2-meth­oxy­ethylxanthate (20 mmol, 3.81 g) in 2-meth­oxy­ethanol was added under stirring. Colourless crystals were formed after 30 minutes. The crystals were washed with small amounts of 2-meth­oxy­ethanol and water and air-dried.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95, 0.98 and 0.99 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) otherwise. The crystal was a weak diffractor (I/σ at 0.81 resolution was 5.1) and refinedas a two-component twin with HKLF 4 data (twin law −1 0 0 0 − 1 0 0 0 − 1) but this had little effect. The anisotropy of N1 was restrained with ISOR 0.01 0.02 in SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Table 3
Experimental details

Crystal data
Chemical formula [Zn(C4H7O2S2)2(C10H8N2)]
Mr 523.98
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 22.869 (4), 8.3212 (12), 12.5627 (19)
β (°) 115.348 (4)
V3) 2160.5 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.55
Crystal size (mm) 0.42 × 0.36 × 0.04
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.599, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 11173, 2119, 1954
Rint 0.061
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.087, 0.155, 1.43
No. of reflections 2119
No. of parameters 134
No. of restraints 6
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.55, −1.00
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(2,2'-Bipyridine-κ2N,N')bis(2-methoxyethyl xanthato-κS)zinc(II) top
Crystal data top
[Zn(C4H7O2S2)2(C10H8N2)]F(000) = 1080
Mr = 523.98Dx = 1.611 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 22.869 (4) ÅCell parameters from 2844 reflections
b = 8.3212 (12) Åθ = 3.0–25.4°
c = 12.5627 (19) ŵ = 1.55 mm1
β = 115.348 (4)°T = 100 K
V = 2160.5 (6) Å3Plate, colourless
Z = 40.42 × 0.36 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
1954 reflections with I > 2σ(I)
φ and ω scansRint = 0.061
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
θmax = 26.1°, θmin = 2.6°
Tmin = 0.599, Tmax = 0.745h = 2828
11173 measured reflectionsk = 910
2119 independent reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.087H-atom parameters constrained
wR(F2) = 0.155 w = 1/[σ2(Fo2) + 39.0236P]
where P = (Fo2 + 2Fc2)/3
S = 1.43(Δ/σ)max < 0.001
2119 reflectionsΔρmax = 0.55 e Å3
134 parametersΔρmin = 1.00 e Å3
6 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.63086 (13)0.25000.0085 (3)
S10.44329 (8)0.5070 (2)0.33978 (16)0.0164 (4)
S20.36008 (9)0.4541 (2)0.08028 (17)0.0208 (4)
O20.3340 (2)0.3748 (7)0.2598 (4)0.0203 (11)
O50.2155 (2)0.4123 (6)0.2833 (4)0.0193 (11)
N10.5396 (3)0.8245 (6)0.3634 (5)0.0101 (11)
C10.3750 (3)0.4405 (8)0.2208 (6)0.0153 (15)
C30.2717 (3)0.3151 (9)0.1750 (6)0.0186 (16)
H3A0.27750.22080.13250.022*
H3B0.24810.39960.11690.022*
C40.2350 (4)0.2688 (9)0.2455 (7)0.0192 (16)
H4A0.19660.20380.19640.023*
H4B0.26300.20370.31460.023*
C60.1815 (4)0.3775 (11)0.3521 (7)0.0289 (19)
H6A0.14410.30940.30670.043*
H6B0.16660.47800.37310.043*
H6C0.21020.32110.42400.043*
C70.5764 (3)0.8146 (9)0.4798 (6)0.0165 (15)
H70.59050.71160.51380.020*
C80.5948 (4)0.9481 (9)0.5521 (6)0.0191 (16)
H80.62040.93720.63450.023*
C90.5751 (4)1.0972 (9)0.5021 (7)0.0214 (17)
H90.58741.19130.54940.026*
C100.5371 (3)1.1084 (8)0.3815 (7)0.0189 (16)
H100.52291.21030.34550.023*
C110.5204 (3)0.9708 (8)0.3151 (6)0.0113 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0137 (6)0.0030 (5)0.0118 (6)0.0000.0084 (4)0.000
S10.0169 (9)0.0160 (9)0.0181 (9)0.0021 (7)0.0091 (7)0.0031 (7)
S20.0285 (10)0.0198 (10)0.0198 (10)0.0027 (8)0.0158 (8)0.0026 (8)
O20.018 (3)0.022 (3)0.023 (3)0.002 (2)0.011 (2)0.003 (2)
O50.022 (3)0.016 (3)0.023 (3)0.001 (2)0.013 (2)0.002 (2)
N10.016 (3)0.003 (3)0.017 (3)0.004 (2)0.011 (2)0.004 (2)
C10.019 (4)0.007 (3)0.022 (4)0.004 (3)0.011 (3)0.004 (3)
C30.020 (4)0.019 (4)0.017 (4)0.006 (3)0.008 (3)0.005 (3)
C40.020 (4)0.014 (4)0.023 (4)0.005 (3)0.009 (3)0.001 (3)
C60.028 (4)0.029 (4)0.038 (5)0.009 (4)0.022 (4)0.015 (4)
C70.017 (4)0.018 (4)0.020 (4)0.002 (3)0.013 (3)0.003 (3)
C80.025 (4)0.021 (4)0.016 (4)0.006 (3)0.013 (3)0.003 (3)
C90.021 (4)0.018 (4)0.030 (4)0.008 (3)0.015 (3)0.014 (3)
C100.020 (4)0.006 (3)0.032 (4)0.002 (3)0.013 (3)0.005 (3)
C110.012 (3)0.004 (3)0.021 (4)0.002 (3)0.011 (3)0.002 (3)
Geometric parameters (Å, º) top
Zn1—S12.2954 (18)C4—H4A0.9900
Zn1—S1i2.2954 (18)C4—H4B0.9900
Zn1—N1i2.083 (5)C6—H6A0.9800
Zn1—N12.083 (5)C6—H6B0.9800
S1—C11.727 (7)C6—H6C0.9800
S2—C11.652 (7)C7—H70.9500
O2—C11.346 (8)C7—C81.382 (10)
O2—C31.453 (8)C8—H80.9500
O5—C41.426 (9)C8—C91.377 (11)
O5—C61.418 (8)C9—H90.9500
N1—C71.342 (9)C9—C101.390 (11)
N1—C111.347 (8)C10—H100.9500
C3—H3A0.9900C10—C111.371 (9)
C3—H3B0.9900C11—C11i1.497 (13)
C3—C41.506 (10)
S1i—Zn1—S1126.64 (10)C3—C4—H4A110.0
N1i—Zn1—S1120.78 (15)C3—C4—H4B110.0
N1—Zn1—S1i120.78 (15)H4A—C4—H4B108.4
N1—Zn1—S1100.54 (15)O5—C6—H6A109.5
N1i—Zn1—S1i100.54 (15)O5—C6—H6B109.5
N1—Zn1—N1i78.7 (3)O5—C6—H6C109.5
C1—S1—Zn1102.2 (2)H6A—C6—H6B109.5
C1—O2—C3119.3 (5)H6A—C6—H6C109.5
C6—O5—C4111.4 (6)H6B—C6—H6C109.5
C7—N1—Zn1125.7 (5)N1—C7—H7118.7
C7—N1—C11118.5 (6)N1—C7—C8122.7 (7)
C11—N1—Zn1115.4 (4)C8—C7—H7118.7
S2—C1—S1126.8 (4)C7—C8—H8120.8
O2—C1—S1109.1 (5)C9—C8—C7118.4 (7)
O2—C1—S2124.0 (5)C9—C8—H8120.8
O2—C3—H3A110.5C8—C9—H9120.4
O2—C3—H3B110.5C8—C9—C10119.2 (7)
O2—C3—C4105.9 (6)C10—C9—H9120.4
H3A—C3—H3B108.7C9—C10—H10120.4
C4—C3—H3A110.5C11—C10—C9119.2 (7)
C4—C3—H3B110.5C11—C10—H10120.4
O5—C4—C3108.3 (6)N1—C11—C10121.9 (6)
O5—C4—H4A110.0N1—C11—C11i115.0 (4)
O5—C4—H4B110.0C10—C11—C11i123.1 (4)
Zn1—S1—C1—S24.2 (5)C3—O2—C1—S21.8 (9)
Zn1—S1—C1—O2175.3 (4)C6—O5—C4—C3179.0 (6)
Zn1—N1—C7—C8172.1 (5)C7—N1—C11—C100.5 (9)
Zn1—N1—C11—C10173.2 (5)C7—N1—C11—C11i179.9 (6)
Zn1—N1—C11—C11i6.4 (9)C7—C8—C9—C100.7 (10)
O2—C3—C4—O573.0 (7)C8—C9—C10—C110.3 (10)
N1—C7—C8—C90.9 (10)C9—C10—C11—N10.2 (10)
C1—O2—C3—C4173.4 (6)C9—C10—C11—C11i179.8 (7)
C3—O2—C1—S1177.8 (5)C11—N1—C7—C80.8 (10)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O5ii0.952.513.246 (9)134
C7—H7···S2i0.952.903.552 (7)127
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y+3/2, z+1/2.
 

Funding information

We would like to thank the EPSRC for an equipment grant, which funded the diffractometer at Heriot-Watt University.

References

First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEfrima, S. & Pradhan, N. (2003). C. R. Chim. 6, 1035–1045.  Web of Science CrossRef CAS Google Scholar
First citationFriebolin, W., Schilling, G., Zöller, M. & Amtmann, E. (2004). J. Med. Chem. 47, 2256–2263.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFriebolin, W., Schilling, G., Zöller, M. & Amtmann, E. (2005). J. Med. Chem. 48, 7925–7931.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGlinskaya, L. A., Klevtsova, R. F., Leonova, T. G. & Larionov, S. V. (2000). J. Struct. Chem. 41, 161–165.  Web of Science CrossRef CAS Google Scholar
First citationGolenya, I. A., Gumienna-Kontecka, E., Boyko, A. N., Haukka, M. & Fritsky, I. O. (2012). Inorg. Chem. 51, 6221–6227.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIskenderov, T. S., Golenya, I. A., Gumienna-Kontecka, E., Fritsky, I. O. & Prisyazhnaya, E. V. (2009). Acta Cryst. E65, o2123–o2124.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJeremias, L., Demo, G., Kubát, V., Trávníček, Z. & Novosad, J. (2014). Phosphorus Sulfur Silicon, 189, 1475–1488.  Web of Science CSD CrossRef CAS Google Scholar
First citationKlevtsova, R. F., Glinskaya, L. A., Leonova, T. G. & Larionov, S. V. (2002). J. Struct. Chem. 43, 125–132.  Web of Science CrossRef CAS Google Scholar
First citationKlevtsova, R. F., Leonova, T. G., Glinskaya, L. A. & Larionov, S. V. (2006). J. Struct. Chem. 47, 504–512.  Web of Science CrossRef CAS Google Scholar
First citationKociok-Köhn, G., Molloy, K. C. & Sudlow, A. L. (2015). Main Group Met. Chem. 38, 61–67.  Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationQadir, A. M., Kansiz, S., Dege, N., Rosair, G. M. & Fritsky, I. O. (2019). Acta Cryst. E75, 1582–1585.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStrotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529–547.  Web of Science CSD CrossRef CAS Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds