research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and DFT studies of 6-[(E)-2-(thio­phen-2-yl)ethenyl]-4,5-di­hydro­pyridazin-3(2H)-one

CROSSMARK_Color_square_no_text.svg

aLaboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, Mohamed I University, 60000 Oujda, Morocco, bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs, University, Samsun, Turkey, cLaboratory of Organic Synthesis, Extraction and Valorization, Faculty of Sciences, Ain Chok, University Hassan II, Casablanca, Rabat, Morocco, and dLaboratory of Plant Chemistry, Organic and Bioorganic Synthesis, URAC23, Faculty of Science, BP 1014, GEOPAC Research Center, Mohammed V University, Rabat, Morocco
*Correspondence e-mail: emineberrin.cinar@omu.edu.tr, fouadelkalai80@gmail.com, necmid@omu.edu.tr

Edited by J. T. Mague, Tulane University, USA (Received 17 September 2019; accepted 9 November 2019; online 15 November 2019)

In the title compound, C10H10N2OS, the five atoms of the thio­phene ring are essentially coplanar (r.m.s. deviation = 0.0037 Å) and the pyridazine ring is non-planar. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules into dimers with an R22(8) ring motif. The dimers are linked by C—H⋯O inter­actions, forming layers parallel to the bc plane. The theoretical geometric parameters are in good agreement with XRD results. The inter­molecular inter­actions were investigated using a Hirshfeld surface analysis and two-dimensional fingerprint plots. The Hirshfeld surface analysis of the title compound suggests that the most significant contributions to the crystal packing are by H⋯H (39.7%), C⋯H/H⋯C (17.3%) and O⋯H/H⋯O (16.8%) contacts.

1. Chemical context

Pyridazinone derivatives have been tested for their chemical and biological properties and achieved an increased inter­est in recent years (Akhtar et al., 2016[Akhtar, W., Shaquiquzzaman, M., Akhter, M., Verma, G., Khan, M. F. & Alam, M. M. (2016). Eur. J. Med. Chem. 123, 256-281.]). The pyridazinone moiety is known as a `wonder nucleus' as it can form diverse derivatives with many types of pharmacological activities such as anti­depressant (Boukharsa et al., 2016[Boukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494-500.]), anti-HIV (Livermore et al., 1993[Livermore, D., Bethell, R. C., Cammack, N., Hancock, A. P., Hann, M. M., Green, D., Lamont, R. B., Noble, S. A., Orr, D. C., Payne, J. P., Ramsay, M. V. J., Shingler, A. H. Smith, C., Storer, R., Williamson, C. & Willson, T. (1993). J. Med. Chem. 36, 3784-3794.]), anti-inflammatory (Barberot et al., 2018[Barberot, C., Moniot, A., Allart-Simon, I., Malleret, L., Yegorova, T., Laronze-Cochard, M., Bentaher, A., Médebielle, M., Bouillon, J., Hénon, E., Sapi, J., Velard, F. & Gérard, S. (2018). Eur. J. Med. Chem. 146, 139-146.]), anti­convulsant (Partap et al., 2018[Partap, S., Akhtar, M. J., Yar, M. S., Hassan, M. Z. & Siddiqui, A. A. (2018). Bioorg. Chem. 77, 74-83.]), anti­histaminic (Tao et al. 2012[Tao, M., Aimone, L. D., Gruner, J. A., Mathiasen, J. R., Huang, Z., Lyons, J., Raddatz, R. & Hudkins, R. L. (2012). Bioorg. Med. Chem. Lett. 22, 1073-1077.]) and glucan synthase inhibition (Zhou et al., 2011[Zhou, G., Ting, P. C., Aslanian, R., Cao, J., Kim, D. W., Kuang, R., Lee, J. F., Schwerdt, J., Wu, H., Jason Herr, R., Zych, A. J., Yang, J., Lam, S., Wainhaus, S., Black, T. A., McNicholas, P. M., Xu, Y. & Walker, S. S. (2011). Bioorg. Med. Chem. Lett. 21, 2890-2893.]) as well as acting as herbicidal agents (Asif, 2013[Asif, M. (2013). Mini-Rev. Org. Chem. 10, 113-122.]). We report the synthesis and the crystal and mol­ecular structure of the title compound (Fig. 1[link]), as well as an analysis of its Hirshfeld surface and DFT studies.

[Scheme 1]
[Figure 1]
Figure 1
Mol­ecular structure of the title compound showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

2. Structural commentary

Selected geometrical parameters are given in Table 1[link]. The five atoms of the thio­phene ring are essentially coplanar (r.m.s. deviation = 0.0037 Å) while the pyridazine ring is non-planar with atom C2 furthest from the mean mol­ecular plane at a distance of 0.610 (5) Å.

Table 1
Selected bond lengths, angles and torsion angles (Å, °)

  X-ray DFT/B3LYP/LANL2DZ
S1—C10 1.691 (3) 1.734 (7)
O1—C1 1.227 (3) 1.219 (9)
N2—C4 1.283 (3) 1.300 (2)
N2—N1 1.385 (2) 1.375 (6)
N1—C1 1.345 (3) 1.353 (0)
     
C10—S1—C7 92.31 (13) 91.705 (6)
O1—C1—N1 121.4 (2) 121.412 (2)
     
C7—C6—C5—C4 179.0 (2) 178.857 (8)
N2—C4—C5—C6 −179.4 (2) 179.554 (8)

3. Supra­molecular features

In the crystal, the mol­ecules are connected pairwise through N—H⋯O hydrogen bonds (Table 2[link]), forming dimers with an R22(8) graph set motif. The dimers are linked by C—H⋯O hydrogen bonds, forming layers parallel to the bc plane (Fig. 2[link]). A packing diagram is shown in Fig. 2[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.83 (3) 2.07 (3) 2.899 (3) 175 (2)
C10—H10⋯O1ii 0.93 2.61 3.505 (3) 161
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x-1, y, z+1.
[Figure 2]
Figure 2
Inversion dimers with R22(8) ring motifs formed by N—H⋯O hydrogen bonds (red dashed lines; Table 2[link]). C—H⋯O inter­actions are shown as black dashed lines.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.40, update November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using (E)-6-(thio­phen-2-yl)hex-5-enal and 6-vinyl-4,5-di­hydro­pyridazin-3(2H)-one as the main skeleton found two structures similar to the title compound containing the pyridazine moiety with different substituents: 4-chloro-2-[(5-eth­oxy-1,3,4-thia­diazol-2-yl)meth­yl]-5-(piperidin-1-yl)pyridazin-3(2H)-one (DOP­ZAL; Li et al., 2014[Li, H., Ren, X., Li, Y. & Zhao, L. (2014). Acta Cryst. E70, o1113.]) and 4-[(tert-butyl­diphenyl­sil­yloxy)meth­yl]pyridazin-3(2H)-one (CISPAX; Costas-Lago et al., 2013[Costas-Lago, M. C., Costas, T., Vila, N. & Besada, P. (2013). Acta Cryst. E69, o1859-o1860.]). In DOPZAL, the six atoms of the 1,6-di­hydro­pyridazine ring are essentially coplanar (r.m.s. deviation = 0.008 Å), and the dihedral angle between this and the 1,3,4-thia­diazole ring is 62.06 (10)°. In CISPAX, pyridazinone moieties are anti-oriented across the Si—O bond [torsion angle = 168.44 (19)°]. In the crystal, mol­ecules are assembled into inversion dimers through co-operative N—H⋯O hydrogen bonds between the NH groups and O atoms of the pyridazinone rings of neighbouring mol­ecules.

5. Surface Analysis (SA)

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated fingerprint plots were performed with CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17. University of Western Australia. https://hirshfeldsurface.net.]). This software was used to analyse the inter­molecular inter­actions in the crystal and to generate fingerprint plots mapped over dnorm, shape index and curvedness (Fig. 3[link]). The Hirshfeld surface was calculated using a standard (high) surface resolution with the three-dimensional dnorm surface plotted over a fixed colour scale of −0.532 (red) to 1.345 (blue) a.u. The pale-red spots symbolize short contacts and negative dnorm values on the surface correspond to the N—H⋯O and C—H⋯O inter­actions (Table 2[link]). The overall fingerprint plot and those delin­eated into H⋯H, H⋯C/ C⋯H, H⋯O/O⋯H, N⋯H/H⋯N and N⋯·C/C⋯·N contacts are shown in Fig. 4[link] along with their relative contributions to the Hirshfeld surface. The largest contribution is from H⋯H inter­actions (40.0%). The shape-index map of the title complex was generated in the range −1 to 1 Å, with the convex blue regions indicating hydrogen-donor groups and the concave red regions hydrogen-acceptor groups. The curvedness map, generated in the range −4 to 0.4 Å, shows large regions of green which denote a relatively flat surface area (planar), while the blue regions denote areas of curvature.

[Figure 3]
Figure 3
The Hirshfeld surfaces of the title compound mapped over dnorm, shape-index and curvedness.
[Figure 4]
Figure 4
Two-dimensional fingerprint plots for the title compound, with a dnorm view and the relative contributions of the atom pairs to the Hirshfeld surface.

A view of the mol­ecular electrostatic potential, in the range − 0.084 to 0.084 a.u. generated by the DFT method using the 6-31G(d,p) basis set is shown in Fig. 5[link]. Here the N—H⋯O hydrogen-bond donors and acceptors are shown as blue and red areas around the atoms related with positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) electrostatic potentials, respectively.

[Figure 5]
Figure 5
A view of the mol­ecular electrostatic potential for the title compound in the range −0.084 to 0.084 a.u. generated by DFT using the 6–31G(d,p) basis set.

The theoretical calculations were performed using GAUSSIAN03 (Frisch et al., 2004[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A. Jr, Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C. & Pople, J. A. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA.]). The initial geometry was taken from the X-ray coordinates and this geometry was optimized using the DFT/B3LYP (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) method with LANL2DZ as the basis set. The theoretical geometrical parameters are in good agreement with XRD results (Table 1[link]).

6. Frontier mol­ecular orbitals

The highest occupied mol­ecular orbitals (HOMO) and the lowest unoccupied mol­ecular orbitals (LUMO) are known as frontier mol­ecular orbitals (FMOs). The FMOs play an important role in the optical and electric properties. The frontier orbital gap can indicate the chemical reactivity and the kinetic stability of the mol­ecule. If the energy gap is small then the mol­ecule is highly polarizable and has high chemical reactivity. A mol­ecule with a small frontier orbital gap is generally associated with a high chemical reactivity, low kinetic stability and is termed a soft mol­ecule. Fig. 6[link] illustrates the HOMO and LUMO energy levels of the title compound. The small HOMO–LUMO energy gap of 2.41 eV in this compound indicates the chemical reactivity is strong and the kinetic stability is weak. A map of the electron density is shown in Fig. 7[link].

[Figure 6]
Figure 6
The electron distribution of the HOMO and LUMO energy gaps of the title compound.
[Figure 7]
Figure 7
The total electron density three-dimensional surface mapped for the compound with the electrostatic potential calculated at the B3LYP/6–31G(d,p) level.

7. Synthesis and crystallization

To a solution of 4-oxo-6-(thio­phen-2-yl)hex-5-enoic acid (0.21 g, 1 mmol) in 20 mL of ethanol, it was added an equimolar amount of hydrazine hydrate. The mixture was maintained under reflux for 4h, until TLC indicated the end of the reaction. The reaction mixture was poured into cold water, and the precipitate formed was filtered out, washed with ethanol and recrystallized from ethanol. Slow evaporation at room temperature led to formation of single crystals.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms were fixed geometrically and treated as riding, the C-bound H atoms were placed in idealized positions and refined as riding: C—H = 0.93 Å for methyl­ene Uiso(H) = 1.5Ueq(C) and C—H = 0.97 Å for the other C atoms with Uiso(H) = 1.2Ueq(C). The NH H atom was located in a difference-Fourier map and freely refined.

Table 3
Experimental details

Crystal data
Chemical formula C10H10N2OS
Mr 206.26
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 6.9932 (5), 16.2916 (9), 9.3544 (7)
β (°) 110.168 (6)
V3) 1000.40 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.29
Crystal size (mm) 0.78 × 0.43 × 0.25
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.767, 0.932
No. of measured, independent and observed [I > 2σ(I)] reflections 6292, 1971, 1394
Rint 0.043
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.135, 1.02
No. of reflections 1971
No. of parameters 131
No. of restraints 19
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.34
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2015 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2015 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2015 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2015 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

6-[(E)-2-(Thiophen-2-yl)ethenyl]-4,5-dihydropyridazin-3(2H)-one top
Crystal data top
C10H10N2OSF(000) = 432
Mr = 206.26Dx = 1.369 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.9932 (5) ÅCell parameters from 6992 reflections
b = 16.2916 (9) Åθ = 2.3–30.0°
c = 9.3544 (7) ŵ = 0.29 mm1
β = 110.168 (6)°T = 296 K
V = 1000.40 (12) Å3Stick, orange
Z = 40.78 × 0.43 × 0.25 mm
Data collection top
Stoe IPDS 2
diffractometer
1971 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1394 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.043
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.5°
rotation method scansh = 88
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 2019
Tmin = 0.767, Tmax = 0.932l = 1111
6292 measured reflections
Refinement top
Refinement on F219 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.079P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
1971 reflectionsΔρmax = 0.24 e Å3
131 parametersΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.23031 (12)0.42526 (4)0.98925 (7)0.0768 (3)
O10.8844 (3)0.41724 (11)0.36257 (19)0.0752 (5)
N20.6910 (3)0.45665 (12)0.66000 (19)0.0559 (5)
N10.8097 (3)0.45451 (13)0.5682 (2)0.0581 (5)
C40.5618 (3)0.39839 (14)0.6440 (2)0.0521 (5)
C70.1949 (3)0.34895 (13)0.8563 (2)0.0517 (5)
C60.3065 (3)0.34666 (13)0.7517 (2)0.0535 (5)
H60.2775440.3036620.6820650.064*
C50.4468 (3)0.40054 (14)0.7461 (2)0.0549 (5)
H50.4735610.4439330.8147900.066*
C80.0484 (4)0.29384 (15)0.8660 (2)0.0607 (6)
H80.0050510.2481000.8037580.073*
C10.7734 (3)0.41133 (14)0.4389 (2)0.0568 (6)
C20.5880 (4)0.35925 (15)0.3960 (2)0.0640 (6)
H2A0.6079180.3119340.3397100.077*
H2B0.4736100.3902730.3292610.077*
C30.5376 (4)0.33001 (16)0.5325 (3)0.0681 (6)
H3A0.3985640.3099440.4992710.082*
H3B0.6273160.2850600.5814380.082*
C100.0570 (4)0.38383 (19)1.0572 (3)0.0739 (7)
H100.0238620.4058841.1374000.089*
C90.0260 (4)0.31634 (18)0.9828 (3)0.0713 (6)
H90.1248910.2863061.0056250.086*
H10.902 (4)0.4897 (15)0.593 (2)0.058 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0979 (5)0.0736 (5)0.0729 (4)0.0147 (4)0.0476 (4)0.0139 (3)
O10.0895 (12)0.0816 (12)0.0746 (10)0.0144 (10)0.0540 (9)0.0103 (8)
N20.0594 (11)0.0619 (11)0.0527 (9)0.0040 (9)0.0272 (8)0.0029 (8)
N10.0604 (11)0.0644 (12)0.0580 (10)0.0108 (10)0.0312 (9)0.0065 (9)
C40.0534 (11)0.0535 (12)0.0522 (11)0.0012 (10)0.0216 (9)0.0007 (9)
C70.0521 (11)0.0561 (13)0.0465 (10)0.0032 (10)0.0165 (9)0.0054 (9)
C60.0573 (12)0.0530 (13)0.0542 (11)0.0002 (10)0.0242 (10)0.0016 (9)
C50.0610 (12)0.0565 (13)0.0525 (11)0.0034 (11)0.0261 (9)0.0043 (9)
C80.0651 (13)0.0659 (14)0.0543 (11)0.0087 (11)0.0249 (9)0.0049 (9)
C10.0655 (13)0.0554 (13)0.0550 (11)0.0023 (11)0.0279 (10)0.0014 (9)
C20.0696 (14)0.0668 (15)0.0599 (12)0.0052 (12)0.0281 (11)0.0118 (10)
C30.0757 (15)0.0639 (15)0.0798 (15)0.0133 (12)0.0459 (13)0.0150 (12)
C100.0869 (17)0.0885 (19)0.0583 (13)0.0085 (16)0.0403 (12)0.0062 (13)
C90.0686 (14)0.0910 (18)0.0624 (12)0.0097 (13)0.0329 (10)0.0097 (12)
Geometric parameters (Å, º) top
S1—C101.691 (3)C5—H50.9300
S1—C71.715 (2)C8—C91.411 (3)
O1—C11.227 (3)C8—H80.9300
N2—C41.283 (3)C1—C21.484 (3)
N2—N11.385 (2)C2—C31.515 (3)
N1—C11.345 (3)C2—H2A0.9700
N1—H10.83 (2)C2—H2B0.9700
C4—C51.446 (3)C3—H3A0.9700
C4—C31.495 (3)C3—H3B0.9700
C7—C81.388 (3)C10—C91.323 (4)
C7—C61.448 (3)C10—H100.9300
C6—C51.331 (3)C9—H90.9300
C6—H60.9300
C10—S1—C792.31 (13)O1—C1—C2123.8 (2)
C4—N2—N1117.21 (18)N1—C1—C2114.77 (19)
C1—N1—N2127.1 (2)C1—C2—C3112.76 (18)
C1—N1—H1119.6 (16)C1—C2—H2A109.0
N2—N1—H1112.7 (16)C3—C2—H2A109.0
N2—C4—C5115.76 (19)C1—C2—H2B109.0
N2—C4—C3122.57 (19)C3—C2—H2B109.0
C5—C4—C3121.6 (2)H2A—C2—H2B107.8
C8—C7—C6127.6 (2)C4—C3—C2110.5 (2)
C8—C7—S1110.28 (16)C4—C3—H3A109.5
C6—C7—S1122.15 (16)C2—C3—H3A109.5
C5—C6—C7125.9 (2)C4—C3—H3B109.5
C5—C6—H6117.1C2—C3—H3B109.5
C7—C6—H6117.1H3A—C3—H3B108.1
C6—C5—C4126.5 (2)C9—C10—S1112.02 (19)
C6—C5—H5116.7C9—C10—H10124.0
C4—C5—H5116.7S1—C10—H10124.0
C7—C8—C9111.1 (2)C10—C9—C8114.3 (2)
C7—C8—H8124.4C10—C9—H9122.9
C9—C8—H8124.4C8—C9—H9122.9
O1—C1—N1121.4 (2)
C4—N2—N1—C118.1 (3)S1—C7—C8—C90.6 (2)
N1—N2—C4—C5177.40 (18)N2—N1—C1—O1176.4 (2)
N1—N2—C4—C30.3 (3)N2—N1—C1—C21.9 (3)
C10—S1—C7—C80.74 (18)O1—C1—C2—C3152.4 (2)
C10—S1—C7—C6179.65 (18)N1—C1—C2—C329.5 (3)
C8—C7—C6—C5179.7 (2)N2—C4—C3—C230.2 (3)
S1—C7—C6—C50.8 (3)C5—C4—C3—C2152.9 (2)
C7—C6—C5—C4179.0 (2)C1—C2—C3—C443.3 (3)
N2—C4—C5—C6179.4 (2)C7—S1—C10—C90.7 (2)
C3—C4—C5—C62.3 (4)S1—C10—C9—C80.5 (3)
C6—C7—C8—C9179.8 (2)C7—C8—C9—C100.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.83 (3)2.07 (3)2.899 (3)175 (2)
C10—H10···O1ii0.932.613.505 (3)161
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1, y, z+1.
Selected bond lengths, angles and torsion angles (Å, °) top
X-rayDFT/B3LYP/LANL2DZ
S1—C101.691 (3)1.734 (7)
O1—C11.227 (3)1.219 (9)
N2—C41.283 (3)1.300 (2)
N2—N11.385 (2)1.375 (6)
N1—C11.345 (3)1.353 (0)
C10—S1—C792.31 (13)91.705 (6)
O1—C1—N1121.4 (2)121.412 (2)
C7—C6—C5—C4179.0 (2)178.857 (8)
N2—C4—C5—C6-179.4 (2)179.554 (8)
 

Funding information

This study was supported by Ondokuz Mayıs University under project No. PYO·FEN1906.19.001.

References

First citationAkhtar, W., Shaquiquzzaman, M., Akhter, M., Verma, G., Khan, M. F. & Alam, M. M. (2016). Eur. J. Med. Chem. 123, 256–281.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAsif, M. (2013). Mini-Rev. Org. Chem. 10, 113–122.  Web of Science CrossRef CAS Google Scholar
First citationBarberot, C., Moniot, A., Allart-Simon, I., Malleret, L., Yegorova, T., Laronze-Cochard, M., Bentaher, A., Médebielle, M., Bouillon, J., Hénon, E., Sapi, J., Velard, F. & Gérard, S. (2018). Eur. J. Med. Chem. 146, 139–146.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBoukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494–500.  Web of Science CrossRef CAS Google Scholar
First citationCostas-Lago, M. C., Costas, T., Vila, N. & Besada, P. (2013). Acta Cryst. E69, o1859–o1860.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A. Jr, Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C. & Pople, J. A. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLi, H., Ren, X., Li, Y. & Zhao, L. (2014). Acta Cryst. E70, o1113.  CSD CrossRef IUCr Journals Google Scholar
First citationLivermore, D., Bethell, R. C., Cammack, N., Hancock, A. P., Hann, M. M., Green, D., Lamont, R. B., Noble, S. A., Orr, D. C., Payne, J. P., Ramsay, M. V. J., Shingler, A. H. Smith, C., Storer, R., Williamson, C. & Willson, T. (1993). J. Med. Chem. 36, 3784–3794.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPartap, S., Akhtar, M. J., Yar, M. S., Hassan, M. Z. & Siddiqui, A. A. (2018). Bioorg. Chem. 77, 74–83.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTao, M., Aimone, L. D., Gruner, J. A., Mathiasen, J. R., Huang, Z., Lyons, J., Raddatz, R. & Hudkins, R. L. (2012). Bioorg. Med. Chem. Lett. 22, 1073–1077.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar
First citationZhou, G., Ting, P. C., Aslanian, R., Cao, J., Kim, D. W., Kuang, R., Lee, J. F., Schwerdt, J., Wu, H., Jason Herr, R., Zych, A. J., Yang, J., Lam, S., Wainhaus, S., Black, T. A., McNicholas, P. M., Xu, Y. & Walker, S. S. (2011). Bioorg. Med. Chem. Lett. 21, 2890–2893.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds