research communications
H-1,3-benzodiazol-2-one
Hirshfeld surface analysis and interaction energy and DFT studies of 1-methyl-3-(prop-2-yn-1-yl)-2,3-dihydro-1aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and dLaboratoire de Chimie Appliquée et Environnement, Equipe de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco
*Correspondence e-mail: mohamedsrhir2018@gmail.com
In the title molecule, C11H10N2O, the dihydrobenzimidazol-2-one moiety is essentially planar, with the prop-2-yn-1-yl substituent rotated well out of this plane. In the crystal, C—HMthy⋯π(ring) interactions and C—HProp⋯ODhyr (Mthy = methyl, Prop = prop-2-yn-1-yl and Dhyr = dihydro) hydrogen bonds form corrugated layers parallel to (10), which are associated through additional C—HBnz⋯ODhyr (Bnz = benzene) hydrogen bonds and head-to-tail, slipped, π-stacking [centroid-to-centroid distance = 3.7712 (7) Å] interactions between dihydrobenzimidazol-2-one moieties. The Hirshfeld surface analysis of the indicates that the most important contributions to the crystal packing are from H⋯H (44.1%), H⋯C/C⋯H (33.5%) and O⋯H/H⋯O (13.4%) interactions. Hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry calculations indicate that in the crystal, C—H⋯O hydrogen-bond energies are 46.8 and 32.5 (for C—HProp⋯ODhyr) and 20.2 (for C—HBnz⋯ODhyr) kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.
Keywords: crystal structure; benzimidazol-2-one; hydrogen bond; C—H⋯π(ring) interaction; π-stacking; Hirshfeld surface.
CCDC reference: 1967468
1. Chemical context
Benzimidazole is an aromatic heterocyclic organic compound that plays an important role in medicinal chemistry and pharmacology. The most prominent benzimidazole moiety present in nature is N-ribosyl-dimethylbenzimidazole and it serves as the axial ligand for cobalt in vitamin B12 (Walia et al., 2011). Benzimidazole derivatives possess many biological activities such as anti-microbial, anti-fungal, anti-histaminic, anti-inflammatory, anti-viral, anti-oxidant, anti-cancer and anti-ulcerative (Farukh & Mubashira, 2009; Ayhan-Kılcıgil et al., 2007; Soderlind et al., 1999; Luo et al., 2011; Navarrete-Vázquez et al., 2011). They are considered to be an important moiety for the development of molecules of pharmaceutical interest (Mondieig et al., 2013; Lakhrissi et al., 2008). As a continuation of our research on the development of N-substituted benzimidazole derivatives and the evaluation of their potential pharmacological activities (Saber et al., 2018a,b, 2020; Ouzidan et al., 2011), we have studied the alkylation reaction of iodomethane with 1-(prop-2-ynyl)-1H-benzoimidazol-2(3H)-one in the presence of tetra-n-butylammonium bromide as catalyst and potassium carbonate as base, to give the title compound, I in good yield. We report herein on its synthesis, the molecular and crystal structures along with the Hirshfeld surface analysis and the intermolecular interaction energies and the density functional theory (DFT) computational calculations carried out at the B3LYP/6–311 G(d,p) level for comparison with the experimentally determined molecular structure in the solid state.
2. Structural commentary
In the title compound, the dihydrobenzimidazol-2-one moiety is planar to within 0.0160 (8) Å (r.m.s. deviation = 0.0082) with atom C7 deviating the most from the mean plane and a prop-2-yn-1-yl substituent rotated well out of this plane as shown by the C1—N2—C9—C10 torsion angle of 62.16 (13)° (Fig. 1).
3. Supramolecular features
In the crystal, inversion dimers are formed by pairs of C—HMthy⋯Cg1i interactions [Mthy = methyl; symmetry code: (i) − x, 1 − y, 1 − z; Cg1 is the centroid of the benzene (A; C1–C6), ring]; which are connected along the b-axis direction by C—HBnz⋯ODhyr hydrogen bonds (Bnz = benzene and Dhyr = dihydro) and along the a-axis direction at ca 90° to this and parallel to (10) by inversion-related C—HProp⋯ODhyr hydrogen bonds (Table 1). The resulting corrugated layers are parallel to (10) and are connected in pairs by slipped, head-to-tail π-stacking interactions between the dihydrobenzimidazol-2-one moieties, [Cg2⋯Cg1ii = 3.7712 (7) Å, dihedral angle = 0.96 (6)°; symmetry code: (ii) 1 – x, 1 – y, 1 – z; Cg1 and Cg2 are the centroids of rings A and B (N1/N2/C1/C6/C7) and C—HProp⋯ODhyr (Prop = prop-2-yn-1-yl) hydrogen bonds (Table 1, Figs. 2 and 3).
4. Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out using Crystal Explorer 17.5 (Turner et al., 2017). In the HS plotted over dnorm (Fig. 4), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distant contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots appearing near O1 and the hydrogen atom H11 indicate their roles as the donors and/or acceptors, respectively; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005) as shown in Fig. 5. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π interactions. Fig. 6 clearly suggests that there are π– π interactions in (I).
The overall two-dimensional fingerprint plot, Fig. 7a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O ⋯ H, C⋯C, H⋯N/N⋯H and N⋯C/C⋯N contacts (McKinnon et al., 2007) are illustrated in Fig. 7b–g, respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H⋯H contributing 44.1% to the overall crystal packing, which is reflected in Fig. 7b as widely scattered points of high density due to the large hydrogen content of the molecule with the tip at de = di = 1.22 Å. The presence of C—H⋯π interactions gives rise to pairs of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts, Fig. 7c., contributing 33.5% to the HS (Table 2); these are viewed as pairs of spikes with the tips at de + di = 2.56 Å. The pair of wings in Fig. 7d has a symmetrical distribution of points with the edges at de + di = 2.09 Å arising from the H⋯O/O⋯H contacts (13.4% contribution). The C⋯C contacts, Fig. 7e, have an arrow-shaped distribution of points with the tip at de = di = 1.75 Å. The H⋯N/N⋯N contacts, contributing 2.9% to the overall crystal packing, are depicted in Fig. 7f as widely scattered points. Finally, the N⋯C/C⋯N interactions, contributing 2.4% to the overall crystal packing, are shown in Fig. 7g as tiny characteristic wings with the tips at de + di = 3.45 Å.
|
The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H and H⋯O/O⋯H interactions in Fig. 8a–c, respectively.
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H and H⋯ O/O⋯H interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
5. Interaction energy calculations
The intermolecular interaction energies were calculated using the CE–B3LYP/6–31G(d,p) energy model available in CrystalExplorer17.5 (Turner et al., 2017), where a cluster of molecules is generated by applying operations with respect to a selected central molecule within the default radius of 3.8 Å (Turner et al., 2014). The total intermolecular energy (Etot) is the sum of electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies (Turner et al., 2015) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017). Hydrogen-bonding interaction energies (in kJ mol−1) were calculated to be −17.4 (Eele), −3.5 (Epol), −62.6 (Edis), 46.5 (Erep) and −46.8 (Etot) for C11—H11⋯O1, −12.4 (Eele), −1.9 (Epol), −41.6 (Edis), 29.6 (Erep) and −32.5 (Etot) for C9—H9B⋯O1 and −13.7 (Eele), −3.7 (Epol), −15.5 (Edis), 17.0 (Erep) and −20.2 (Etot) for C3—H3⋯O1.
6. DFT calculations
The optimized structure of the title compound in the gas phase was generated theoretically via density functional theory (DFT) using the standard B3LYP functional and 6–311 G(d,p) basis-set calculations (Becke, 1993) as implemented in GAUSSIAN 09 (Frisch et al., 2009). The theoretical and experimental results are in good agreement (Table 3). The highest-occupied molecular orbital (HOMO), acting as an and the lowest-unoccupied molecular orbital (LUMO), acting as an are very important parameters for quantum chemistry. When the energy gap is small, the molecule is highly polarizable and has high chemical reactivity. The DFT calculations provide some important information on the reactivity and site selectivity of the molecular framework. EHOMO and ELUMO clarify the inevitable charge-exchange collaboration inside the studied material and are given in Table 4 along with the (χ), hardness (η), potential (μ), (ω) and softness (σ). The significance of η and σ is for the evaluation of both the reactivity and stability. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 9. The HOMO and LUMO are localized in the plane extending from the whole 1-methyl-3-(prop-2-yn-1-yl)-2,3-dihydro-1H-1,3-benzodiazol-2-one ring. The energy band gap [ΔE = ELUMO − EHOMO] of the molecule is about 5.4115 eV, and the frontier molecular orbital energies, EHOMO and ELUMO are −5.8885 and −0.4770 eV, respectively.
|
|
7. Database survey
The syntheses of several N-substituted benzimidazol-2-one analogues have been reported (Saber et al., 2018a,b; 2020; Belaziz et al., 2012; Bouayad et al., 2015; Belaziz et al., 2013). In a search of the Cambridge Crystallographic Database (CSD; Version 5.40, update of September 2019; Groom et al., 2016) using benzimidazol-2-one with an exocyclic carbon atom bound to each nitrogen generated 94 hits. In these, the bicyclic ring system is either planar, has a slight twist end-to-end, or, in the cases where the exocyclic substituents form a ring, has a very shallow bowl shape.
The closest examples to the title compound, I, are II (HISFUN; Saber et al., 2018b), III (URAQAG; Ouzidan et al., 2011a) and IV (AGAXOX; Kandri Rodi et al., 2013). In the title compound, the C—N bonds to the exocyclic groups are 1.4526 (14) and 1.4545 (19) Å while in II–IV the corresponding distances range from 1.445 (3) to 1.4632 (11) Å, and so are quite comparable. The exocyclic groups in I are in an anti-arrangement with the prop-2-yn-1-yl group rotated by 62.16 (13)° out of the plane of the bicyclic moiety (as measured by the C1—N2—C9—C10 torsion angle). In the other three, these substituents are also anti and in II the corresponding torsion angle is 73.46 (18)° while in III they are 82.58 (15) and 74.31 (14)°. In IV the torsion angles are 106.0 (3) and 113.4 (3)° indicating a rotation in the opposite direction from the first three.
8. Synthesis and crystallization
To a mixture of 1-(prop-2-ynyl)-1H-benzimidazol-2(3H)-one (3.61 mmol), iodomethane (6.73 mmol) and potassium carbonate (6.24 mmol) in DMF (15 ml) was added a catalytic amount of tetra-n-butylammonium bromide (0.37 mmol). The mixture was stirred for 24 h. The solid material was removed by filtration and the solvent evaporated under vacuum. The solid product was purified by recrystallization from ethanol to afford colorless crystals (yield: in 82%).
9. Refinement
Crystal data, data collection and structure . Hydrogen atoms were located in a difference Fourier map and refined freely.
details are summarized in Table 5
|
Supporting information
CCDC reference: 1967468
https://doi.org/10.1107/S2056989019015779/lh5936sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019015779/lh5936Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019015779/lh5936Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989019015779/lh5936Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C11H10N2O | F(000) = 392 |
Mr = 186.21 | Dx = 1.281 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54178 Å |
a = 7.1507 (3) Å | Cell parameters from 5848 reflections |
b = 8.8177 (4) Å | θ = 5.8–70.1° |
c = 15.4602 (7) Å | µ = 0.68 mm−1 |
β = 97.914 (2)° | T = 150 K |
V = 965.52 (7) Å3 | Plate, colourless |
Z = 4 | 0.32 × 0.31 × 0.12 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 1812 independent reflections |
Radiation source: INCOATEC IµS micro-focus source | 1679 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.030 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 70.1°, θmin = 5.8° |
ω scans | h = −8→8 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −10→9 |
Tmin = 0.83, Tmax = 0.92 | l = −18→18 |
6896 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | All H-atom parameters refined |
wR(F2) = 0.086 | w = 1/[σ2(Fo2) + (0.0402P)2 + 0.2239P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
1812 reflections | Δρmax = 0.18 e Å−3 |
168 parameters | Δρmin = −0.19 e Å−3 |
0 restraints | Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: dual | Extinction coefficient: 0.0100 (12) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.31019 (11) | 0.82725 (9) | 0.64517 (6) | 0.0345 (2) | |
N1 | 0.24854 (12) | 0.64929 (11) | 0.53316 (6) | 0.0280 (2) | |
N2 | 0.36075 (12) | 0.56773 (10) | 0.66470 (6) | 0.0250 (2) | |
C1 | 0.33940 (14) | 0.44082 (11) | 0.61080 (7) | 0.0235 (2) | |
C2 | 0.37638 (15) | 0.28918 (12) | 0.62754 (8) | 0.0289 (3) | |
H2 | 0.426 (2) | 0.2543 (16) | 0.6872 (10) | 0.039 (4)* | |
C3 | 0.34025 (16) | 0.18941 (14) | 0.55731 (8) | 0.0353 (3) | |
H3 | 0.364 (2) | 0.0783 (17) | 0.5684 (10) | 0.043 (4)* | |
C4 | 0.27117 (17) | 0.24106 (15) | 0.47421 (8) | 0.0378 (3) | |
H4 | 0.246 (2) | 0.1678 (17) | 0.4255 (10) | 0.046 (4)* | |
C5 | 0.23359 (16) | 0.39392 (15) | 0.45751 (7) | 0.0339 (3) | |
H5 | 0.190 (2) | 0.4305 (16) | 0.3992 (10) | 0.042 (4)* | |
C6 | 0.26803 (14) | 0.49324 (12) | 0.52720 (7) | 0.0255 (3) | |
C7 | 0.30715 (14) | 0.69684 (12) | 0.61712 (7) | 0.0260 (2) | |
C8 | 0.17860 (17) | 0.75002 (16) | 0.46162 (8) | 0.0381 (3) | |
H8A | 0.255 (3) | 0.747 (2) | 0.4146 (13) | 0.076 (6)* | |
H8B | 0.176 (3) | 0.854 (2) | 0.4867 (13) | 0.072 (5)* | |
H8C | 0.044 (2) | 0.7264 (17) | 0.4370 (10) | 0.047 (4)* | |
C9 | 0.44506 (16) | 0.56993 (13) | 0.75585 (7) | 0.0283 (3) | |
H9A | 0.4344 (19) | 0.6753 (16) | 0.7764 (9) | 0.033 (3)* | |
H9B | 0.376 (2) | 0.5012 (16) | 0.7898 (9) | 0.038 (3)* | |
C10 | 0.64427 (15) | 0.52362 (12) | 0.76752 (7) | 0.0281 (3) | |
C11 | 0.80385 (17) | 0.48197 (14) | 0.77883 (8) | 0.0342 (3) | |
H11 | 0.938 (2) | 0.4443 (17) | 0.7926 (10) | 0.050 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0298 (4) | 0.0254 (4) | 0.0471 (5) | 0.0006 (3) | 0.0015 (3) | −0.0012 (3) |
N1 | 0.0239 (4) | 0.0309 (5) | 0.0277 (5) | −0.0020 (3) | −0.0012 (4) | 0.0074 (4) |
N2 | 0.0254 (5) | 0.0249 (5) | 0.0236 (4) | 0.0005 (3) | −0.0007 (3) | −0.0007 (3) |
C1 | 0.0196 (5) | 0.0264 (5) | 0.0244 (5) | −0.0023 (4) | 0.0028 (4) | −0.0014 (4) |
C2 | 0.0249 (5) | 0.0281 (6) | 0.0337 (6) | −0.0008 (4) | 0.0041 (4) | 0.0011 (4) |
C3 | 0.0298 (6) | 0.0300 (6) | 0.0469 (7) | −0.0021 (4) | 0.0088 (5) | −0.0072 (5) |
C4 | 0.0339 (6) | 0.0427 (7) | 0.0384 (6) | −0.0083 (5) | 0.0107 (5) | −0.0158 (5) |
C5 | 0.0286 (6) | 0.0486 (7) | 0.0248 (6) | −0.0089 (5) | 0.0048 (4) | −0.0032 (5) |
C6 | 0.0207 (5) | 0.0307 (6) | 0.0254 (5) | −0.0046 (4) | 0.0037 (4) | 0.0014 (4) |
C7 | 0.0189 (5) | 0.0261 (5) | 0.0328 (6) | −0.0007 (4) | 0.0025 (4) | 0.0025 (4) |
C8 | 0.0294 (6) | 0.0450 (7) | 0.0380 (7) | −0.0013 (5) | −0.0019 (5) | 0.0189 (6) |
C9 | 0.0296 (6) | 0.0332 (6) | 0.0218 (5) | 0.0004 (4) | 0.0019 (4) | −0.0014 (4) |
C10 | 0.0333 (6) | 0.0293 (5) | 0.0206 (5) | −0.0018 (4) | −0.0004 (4) | 0.0014 (4) |
C11 | 0.0330 (6) | 0.0381 (6) | 0.0298 (6) | 0.0022 (5) | −0.0016 (4) | 0.0030 (5) |
O1—C7 | 1.2281 (13) | C4—C5 | 1.3915 (19) |
N1—C7 | 1.3735 (14) | C4—H4 | 0.989 (16) |
N1—C6 | 1.3874 (15) | C5—C6 | 1.3839 (16) |
N1—C8 | 1.4526 (14) | C5—H5 | 0.967 (15) |
N2—C7 | 1.3807 (14) | C8—H8A | 0.97 (2) |
N2—C1 | 1.3910 (13) | C8—H8B | 0.99 (2) |
N2—C9 | 1.4545 (14) | C8—H8C | 1.004 (16) |
C1—C2 | 1.3805 (15) | C9—C10 | 1.4689 (16) |
C1—C6 | 1.4011 (14) | C9—H9A | 0.988 (14) |
C2—C3 | 1.3937 (17) | C9—H9B | 0.978 (15) |
C2—H2 | 0.991 (15) | C10—C11 | 1.1885 (17) |
C3—C4 | 1.3883 (19) | C11—H11 | 1.009 (16) |
C3—H3 | 1.005 (15) | ||
O1···H9A | 2.491 (14) | C11···O1vii | 3.1569 (15) |
O1···H3i | 2.566 (15) | C2···H8Aiv | 2.82 (2) |
O1···H8B | 2.516 (19) | C3···H8Cv | 2.859 (15) |
O1···H9Bii | 2.346 (14) | C3···H8Aiv | 2.92 (2) |
O1···H11iii | 2.181 (15) | C4···H8Cv | 2.810 (15) |
C2···C10 | 3.3889 (16) | C5···H8Cv | 2.935 (15) |
C3···C8iv | 3.5335 (17) | C8···H5 | 2.983 (14) |
C4···C8v | 3.4947 (17) | C9···H2 | 2.975 (14) |
C4···C7iv | 3.5437 (16) | C10···H4viii | 2.976 (15) |
C5···C8v | 3.5884 (17) | C11···H5iv | 2.865 (15) |
C6···C6iv | 3.5349 (14) | C11···H4viii | 2.705 (15) |
C9···O1vi | 3.3198 (14) | ||
C7—N1—C6 | 110.19 (9) | C5—C6—N1 | 132.12 (10) |
C7—N1—C8 | 124.14 (10) | C5—C6—C1 | 120.83 (11) |
C6—N1—C8 | 125.66 (10) | N1—C6—C1 | 107.04 (9) |
C7—N2—C1 | 110.16 (9) | O1—C7—N1 | 127.43 (10) |
C7—N2—C9 | 123.55 (9) | O1—C7—N2 | 126.43 (10) |
C1—N2—C9 | 126.00 (9) | N1—C7—N2 | 106.14 (9) |
C2—C1—N2 | 131.64 (10) | N1—C8—H8A | 112.7 (12) |
C2—C1—C6 | 121.90 (10) | N1—C8—H8B | 106.7 (11) |
N2—C1—C6 | 106.45 (9) | H8A—C8—H8B | 111.1 (16) |
C1—C2—C3 | 117.07 (11) | N1—C8—H8C | 111.9 (9) |
C1—C2—H2 | 120.7 (8) | H8A—C8—H8C | 108.5 (15) |
C3—C2—H2 | 122.3 (8) | H8B—C8—H8C | 105.7 (13) |
C4—C3—C2 | 121.20 (11) | N2—C9—C10 | 112.38 (9) |
C4—C3—H3 | 120.5 (9) | N2—C9—H9A | 106.5 (8) |
C2—C3—H3 | 118.3 (9) | C10—C9—H9A | 109.8 (8) |
C3—C4—C5 | 121.63 (11) | N2—C9—H9B | 109.9 (8) |
C3—C4—H4 | 119.6 (9) | C10—C9—H9B | 108.2 (8) |
C5—C4—H4 | 118.8 (9) | H9A—C9—H9B | 110.1 (11) |
C6—C5—C4 | 117.35 (11) | C11—C10—C9 | 177.63 (12) |
C6—C5—H5 | 120.9 (8) | C10—C11—H11 | 176.1 (9) |
C4—C5—H5 | 121.7 (8) | ||
C7—N2—C1—C2 | 178.91 (11) | C2—C1—C6—C5 | −0.69 (15) |
C9—N2—C1—C2 | 4.89 (17) | N2—C1—C6—C5 | 178.96 (9) |
C7—N2—C1—C6 | −0.69 (11) | C2—C1—C6—N1 | −179.67 (9) |
C9—N2—C1—C6 | −174.72 (9) | N2—C1—C6—N1 | −0.02 (11) |
N2—C1—C2—C3 | −179.33 (10) | C6—N1—C7—O1 | 179.51 (10) |
C6—C1—C2—C3 | 0.23 (15) | C8—N1—C7—O1 | 0.13 (17) |
C1—C2—C3—C4 | 0.37 (16) | C6—N1—C7—N2 | −1.13 (11) |
C2—C3—C4—C5 | −0.54 (18) | C8—N1—C7—N2 | 179.49 (9) |
C3—C4—C5—C6 | 0.08 (17) | C1—N2—C7—O1 | −179.51 (10) |
C4—C5—C6—N1 | 179.20 (11) | C9—N2—C7—O1 | −5.31 (16) |
C4—C5—C6—C1 | 0.52 (15) | C1—N2—C7—N1 | 1.12 (11) |
C7—N1—C6—C5 | −178.10 (11) | C9—N2—C7—N1 | 175.32 (9) |
C8—N1—C6—C5 | 1.27 (18) | C7—N2—C9—C10 | −111.11 (11) |
C7—N1—C6—C1 | 0.72 (11) | C1—N2—C9—C10 | 62.16 (13) |
C8—N1—C6—C1 | −179.91 (9) |
Symmetry codes: (i) x, y+1, z; (ii) −x+1/2, y+1/2, −z+3/2; (iii) −x+3/2, y+1/2, −z+3/2; (iv) −x+1, −y+1, −z+1; (v) −x, −y+1, −z+1; (vi) −x+1/2, y−1/2, −z+3/2; (vii) −x+3/2, y−1/2, −z+3/2; (viii) x+1/2, −y+1/2, z+1/2. |
Cg1 is the centroid of the C1–C6 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O1ix | 1.005 (15) | 2.566 (15) | 3.4885 (15) | 152.6 (11) |
C8—H8C···Cg1v | 1.004 (16) | 2.626 (15) | 3.5413 (13) | 151.1 (12) |
C9—H9B···O1vi | 0.978 (15) | 2.347 (15) | 3.3198 (14) | 172.9 (12) |
C11—H11···O1vii | 1.010 (15) | 2.181 (15) | 3.1569 (15) | 162.1 (12) |
Symmetry codes: (v) −x, −y+1, −z+1; (vi) −x+1/2, y−1/2, −z+3/2; (vii) −x+3/2, y−1/2, −z+3/2; (ix) x, y−1, z. |
Bonds/angles | X-ray | B3LYP/6-311 G(d,p) |
O1—C7 | 1.2281 (13) | 1.24660 |
N1—C7 | 1.3735 (14) | 1.39764 |
N1—C6 | 1.3874 (15) | 1.40100 |
N1—C8 | 1.4526 (14) | 1.45375 |
N2—C7 | 1.3807 (14) | 1.40268 |
N2—C1 | 1.3910 (13) | 1.40222 |
N2—C9 | 1.4545 (14) | 1.46036 |
C7—N1—C6 | 110.19 (9) | 110.10303 |
C7—N1—C8 | 124.14 (10) | 122.94288 |
C6—N1—C8 | 125.66 (10) | 126.95366 |
C7—N2—C1 | 110.16 (9) | 110.18664 |
C7—N2—C9 | 123.55 (9) | 122.02491 |
C1—N2—C9 | 126.00 (9) | 126.78733 |
C2—C1—N2 | 131.64 (10) | 132.00719 |
Molecular Energy (a.u.) (eV) | |
Total Energy TE (eV) | -16594.1662 |
EHOMO (eV) | -5.8885 |
ELUMO (eV) | -0.4770 |
Energy gap, ΔE (eV) | 5.4115 |
Dipole moment, µ (Debye) | 2.8313 |
Ionization potential, I (eV) | 5.8885 |
Electron affinity, A | 2.6040 |
Electro negativity, χ | 0.31828 |
Hardness, η | 2.7058 |
Electrophilicity index, ω | 1.8719 |
Softness, σ | 0.3696 |
Fraction of electron transferred, ΔN | 0.7054 |
Funding information
The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).
References
Ayhan-Kılcıgil, G., Kus, G., Özdamar, E. D., Can-Eke, B. & Iscan, M. (2007). Arch. Pharm. Chem. Life Sci. 340, 607–611. Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Belaziz, D., Kandri Rodi, Y., Essassi, E. M. & El Ammari, L. (2012). Acta Cryst. E68, o1276. CSD CrossRef IUCr Journals Google Scholar
Belaziz, D., Kandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o122. CSD CrossRef IUCr Journals Google Scholar
Bouayad, K., Kandri Rodi, Y., Ouzidan, Y., Essassi, E. M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o735–o736. CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA. Google Scholar
Farukh, A. & Mubashira, A. (2009). Eur. J. Med. Chem. 44, 834–844. PubMed Google Scholar
Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, US Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/ Google Scholar
Kandri Rodi, Y., Misbahi, K., El-Ghayoury, A., Zorina, L., Essassi, E. M. & El Ammari, L. (2013). Acta Cryst. E69, o1159. CSD CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lakhrissi, B., Benksim, A., Massoui, M., Essassi, E. M., Lequart, V., Joly, N., Beaupère, D., Wadouachi, A. & Martin, P. (2008). Carbohydr. Res. 343, 421–433. CrossRef PubMed CAS Google Scholar
Luo, Y., Yao, J. P., Yang, L., Feng, C. L., Tang, W., Wang, G. F., Zuo, J. P. & Lu, W. (2011). Arch. Pharm. Pharm. Med. Chem. 344, 78–83. Web of Science CrossRef CAS Google Scholar
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Mondieig, D., Lakhrissi, L., El Assyry, A., Lakhrissi, B., Negrier, P., Essassi, E. M., Massoui, M., Michel Leger, J. & Benali, B. (2013). J. Mar. Chim. Heterocycl. 12, 51–61. CAS Google Scholar
Navarrete-Vázquez, G., Cedillo, R., Hernández-Campos, A., Yépez, L., Hernández-Luis, F., Valdez, J., Morales, R., Cortés, R., Hernández, M. & Castillo, R. (2011). Bioorg. Med. Chem. 11, 187–190. Google Scholar
Ouzidan, Y., Kandri Rodi, Y., Fronczek, F. R., Venkatraman, R., El Ammari, L. & Essassi, E. M. (2011). Acta Cryst. E67, o362–o363. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ouzidan, Y., Kandri Rodi, Y., Jasinski, J. P., Butcher, R. J., Golen, J. A. & El Ammari, L. (2011a). Acta Cryst. E67, o1091. CSD CrossRef IUCr Journals Google Scholar
Saber, A., Sebbar, N. K., Hökelek, T., El hafi, M., Mague, J. T. & Essassi, E. M. (2018b). Acta Cryst. E74, 1842–1846. CSD CrossRef IUCr Journals Google Scholar
Saber, A., Sebbar, N. K., Hökelek, T., Hni, B., Mague, J. T. & Essassi, E. M. (2018a). Acta Cryst. E74, 1746–1750. CSD CrossRef IUCr Journals Google Scholar
Saber, A., Sebbar, N. K., Sert, Y., Alzaqri, N., Hökelek, T., El Ghayati, L., Talbaoui, A., Mague, J. T., Filali Baba, Y., Urrutigoîty, M. & Essassi, E. M. (2020). J. Mol. Struct. 1200, 127174. CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Soderlind, K. J., Gorodetsky, B., Singh, A. K., Bachur, N., Miller, G. G. & Lown, J. W. (1999). Anticancer Drug. Des. 14, 19–36. Web of Science PubMed CAS Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255. Web of Science CrossRef CAS PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. Web of Science CrossRef CAS Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. Web of Science CSD CrossRef CAS Google Scholar
Walia, R., Hedaitullah, M., Naaz, S. F., Iqbal, K. & Lamba, H. S. (2011). Int. J. Res. Pharm. Chem. 1, 565–574. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.