research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-chloro-2-nitro­benzoic acid with 4-hy­dr­oxy­quinoline: a disordered structure over two states of 4-chloro-2-nitro­benzoic acid–quinolin-4(1H)-one (1/1) and 4-hy­dr­oxy­quinolinium 4-chloro-2-nitro­benzoate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

Edited by A. J. Lough, University of Toronto, Canada (Received 29 October 2019; accepted 6 November 2019; online 8 November 2019)

The title compound, C9H7.5NO·C7H3.5ClNO4, was analysed as a disordered structure over two states, viz. co-crystal and salt, accompanied by a keto–enol tautomerization in the base mol­ecule. The co-crystal is 4-chloro-2-nitro­benzoic acid–quinolin-4(1H)-one (1/1), C7H4ClNO4·C9H7NO, and the salt is 4-hy­droxy­quinolinium 4-chloro-2-nitro­benzoate, C9H8NO+·C7H3ClNO4. In the compound, the acid and base mol­ecules are held together by a short hydrogen bond [O⋯O = 2.4393 (15) Å], in which the H atom is disordered over two positions with equal occupancies. In the crystal, the hydrogen-bonded acid–base units are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming a tape structure along the a-axis direction. The tapes are stacked into a layer parallel to the ab plane via ππ inter­actions [centroid–centroid distances = 3.5504 (8)–3.9010 (11) Å]. The layers are further linked by another C—H⋯O hydrogen bond, forming a three-dimensional network. Hirshfeld surfaces for the title compound mapped over shape-index and dnorm were generated to visualize the inter­molecular inter­actions.

1. Chemical context

In our previous study on D—H⋯A hydrogen bonding (D = N, O, or C, A = N, O or Cl) in chloro- and nitro-substituted benzoic acid–pyridine derivative systems, we have shown that several compounds, namely, three compounds of quinoline with 3-chloro-2-nitro­benzoic acid, 4-chloro-2-nitro­benzoic acid and 5-chloro-2-nitro­benzoic acid (Gotoh & Ishida, 2009[Gotoh, K. & Ishida, H. (2009). Acta Cryst. C65, o534-o538.]), two compounds of phthalazine with 3-chloro-2-nitro­benzoic acid and 4-chloro-2-nitorbenzoic acid (Gotoh & Ishida, 2011[Gotoh, K. & Ishida, H. (2011). Acta Cryst. C67, o473-o478.]), and 3-chloro-2-nitro­benzoic acid–iso­quinoline (Gotoh & Ishida, 2015[Gotoh, K. & Ishida, H. (2015). Acta Cryst. E71, 31-34.]), have a short double-well O⋯H⋯N hydrogen bond between the carb­oxy O atom and the aromatic N atom. Hy­droxy­quinolines, which have hydrogen-bond acceptor as well as donor groups, appear attractive as a base mol­ecule in the above systems for investigating the hydrogen bonds (Babu & Chandrasekaran, 2014[Babu, B. & Chandrasekaran, J. (2014). Private Communication (refcode WOPDEM). CCDC, Cambridge, England.]; Gotoh & Ishida, 2019[Gotoh, K. & Ishida, H. (2019). Acta Cryst. E75, 1552-1557.]). We report here the crystal structure of the title compound, in which there exists another type of short double-well hydrogen bond, namely, an O⋯H⋯O hydrogen bond between the acid and base mol­ecules, accompanied by a keto–enol tautomerization of the base mol­ecule.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The acid and base mol­ecules are held together by a short hydrogen bond between atom O1 of the acid mol­ecule and atom O5 of the base [O1⋯O5 = 2.4393 (15) Å; Table 1[link]]. In the hydrogen bond, the H atom is disordered as indicated in the difference-Fourier map (Fig. 2[link]), in which a broad peak along the line connecting the two O atoms is observed. Although two distinct peaks were not clearly observed in the map, the H atom was successfully analysed as being disordered over two positions of the O1 and O5 sites with equal occupancies. The title compound is, thus, inter­preted as a disordered structure over two states, viz. the co-crystal, 4-chloro-2-nitro­benzoic acid–4(1H)-quinolinone (1/1), and the salt, 4-hy­droxy­quinolinium 4-chloro-2-nitro­benzoate, accompanied by a keto–enol tautomerization in the base mol­ecule. The C10—O5 bond length [1.2956 (18) Å] is inter­mediate between a C—O single bond [1.36 Å in phenol] and a C=O double bond [1.23 Å in ketones of the (Car)2—C=O type] (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]), supporting that hypothesis that the base mol­ecule has an inter­mediate state between the keto and enol forms.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O5 0.84 (3) 1.61 (2) 2.4393 (15) 172 (5)
O5—H1B⋯O1 0.84 (2) 1.60 (2) 2.4393 (15) 173 (4)
N2—H2⋯O2i 0.89 (2) 1.86 (2) 2.7475 (18) 176 (2)
C3—H3⋯O4ii 0.95 2.53 3.469 (2) 170
C8—H8⋯O5i 0.95 2.45 3.208 (2) 137
C9—H9⋯O1 0.95 2.51 3.121 (2) 123
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+1, y, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2]
Figure 2
A difference-Fourier map of the title compound associated with the O⋯H⋯O hydrogen bond between the acid and the base. The map was calculated on the plane of atoms O1, C7 and O5 from a model containing all atoms apart from the H atom in the hydrogen bond.

In the hydrogen-bonded acid–base unit, the benzene ring (C1–C6) of the acid mol­ecule and the quinoline ring system (N2/C8–C16) of the base are slightly inclined to each other by a dihedral angle of 10.27 (6)°, while the carb­oxy group (O1/C7/O2) is twisted by 38.66 (18) and 45.93 (18)°, respectively, with respect to the C1–C6 ring and the N2/C8–C16 ring system. The dihedral angle between the C1–C6 ring and the nitro group (O3/N1/O4) is 50.33 (19)°.

3. Supra­molecular features

In the crystal of the title compound, the hydrogen-bonded acid–base units are linked by N—H⋯O and C—H⋯O hydrogen bonds (N2—H2⋯O2i, C8—H8⋯O5i and C9—H9⋯O1i; symmetry code as in Table 1[link]), forming a tape structure along the a axis (Fig. 3[link]). The tapes are stacked into a layer parallel to the ab plane via ππ inter­actions formed between the acid mol­ecules and between the base mol­ecules (Fig. 4[link]); the centroid–centroid distances are 3.5504 (8), 3.7141 (9), 3.7382 (10) and 3.9010 (11) Å, respectively, for Cg1⋯Cg1iv, Cg2⋯Cg2iv, Cg3⋯Cg2iv and Cg3⋯Cg3iv, where Cg1, Cg2 and Cg3 are the centroids of the C1–C6 ring of the acid mol­ecule, and the N2/C8–C11/C16 and C11–C16 rings of the base mol­ecule, respectively [symmetry code: (iv) −x + [{1\over 2}], y − [{1\over 2}], z]. The layers are further linked by another C—H⋯O hydrogen bond (C3—H3⋯O4ii; Table 1[link]), forming a three-dimensional network.

[Figure 3]
Figure 3
A packing diagram of the title compound, showing the hydrogen-bonded tape structure formed via the O⋯H⋯O, N—H⋯O and C—H⋯O hydrogen bonds (dashed lines). [Symmetry codes: (i) x − [{1\over 2}], −y + [{1\over 2}], −z + 1; (iii) x + [{1\over 2}], −y + [{1\over 2}], −z + 1.]
[Figure 4]
Figure 4
A packing diagram of the title compound, showing hydrogen-bonded acid-base units stacked along the b axis via the ππ inter­actions (magenta dashed lines). The ππ inter­actions including the centroid of the C11–C16 ring of the base (Cg3) are omitted for clarity. The O⋯H⋯O and C—H⋯O hydrogen bonds are indicated by green dashed lines. [Symmetry codes: (iv) −x + [{1\over 2}], y − [{1\over 2}], z; (v) −x + [{1\over 2}], y + [{1\over 2}], z; (vi) x, y + 1, z.]

In order to visualize the inter­molecular inter­actions, Hirshfeld surfaces for the acid and base mol­ecules of the title compound, mapped over shape-index and dnorm (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer. Version 17. University of Western Australia. https://hirshfeldsurface.net.]; McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.], 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]), were generated (Fig. 5[link]). Inter­molecular hydrogen bonds of N2—H2⋯O2i, C3—H3⋯O4ii and C8—H8⋯O5i (Table 1[link]) are represented as faint-red spots on the dnorm surfaces [arrows (1)–(3)]. The ππ inter­actions between the benzene rings of the acid mol­ecules [Cg1⋯Cg1iv] and between the quinoline ring systems of the base mol­ecules [Cg2⋯Cg2iv, Cg3⋯Cg2iv and Cg3⋯Cg3iv; symmetry code: (iv) −x + [{1\over 2}], y − [{1\over 2}], z] are indicated by blue and red triangles on the shape-index surfaces [arrows (4) and (5)].

[Figure 5]
Figure 5
Hirshfeld surfaces (front and back views) for the title compound mapped over dnorm and shape-index, indicating the N—H⋯O [arrows (1)], C—H⋯O [arrows (2) and (3)] and ππ [arrows (4) and (5)] inter­actions.

4. Database survey

A search of the Cambridge Structural Database (Version 5.40, last update August 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for organic co-crystals/salts of 4(1H)-quinolinone (keto tautomer) showed one structure, namely, 4-amino-1-(2-(hy­droxy­meth­yl)-1,3-oxa­thio­lan-5-yl)-2(1H)-pyrimidinone 4(1H)-quinolinone (refcode COWTAK; Bhatt et al., 2009[Bhatt, P. M., Azim, Y., Thakur, T. S. & Desiraju, G. R. (2009). Cryst. Growth Des. 9, 951-957.]). The structure of the 4(1H)-quinolinone itself was reported by Nasiri et al. (2006[Nasiri, H. R., Bolte, M. & Schwalbe, H. (2006). Heterocycl. Commun. 12, 319-322.]; NICIOZ). The C=O bond length in COWTAK is 1.265 (7) Å and those in NICIOZ are 1.2686 (16) and 1.2742 (15) Å, which are shorter than the C10—O5 bond length of 1.2956 (18) Å in the title compound. No structure was found in the CSD for organic co-crystals/salts of 4-hy­droxy­quinoline (enol tautomer). A search for organic co-crystals/salts of 4-chloro-2-nitro­benzoic acid with base mol­ecules gave eight compounds. Of these compounds, disorder of H atom between the acid O atom and the base N atom was observed in two compounds of 4-chloro-2-nitro­benzoic acid with quinoline (AJIWUM; Gotoh & Ishida, 2009[Gotoh, K. & Ishida, H. (2009). Acta Cryst. C65, o534-o538.]) and phthalazine (CALKAD; Gotoh & Ishida, 2011[Gotoh, K. & Ishida, H. (2011). Acta Cryst. C67, o473-o478.]).

5. Synthesis and crystallization

Single crystals of the title compound suitable for X-ray diffraction analysis were obtained by slow evaporation from an aceto­nitrile solution (130 ml) of 4-hy­droxy­quinoline (0.075 g) with 4-chloro-2-nitro­benzoic acid (0.106 g) in a 1:1 molar ratio at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms except one H atom between the two O atoms (O1 and O5) of the acid and base mol­ecules were found in a difference-Fourier map. A broad peak in a difference-Fourier map between atoms O1 and O5 was observed (Fig. 2[link]). Although two distinct peaks were not observed in the map, the H atom between the O atoms was analysed using a model of an H atom disordered over two positions. The occupancies of the two sites were refined to 0.47 (4) and 0.53 (4) for H1A (O1 site) and H1B (O5 site), respectively, with bond restraints of O—H = 0.84 (1) Å and with Uiso(H) = 1.5Ueq(O). In the final refinement, the occupancies were fixed at 0.5, and one outlier (6,8,13) was omitted. The N-bound H atom was refined freely [refined distance: N2—H2 = 0.89 (2) Å]. Other H atoms were positioned geometrically (C—H = 0.95 Å) and treated as riding, with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C7H3.5ClNO4·C9H7.5NO
Mr 346.73
Crystal system, space group Orthorhombic, Pbcn
Temperature (K) 190
a, b, c (Å) 12.6336 (8), 7.0701 (3), 33.5956 (15)
V3) 3000.8 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.29
Crystal size (mm) 0.35 × 0.28 × 0.09
 
Data collection
Diffractometer Rigaku R-AXIS RAPIDII
Absorption correction Numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.939, 0.975
No. of measured, independent and observed [I > 2σ(I)] reflections 36709, 4380, 3235
Rint 0.052
(sin θ/λ)max−1) 0.704
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.136, 1.13
No. of reflections 4380
No. of parameters 227
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.42
Computer programs: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), CrystalStructure (Rigaku, 2018[Rigaku (2018). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) and PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]).

Supporting information


Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: PROCESS-AUTO (Rigaku, 2006); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows and WinGX (Farrugia, 2012); Mercury (Macrae et al., 2008); software used to prepare material for publication: CrystalStructure (Rigaku, 2018) and PLATON (Spek, 2015).

4-Chloro-2-nitrobenzoic acid–quinolin-4(1H)-one (1/1)–4-hydroxyquinolinium 4-chloro-2-nitrobenzoate top
Crystal data top
C7H3.5ClNO4·C9H7.5NODx = 1.535 Mg m3
Mr = 346.73Mo Kα radiation, λ = 0.71075 Å
Orthorhombic, PbcnCell parameters from 23445 reflections
a = 12.6336 (8) Åθ = 3.0–30.2°
b = 7.0701 (3) ŵ = 0.28 mm1
c = 33.5956 (15) ÅT = 190 K
V = 3000.8 (3) Å3Platelet, colorless
Z = 80.35 × 0.28 × 0.09 mm
F(000) = 1424.00
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
3235 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.052
ω scansθmax = 30.0°, θmin = 3.2°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 1717
Tmin = 0.939, Tmax = 0.975k = 99
36709 measured reflectionsl = 4747
4380 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: mixed
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0641P)2 + 0.6358P]
where P = (Fo2 + 2Fc2)/3
4380 reflections(Δ/σ)max = 0.002
227 parametersΔρmax = 0.39 e Å3
2 restraintsΔρmin = 0.42 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.14687 (4)0.53104 (8)0.76188 (2)0.05607 (17)
O10.32791 (10)0.20128 (19)0.58896 (3)0.0439 (3)
H1A0.351 (4)0.185 (8)0.5658 (6)0.066*0.5
O20.44512 (9)0.43255 (18)0.60030 (3)0.0423 (3)
O30.52878 (10)0.26978 (19)0.67248 (4)0.0497 (3)
O40.53263 (11)0.5533 (2)0.69656 (5)0.0636 (4)
O50.37717 (9)0.15689 (18)0.51938 (3)0.0376 (3)
H1B0.356 (3)0.177 (7)0.5427 (6)0.056*0.5
N10.48587 (11)0.4153 (2)0.68364 (4)0.0404 (3)
N20.11801 (11)0.1179 (2)0.44816 (4)0.0379 (3)
C10.31559 (12)0.3666 (2)0.64897 (4)0.0318 (3)
C20.37014 (12)0.4213 (2)0.68293 (4)0.0333 (3)
C30.32058 (13)0.4729 (2)0.71785 (5)0.0373 (3)
H30.3601450.5111010.7405100.045*
C40.21176 (14)0.4671 (2)0.71868 (5)0.0377 (4)
C50.15375 (13)0.4103 (2)0.68590 (5)0.0389 (4)
H50.0786780.4053230.6870960.047*
C60.20643 (12)0.3610 (2)0.65135 (4)0.0345 (3)
H60.1667170.3223520.6287540.041*
C70.36954 (12)0.3319 (2)0.60966 (4)0.0334 (3)
C80.10616 (13)0.1492 (2)0.48692 (5)0.0381 (3)
H80.0367320.1635930.4973540.046*
C90.19038 (13)0.1612 (2)0.51224 (5)0.0357 (3)
H90.1790650.1812210.5398730.043*
C100.29314 (11)0.1441 (2)0.49744 (4)0.0306 (3)
C110.30605 (12)0.1122 (2)0.45544 (4)0.0306 (3)
C120.40628 (13)0.0928 (2)0.43769 (5)0.0385 (4)
H120.4683630.0999540.4535750.046*
C130.41438 (16)0.0636 (3)0.39760 (5)0.0492 (4)
H130.4821760.0501570.3857050.059*
C140.32353 (17)0.0534 (3)0.37403 (5)0.0533 (5)
H140.3304550.0350880.3461390.064*
C150.22572 (16)0.0693 (3)0.39020 (5)0.0459 (4)
H150.1645310.0598200.3738850.055*
C160.21571 (12)0.0997 (2)0.43129 (4)0.0331 (3)
H20.0611 (18)0.107 (3)0.4325 (6)0.052 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0601 (3)0.0749 (3)0.0332 (2)0.0104 (2)0.01812 (19)0.00122 (19)
O10.0488 (7)0.0572 (7)0.0257 (5)0.0068 (6)0.0010 (5)0.0078 (5)
O20.0363 (6)0.0585 (7)0.0321 (5)0.0033 (5)0.0060 (5)0.0043 (5)
O30.0385 (7)0.0637 (8)0.0468 (7)0.0164 (6)0.0004 (5)0.0024 (6)
O40.0434 (8)0.0792 (10)0.0681 (9)0.0088 (7)0.0108 (7)0.0217 (8)
O50.0290 (5)0.0565 (7)0.0273 (5)0.0005 (5)0.0025 (4)0.0066 (5)
N10.0338 (7)0.0594 (8)0.0282 (6)0.0038 (6)0.0041 (5)0.0013 (6)
N20.0314 (7)0.0430 (7)0.0391 (7)0.0016 (6)0.0090 (6)0.0023 (6)
C10.0325 (7)0.0384 (8)0.0245 (6)0.0037 (6)0.0003 (5)0.0010 (6)
C20.0313 (7)0.0415 (8)0.0271 (7)0.0038 (6)0.0007 (5)0.0011 (6)
C30.0424 (9)0.0437 (8)0.0257 (7)0.0029 (7)0.0007 (6)0.0008 (6)
C40.0429 (9)0.0421 (8)0.0281 (7)0.0061 (7)0.0093 (6)0.0020 (6)
C50.0317 (8)0.0484 (9)0.0366 (8)0.0036 (7)0.0045 (6)0.0062 (7)
C60.0315 (8)0.0424 (8)0.0297 (7)0.0019 (6)0.0004 (6)0.0028 (6)
C70.0307 (7)0.0447 (8)0.0247 (6)0.0055 (6)0.0020 (5)0.0011 (6)
C80.0294 (8)0.0433 (8)0.0417 (8)0.0011 (6)0.0014 (6)0.0002 (7)
C90.0323 (8)0.0443 (8)0.0305 (7)0.0008 (6)0.0027 (6)0.0010 (6)
C100.0298 (7)0.0337 (7)0.0282 (7)0.0004 (6)0.0010 (5)0.0004 (6)
C110.0321 (7)0.0320 (7)0.0277 (7)0.0004 (6)0.0008 (5)0.0002 (6)
C120.0345 (8)0.0485 (9)0.0326 (7)0.0000 (7)0.0011 (6)0.0042 (7)
C130.0492 (10)0.0633 (11)0.0350 (8)0.0040 (9)0.0094 (7)0.0065 (8)
C140.0653 (13)0.0669 (13)0.0279 (8)0.0087 (10)0.0002 (8)0.0072 (8)
C150.0550 (11)0.0523 (10)0.0304 (7)0.0077 (8)0.0124 (7)0.0048 (7)
C160.0365 (8)0.0318 (7)0.0311 (7)0.0018 (6)0.0042 (6)0.0016 (6)
Geometric parameters (Å, º) top
Cl1—C41.7271 (16)C5—C61.383 (2)
O1—C71.270 (2)C5—H50.9500
O1—H1A0.841 (10)C6—H60.9500
O2—C71.2317 (19)C8—C91.365 (2)
O3—N11.2218 (19)C8—H80.9500
O4—N11.220 (2)C9—C101.395 (2)
O5—C101.2956 (18)C9—H90.9500
O5—H1B0.841 (10)C10—C111.438 (2)
N1—C21.463 (2)C11—C161.403 (2)
N2—C81.329 (2)C11—C121.406 (2)
N2—C161.364 (2)C12—C131.366 (2)
N2—H20.90 (2)C12—H120.9500
C1—C61.382 (2)C13—C141.396 (3)
C1—C21.388 (2)C13—H130.9500
C1—C71.506 (2)C14—C151.355 (3)
C2—C31.379 (2)C14—H140.9500
C3—C41.376 (2)C15—C161.403 (2)
C3—H30.9500C15—H150.9500
C4—C51.382 (2)
C7—O1—H1A117 (4)O1—C7—C1114.27 (14)
C10—O5—H1B106 (3)N2—C8—C9122.21 (15)
O4—N1—O3124.57 (15)N2—C8—H8118.9
O4—N1—C2117.80 (14)C9—C8—H8118.9
O3—N1—C2117.58 (14)C8—C9—C10119.87 (14)
C8—N2—C16121.64 (14)C8—C9—H9120.1
C8—N2—H2120.1 (14)C10—C9—H9120.1
C16—N2—H2118.3 (14)O5—C10—C9123.62 (14)
C6—C1—C2117.13 (14)O5—C10—C11118.44 (13)
C6—C1—C7119.84 (13)C9—C10—C11117.94 (13)
C2—C1—C7122.78 (14)C16—C11—C12118.77 (14)
C3—C2—C1123.20 (15)C16—C11—C10119.00 (13)
C3—C2—N1116.59 (14)C12—C11—C10122.23 (13)
C1—C2—N1120.11 (13)C13—C12—C11120.00 (16)
C4—C3—C2117.59 (15)C13—C12—H12120.0
C4—C3—H3121.2C11—C12—H12120.0
C2—C3—H3121.2C12—C13—C14120.35 (17)
C3—C4—C5121.49 (15)C12—C13—H13119.8
C3—C4—Cl1118.92 (13)C14—C13—H13119.8
C5—C4—Cl1119.59 (13)C15—C14—C13121.21 (16)
C4—C5—C6119.13 (15)C15—C14—H14119.4
C4—C5—H5120.4C13—C14—H14119.4
C6—C5—H5120.4C14—C15—C16119.31 (16)
C1—C6—C5121.44 (15)C14—C15—H15120.3
C1—C6—H6119.3C16—C15—H15120.3
C5—C6—H6119.3N2—C16—C15120.32 (15)
O2—C7—O1126.98 (14)N2—C16—C11119.34 (14)
O2—C7—C1118.71 (14)C15—C16—C11120.34 (15)
C6—C1—C2—C31.4 (2)C16—N2—C8—C91.3 (3)
C7—C1—C2—C3172.84 (15)N2—C8—C9—C101.2 (3)
C6—C1—C2—N1174.88 (14)C8—C9—C10—O5178.85 (15)
C7—C1—C2—N110.9 (2)C8—C9—C10—C110.5 (2)
O4—N1—C2—C350.5 (2)O5—C10—C11—C16179.45 (14)
O3—N1—C2—C3127.10 (16)C9—C10—C11—C160.0 (2)
O4—N1—C2—C1132.98 (17)O5—C10—C11—C120.7 (2)
O3—N1—C2—C149.4 (2)C9—C10—C11—C12179.91 (15)
C1—C2—C3—C40.7 (2)C16—C11—C12—C130.4 (2)
N1—C2—C3—C4175.67 (14)C10—C11—C12—C13179.68 (16)
C2—C3—C4—C50.5 (2)C11—C12—C13—C140.2 (3)
C2—C3—C4—Cl1179.91 (13)C12—C13—C14—C151.0 (3)
C3—C4—C5—C60.9 (3)C13—C14—C15—C161.1 (3)
Cl1—C4—C5—C6179.46 (13)C8—N2—C16—C15179.16 (16)
C2—C1—C6—C50.9 (2)C8—N2—C16—C110.7 (2)
C7—C1—C6—C5173.51 (15)C14—C15—C16—N2179.37 (17)
C4—C5—C6—C10.2 (3)C14—C15—C16—C110.5 (3)
C6—C1—C7—O2138.07 (16)C12—C11—C16—N2179.85 (14)
C2—C1—C7—O236.0 (2)C10—C11—C16—N20.0 (2)
C6—C1—C7—O139.9 (2)C12—C11—C16—C150.3 (2)
C2—C1—C7—O1146.07 (15)C10—C11—C16—C15179.82 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O50.84 (3)1.61 (2)2.4393 (15)172 (5)
O5—H1B···O10.84 (2)1.60 (2)2.4393 (15)173 (4)
N2—H2···O2i0.89 (2)1.86 (2)2.7475 (18)176 (2)
C3—H3···O4ii0.952.533.469 (2)170
C8—H8···O5i0.952.453.208 (2)137
C9—H9···O10.952.513.121 (2)123
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1, y, z+3/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBabu, B. & Chandrasekaran, J. (2014). Private Communication (refcode WOPDEM). CCDC, Cambridge, England.  Google Scholar
First citationBhatt, P. M., Azim, Y., Thakur, T. S. & Desiraju, G. R. (2009). Cryst. Growth Des. 9, 951–957.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGotoh, K. & Ishida, H. (2009). Acta Cryst. C65, o534–o538.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, K. & Ishida, H. (2011). Acta Cryst. C67, o473–o478.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, K. & Ishida, H. (2015). Acta Cryst. E71, 31–34.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, K. & Ishida, H. (2019). Acta Cryst. E75, 1552–1557.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNasiri, H. R., Bolte, M. & Schwalbe, H. (2006). Heterocycl. Commun. 12, 319–322.  CrossRef CAS Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2018). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer. Version 17. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds