research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-{[(2-Bromo-3-methyl­phen­yl)imino]­meth­yl}benzene-1,2-diol: crystal structure and Hirshfeld surface analysis

CROSSMARK_Color_square_no_text.svg

aOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Chemistry, 55139 Samsun, Turkey, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139 Samsun, Turkey, and cDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64, Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: oedogan@omu.edu.tr, necmid@omu.edu.tr, ifritsky@univ.kiev.ua

Edited by J. T. Mague, Tulane University, USA (Received 17 October 2019; accepted 20 November 2019; online 26 November 2019)

The title compound, C14H12BrNO2, was synthesized by the condensation reaction of 2,3-di­hydroxy­benzaldehyde and 2-bromo-3-methyl­aniline. It crystallizes in the centrosymmetric triclinic space group P[\overline{1}]. The configuration about the C=N bond is E. The dihedral angle between the planes of the 5-(2-bromo-3-methyl­phenyl ring and the catechol ring is 2.80 (17)°. In the crystal, O—H⋯O hydrogen-bond inter­actions consolidate the crystal packing.

1. Chemical context

Schiff bases containing an azomethine or imine (–C=N–) unit are condensation products of primary amines and carbonyl compounds that were first reported by Hugo Schiff (1864[Schiff, H. (1864). Ann. Chem. Pharm. 131, 118-119.]). Schiff bases have a wide variety of applications in many areas of biological, organic and inorganic chemistry. The medicinal uses and applications of Schiff bases and their metal complexes are of increasing clinical and commercial importance and are increasingly significant in the medicinal and pharmaceutical fields because of their extensive range of biological activities (Karthikeyan et al., 2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]).

[Scheme 1]

2. Structural commentary

The structure of the title compound is shown in Fig. 1[link]. It crystallizes in the centrosymmetric P[\overline{1}] space group with Z = 4 (Z′ = 2). The two crystallographically independent mol­ecules have nearly the same geometrical parameters and the primary difference between them is the rotational orientation of H2 and H4A. The discussion will therefore be limited to that of the mol­ecule containing O1. The mol­ecular structure is constructed from two individually planar rings. The whole mol­ecule is approximately planar, with a maximum deviation of 0.117 (3) Å from planarity for the hydroxyl O1 atom of the catechol ring. The dihedral angle between the two benzene ring planes is 2.80 (17)°. The methyl C1 atom deviates from the plane of the C2–C7 benzene ring by 0.039 (2) Å while C9 deviates from the plane of the C9–C14 benzene ring by 0.024 (3) Å. The C8—N1—C7—C6 and C14— C9—C8—N1 torsion angles are −1.6 (5) and −1.1 (5)°, respectively. The planar mol­ecular conformation of each molecule is stabilized by an intra­molecular O—H⋯N hydrogen bond (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.85 2.571 (3) 146
O3—H3⋯N2 0.82 1.85 2.560 (3) 145
O4—H4A⋯O1 0.82 2.02 2.790 (4) 157
O2—H2⋯O3 0.82 2.11 2.875 (3) 156
C8—H8⋯O4i 0.93 2.54 3.383 (4) 151
Symmetry code: (i) -x, -y+1, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atomic numbering scheme. The dashed lines indicate the intra­molecular O—H⋯N hydrogen bonds. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, the Schiff base units are linked by O—H⋯O and C—H⋯O hydrogen bonds (O4—H4A⋯O1, O2—H2⋯O3 and C8—H8⋯O4i; symmetry code as in Table 1[link]), forming a tape structure along the a-axis direction (Fig. 2[link]). The tapes are stacked into layers parallel to the benzene plane via ππ inter­actions (Fig. 2[link]) with centroid–centroid distances of 3.750 (2) and 3.783 (2) Å, respectively, for Cg1⋯Cg2(1 − x, 1 − y, 1 − z) and Cg3⋯Cg4(−x, 1 − y, −z), where Cg1, Cg2, Cg3 and Cg4 are the centroids of the C2–C7, C9–C14, C16–C21 and C23–C28 rings, respectively.

[Figure 2]
Figure 2
A partial view of the crystal packing of the title compound. Intra- and inter­molecular hydrogen bonds are shown as dotted lines while the π-stacking inter­actions are depicted by dashed lines.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.40, update Nov 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the (E)-N-(2-bromo­phen­yl)-1-phenyl­methanimine skeleton yielded nine hits. The N1—C8 bond in the title structure is the same length within standard uncertainties as those in the structures of 2-bromo-N-salicylideneaniline (Burr & Hobson, 1969[Burr, A. H. & Hobson, A. D. (1969). Acta Cryst. B25, 2662-2663.]), N-(2-bromo­phen­yl)-1-(2-fluoro­phen­yl)methanimine (Kaur & Choudhury, 2014[Kaur, G. & Choudhury, A. R. (2014). Cryst. Growth Des. 14, 1600-1616.]), 2-[(E)-(2,4-di­bromo­phenyl­imino)­meth­yl]-4-bromo­phenol (Bharti et al., 2017[Bharti, S., Choudhary, M., Mohan, B., Rawat, S., Sharma, S. & Ahmad, K. (2017). J. Mol. Struct. 1149, 846-861.]), N-(2-bromo-4-methyl­phen­yl)naphthaldimine (Elmali et al., 1998[Elmali, A., Elerman, Y. & Kendi, E. (1998). Acta Cryst. C54, 1137-1139.]), N-(2-methyl­benzyl­idene)-2-bromo­aniline (Ojala et al., 2007[Ojala, W. H., Smieja, J. M., Spude, J. M., Arola, T. M., Kuspa, M. K., Herrera, N. & Ojala, C. R. (2007). Acta Cryst. B63, 485-496.]), 2-{[(2-bromo­phen­yl)imino]­meth­yl}-4-chloro­phenol (Guo, 2011[Guo, Y.-N. (2011). Wuji Huaxue Xuebao, 27, 1875-1880.]), 2-{[(2-bromo­phen­yl)imino]­meth­yl}-4-chloro­phenol (Zhao & Zhang, 2012[Zhao, F.-W. & Zhang, F. (2012). Z. Kristallogr. New Cryst. Struct. 227, 53-54.]), 2-{[(2-bromo­phen­yl)imino]­meth­yl}-6-methyl­phenol (Karadağ et al., 2010[Karadağ, A. T., Atalay, Ş. & Genç, H. (2010). Acta Cryst. E66, o2977.]), 2-{[(2-bromo­phen­yl)imino]­meth­yl}-4-(tri­fluoro­meth­oxy)phenol (Tanak et al., 2012[Tanak, H., Ağar, A. A. & Büyükgüngör, O. (2012). Spectrochim. Acta Part A, 87, 15-24.]). The C=N bond lengths in these structures vary from 1.270 (3) to 1.295 (5) Å and the C—O bond lengths from 1.336 (5) to 1.366 (2) Å. The mol­ecular conformations of these structures are also not planar, with dihedral angles between the phenyl rings varying between 5.00 (5) and 47.62 (9)°. It is likely that the intra­molecular O—H⋯N hydrogen bond, where the imine N atom acts as an hydrogen-bond acceptor, is an important prerequisite for the tautomeric shift toward the phenol–imine form. In fact, in all eight structures of the phenol–imine tautomers, hydrogen bonds of this type are observed.

5. Hirshfeld surface analysis

Hirshfeld surface analysis of the title compound was performed utilizing the CrystalExplorer program (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.]). The three-dimensional dnorm surface is a useful tool for analysing and visualizing the inter­molecular inter­actions and utilizes the function of the normalized distances de and di, where de and di are the distances from a given point on the surface to the nearest atom outside and inside, respectively. The blue, white and red colour convention used for the dnorm-mapped Hirshfeld surfaces indicates the inter­atomic contacts longer, equal to or shorter than the van der Waals separations. The standard-resolution mol­ecular three-dimensional (dnorm) plot with de and di for the title compound is shown in Fig. 3[link]. The bright-red spots near the oxygen and hydrogen atoms indicate donors and acceptors of a potential O—H⋯O inter­action. As can be seen from the two-dimensional fingerprint plots (scattering points spread up to de = di = 1.5 Å; Fig. 4[link]), the dominant inter­action in the title compound originates from H⋯H contacts, which are the major contributor (42.4%) to the total Hirshfeld surface. The contribution from the O⋯H/H⋯O contacts (13.5%) is represented by a pair of sharp spikes that are characteristic of hydrogen-bonding inter­actions (Fig. 4[link]). Other significant inter­actions are Br⋯H/H⋯Br (12.9%) and C⋯H/H⋯C (15.3%). While it is likely there are other identifiable points of contact that can be highlighted in the crystal, these may be of limited significance and do not require detailed discussion nor illustration. The inter­actions are visualized in Fig. 5[link].

[Figure 3]
Figure 3
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm, de and di.
[Figure 4]
Figure 4
Two-dimensional fingerprint plots of the crystal with the relative contributions of the atom pairs to the Hirshfeld surface.
[Figure 5]
Figure 5
Hirshfeld surface mapped over dnorm to visualize the inter­molecular inter­actions.

6. Synthesis and crystallization

A mixture of 2,3-di­hydroxy­benzaldehyde (34.5 mg, 0.25 mmol) and 2-bromo-3-methyl­aniline (46.5 mg, 0.25 mmol) was stirred with ethanol (30 mL) at 377 K for 5 h, affording the title compound (49.73 mg, yield 65% m.p. 410–412 K). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hy­droxy H atom was located in a difference-Fourier map, and the hy­droxy group was allowed to rotate during the refinement procedure (AFIX 147); O—H = 0.82 Å with Uiso(H) = 1.5Ueq(O). The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C) for aromatic H atoms and C—H = 0.96 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C14H12BrNO2
Mr 306.16
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 8.2301 (5), 10.1593 (6), 15.9428 (9)
α, β, γ (°) 102.496 (5), 90.597 (5), 103.213 (5)
V3) 1264.46 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.24
Crystal size (mm) 0.49 × 0.31 × 0.21
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.441, 0.663
No. of measured, independent and observed [I > 2σ(I)] reflections 13105, 4958, 3352
Rint 0.044
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.081, 0.97
No. of reflections 4958
No. of parameters 331
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.26
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: WinGX (Farrugia, 2012); program(s) used to refine structure: SHELXT2018 (Sheldrick, 2015a), SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2006), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

(E)-3-{[(2-Bromo-3-methylphenyl)imino]methyl}benzene-1,2-diol top
Crystal data top
C14H12BrNO2Z = 4
Mr = 306.16F(000) = 616
Triclinic, P1Dx = 1.608 Mg m3
a = 8.2301 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1593 (6) ÅCell parameters from 15203 reflections
c = 15.9428 (9) Åθ = 2.1–32.4°
α = 102.496 (5)°µ = 3.24 mm1
β = 90.597 (5)°T = 296 K
γ = 103.213 (5)°Column, red
V = 1264.46 (13) Å30.49 × 0.31 × 0.21 mm
Data collection top
Stoe IPDS 2
diffractometer
4958 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3352 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.044
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.1°
rotation method scansh = 1010
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1212
Tmin = 0.441, Tmax = 0.663l = 1919
13105 measured reflections
Refinement top
Refinement on F2Primary atom site location: intrinsic phasing
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0365P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.001
4958 reflectionsΔρmax = 0.38 e Å3
331 parametersΔρmin = 0.26 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.47553 (5)0.73422 (3)0.43378 (2)0.06496 (13)
Br20.27549 (6)0.20843 (4)0.05124 (2)0.07628 (15)
O10.1481 (3)0.4451 (2)0.34610 (15)0.0653 (7)
H10.2110560.4875600.3883100.098*
O30.1364 (4)0.4958 (2)0.16060 (16)0.0691 (7)
H30.1893850.4665120.1203980.104*
N10.2564 (3)0.5099 (2)0.50502 (16)0.0470 (6)
N20.2469 (3)0.4778 (3)0.01003 (16)0.0532 (7)
O40.0206 (4)0.6518 (3)0.29811 (17)0.0822 (8)
H4A0.0640740.5866780.2976370.123*
O20.0441 (4)0.2540 (3)0.21486 (16)0.0897 (9)
H20.0163480.3303200.2148340.135*
C70.3645 (4)0.6053 (3)0.57103 (19)0.0457 (7)
C90.0451 (4)0.3067 (3)0.4473 (2)0.0469 (7)
C80.1507 (4)0.4002 (3)0.5163 (2)0.0490 (7)
H80.1437750.3821410.5711090.059*
C20.4759 (4)0.7195 (3)0.5508 (2)0.0458 (7)
C140.0503 (4)0.3320 (3)0.3637 (2)0.0500 (8)
C160.3400 (4)0.2699 (3)0.0509 (2)0.0531 (8)
C210.3160 (4)0.3988 (3)0.0583 (2)0.0525 (8)
C230.1469 (4)0.6720 (3)0.0803 (2)0.0538 (8)
C220.2142 (4)0.5943 (4)0.0084 (2)0.0584 (9)
H220.2345510.6297360.0405660.070*
C280.1130 (4)0.6197 (3)0.1544 (2)0.0525 (8)
C120.1530 (5)0.1178 (3)0.3120 (2)0.0645 (9)
H120.2187730.0535890.2668090.077*
C30.5838 (4)0.8201 (3)0.6109 (2)0.0534 (8)
C170.4073 (4)0.1854 (4)0.1138 (2)0.0613 (9)
C260.0233 (5)0.8244 (4)0.2207 (3)0.0676 (10)
H260.0178270.8754670.2678360.081*
C270.0531 (4)0.6990 (4)0.2243 (2)0.0603 (9)
C130.0486 (4)0.2341 (3)0.2961 (2)0.0586 (9)
C100.0661 (4)0.1862 (3)0.4616 (2)0.0593 (9)
H100.0732500.1697930.5167930.071*
C200.3657 (5)0.4421 (4)0.1328 (2)0.0656 (10)
H200.3518060.5272720.1401400.079*
C110.1625 (5)0.0941 (4)0.3947 (3)0.0669 (10)
H110.2352190.0148990.4044320.080*
C40.5836 (5)0.8024 (4)0.6942 (2)0.0641 (9)
H40.6567230.8670530.7363830.077*
C240.1153 (5)0.8017 (4)0.0781 (3)0.0666 (10)
H240.1363980.8370470.0290720.080*
C60.3679 (5)0.5952 (3)0.6565 (2)0.0597 (9)
H60.2946470.5222440.6730390.072*
C50.4778 (5)0.6914 (4)0.7163 (2)0.0710 (11)
H50.4811240.6816460.7729720.085*
C180.4550 (5)0.2344 (4)0.1862 (2)0.0675 (10)
H180.5017930.1806600.2296670.081*
C250.0539 (5)0.8763 (4)0.1473 (3)0.0710 (10)
H250.0327950.9616470.1450940.085*
C190.4346 (5)0.3615 (4)0.1952 (2)0.0743 (11)
H190.4682480.3926950.2443870.089*
C10.6961 (5)0.9453 (3)0.5889 (3)0.0729 (11)
H1B0.7744990.9163340.5490650.109*
H1C0.7555691.0049950.6404090.109*
H1D0.6299210.9945000.5633200.109*
C150.4311 (6)0.0463 (4)0.1053 (3)0.0857 (12)
H15A0.5019660.0578220.0547370.129*
H15B0.4820420.0056550.1551380.129*
H15C0.3244720.0134700.1005770.129*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0871 (3)0.0575 (2)0.0514 (2)0.01015 (18)0.01253 (18)0.02160 (16)
Br20.1074 (3)0.0777 (3)0.0517 (2)0.0241 (2)0.0085 (2)0.02912 (19)
O10.0832 (18)0.0563 (13)0.0492 (13)0.0038 (12)0.0037 (12)0.0181 (11)
O30.095 (2)0.0653 (14)0.0560 (15)0.0260 (13)0.0267 (13)0.0235 (12)
N10.0517 (16)0.0429 (13)0.0485 (15)0.0138 (12)0.0063 (12)0.0120 (11)
N20.0559 (17)0.0566 (15)0.0434 (15)0.0037 (13)0.0064 (12)0.0133 (12)
O40.110 (2)0.096 (2)0.0532 (15)0.0456 (17)0.0244 (15)0.0214 (14)
O20.115 (2)0.0826 (18)0.0498 (15)0.0168 (16)0.0007 (14)0.0115 (13)
C70.0526 (19)0.0452 (15)0.0429 (16)0.0179 (14)0.0054 (14)0.0107 (13)
C90.0467 (19)0.0469 (16)0.0495 (18)0.0145 (14)0.0074 (14)0.0123 (14)
C80.052 (2)0.0548 (17)0.0459 (17)0.0204 (15)0.0081 (15)0.0160 (14)
C20.0482 (19)0.0482 (15)0.0479 (17)0.0212 (14)0.0097 (14)0.0144 (13)
C140.052 (2)0.0486 (16)0.0497 (18)0.0118 (14)0.0095 (15)0.0107 (14)
C160.050 (2)0.0652 (19)0.0398 (17)0.0051 (16)0.0037 (14)0.0126 (15)
C210.050 (2)0.0598 (18)0.0447 (18)0.0037 (15)0.0022 (15)0.0155 (15)
C230.0451 (19)0.0603 (18)0.0529 (19)0.0031 (15)0.0017 (15)0.0158 (15)
C220.053 (2)0.068 (2)0.054 (2)0.0024 (17)0.0030 (16)0.0263 (17)
C280.051 (2)0.0578 (18)0.0454 (18)0.0059 (15)0.0039 (15)0.0117 (15)
C120.062 (2)0.0557 (19)0.066 (2)0.0038 (17)0.0031 (18)0.0029 (16)
C30.052 (2)0.0503 (17)0.059 (2)0.0159 (15)0.0051 (16)0.0100 (15)
C170.058 (2)0.072 (2)0.050 (2)0.0108 (18)0.0099 (17)0.0095 (17)
C260.059 (2)0.072 (2)0.067 (2)0.0160 (19)0.0002 (18)0.0036 (18)
C270.057 (2)0.066 (2)0.054 (2)0.0095 (17)0.0022 (16)0.0113 (16)
C130.063 (2)0.0601 (19)0.051 (2)0.0121 (17)0.0086 (16)0.0112 (16)
C100.056 (2)0.0600 (19)0.065 (2)0.0098 (17)0.0154 (17)0.0250 (17)
C200.082 (3)0.070 (2)0.0445 (19)0.0119 (19)0.0161 (18)0.0191 (17)
C110.057 (2)0.059 (2)0.081 (3)0.0024 (17)0.012 (2)0.0190 (19)
C40.062 (2)0.067 (2)0.057 (2)0.0120 (18)0.0103 (17)0.0047 (17)
C240.065 (2)0.065 (2)0.074 (3)0.0099 (18)0.0035 (19)0.0310 (19)
C60.067 (2)0.0626 (19)0.0497 (19)0.0089 (17)0.0052 (17)0.0206 (16)
C50.085 (3)0.079 (2)0.046 (2)0.008 (2)0.0057 (19)0.0187 (18)
C180.065 (2)0.086 (3)0.046 (2)0.016 (2)0.0061 (18)0.0049 (18)
C250.067 (3)0.059 (2)0.086 (3)0.0149 (19)0.003 (2)0.014 (2)
C190.084 (3)0.089 (3)0.052 (2)0.013 (2)0.017 (2)0.026 (2)
C10.068 (3)0.056 (2)0.089 (3)0.0034 (18)0.000 (2)0.0165 (19)
C150.106 (4)0.092 (3)0.069 (3)0.045 (3)0.002 (2)0.015 (2)
Geometric parameters (Å, º) top
Br1—C21.903 (3)C12—C111.391 (5)
Br2—C161.905 (3)C12—H120.9300
O1—C141.330 (3)C3—C41.379 (5)
O1—H10.8200C3—C11.502 (4)
O3—C281.340 (4)C17—C181.379 (5)
O3—H30.8200C17—C151.504 (5)
N1—C81.295 (4)C26—C271.364 (5)
N1—C71.408 (4)C26—C251.388 (5)
N2—C221.277 (4)C26—H260.9300
N2—C211.413 (4)C10—C111.361 (5)
O4—C271.370 (4)C10—H100.9300
O4—H4A0.8200C20—C191.361 (5)
O2—C131.354 (4)C20—H200.9300
O2—H20.8200C11—H110.9300
C7—C61.390 (4)C4—C51.373 (5)
C7—C21.404 (4)C4—H40.9300
C9—C141.411 (4)C24—C251.368 (5)
C9—C101.415 (4)C24—H240.9300
C9—C81.421 (4)C6—C51.363 (5)
C8—H80.9300C6—H60.9300
C2—C31.377 (5)C5—H50.9300
C14—C131.399 (5)C18—C191.377 (5)
C16—C171.381 (5)C18—H180.9300
C16—C211.397 (5)C25—H250.9300
C21—C201.388 (4)C19—H190.9300
C23—C281.403 (4)C1—H1B0.9600
C23—C241.408 (5)C1—H1C0.9600
C23—C221.436 (5)C1—H1D0.9600
C22—H220.9300C15—H15A0.9600
C28—C271.392 (5)C15—H15B0.9600
C12—C131.367 (4)C15—H15C0.9600
C14—O1—H1109.5C26—C27—O4118.4 (3)
C28—O3—H3109.5C26—C27—C28121.0 (3)
C8—N1—C7124.1 (3)O4—C27—C28120.7 (3)
C22—N2—C21123.9 (3)O2—C13—C12119.2 (3)
C27—O4—H4A109.5O2—C13—C14120.7 (3)
C13—O2—H2109.5C12—C13—C14120.1 (3)
C6—C7—C2116.9 (3)C11—C10—C9120.1 (3)
C6—C7—N1124.1 (3)C11—C10—H10120.0
C2—C7—N1119.0 (3)C9—C10—H10120.0
C14—C9—C10119.1 (3)C19—C20—C21120.8 (4)
C14—C9—C8120.6 (3)C19—C20—H20119.6
C10—C9—C8120.2 (3)C21—C20—H20119.6
N1—C8—C9121.8 (3)C10—C11—C12120.4 (3)
N1—C8—H8119.1C10—C11—H11119.8
C9—C8—H8119.1C12—C11—H11119.8
C3—C2—C7123.4 (3)C5—C4—C3121.4 (3)
C3—C2—Br1119.0 (2)C5—C4—H4119.3
C7—C2—Br1117.6 (2)C3—C4—H4119.3
O1—C14—C13118.4 (3)C25—C24—C23120.7 (3)
O1—C14—C9122.3 (3)C25—C24—H24119.7
C13—C14—C9119.3 (3)C23—C24—H24119.7
C17—C16—C21123.3 (3)C5—C6—C7120.4 (3)
C17—C16—Br2118.8 (3)C5—C6—H6119.8
C21—C16—Br2118.0 (3)C7—C6—H6119.8
C20—C21—C16116.9 (3)C6—C5—C4121.0 (3)
C20—C21—N2124.1 (3)C6—C5—H5119.5
C16—C21—N2118.9 (3)C4—C5—H5119.5
C28—C23—C24118.9 (3)C19—C18—C17121.1 (4)
C28—C23—C22120.2 (3)C19—C18—H18119.4
C24—C23—C22121.0 (3)C17—C18—H18119.4
N2—C22—C23121.8 (3)C24—C25—C26119.9 (4)
N2—C22—H22119.1C24—C25—H25120.1
C23—C22—H22119.1C26—C25—H25120.1
O3—C28—C27118.5 (3)C20—C19—C18120.7 (3)
O3—C28—C23122.3 (3)C20—C19—H19119.6
C27—C28—C23119.1 (3)C18—C19—H19119.6
C13—C12—C11121.0 (3)C3—C1—H1B109.5
C13—C12—H12119.5C3—C1—H1C109.5
C11—C12—H12119.5H1B—C1—H1C109.5
C2—C3—C4116.8 (3)C3—C1—H1D109.5
C2—C3—C1122.8 (3)H1B—C1—H1D109.5
C4—C3—C1120.4 (3)H1C—C1—H1D109.5
C18—C17—C16117.1 (3)C17—C15—H15A109.5
C18—C17—C15120.2 (4)C17—C15—H15B109.5
C16—C17—C15122.7 (3)H15A—C15—H15B109.5
C27—C26—C25120.5 (4)C17—C15—H15C109.5
C27—C26—H26119.8H15A—C15—H15C109.5
C25—C26—H26119.8H15B—C15—H15C109.5
C8—N1—C7—C61.6 (5)Br2—C16—C17—C150.3 (5)
C8—N1—C7—C2179.0 (3)C25—C26—C27—O4179.9 (3)
C7—N1—C8—C9179.6 (3)C25—C26—C27—C280.7 (5)
C14—C9—C8—N11.1 (5)O3—C28—C27—C26178.5 (3)
C10—C9—C8—N1178.5 (3)C23—C28—C27—C261.6 (5)
C6—C7—C2—C30.9 (5)O3—C28—C27—O40.8 (5)
N1—C7—C2—C3178.5 (3)C23—C28—C27—O4179.2 (3)
C6—C7—C2—Br1179.2 (2)C11—C12—C13—O2179.4 (4)
N1—C7—C2—Br11.4 (4)C11—C12—C13—C140.4 (6)
C10—C9—C14—O1178.0 (3)O1—C14—C13—O20.2 (5)
C8—C9—C14—O12.4 (5)C9—C14—C13—O2178.7 (3)
C10—C9—C14—C133.1 (5)O1—C14—C13—C12178.8 (3)
C8—C9—C14—C13176.5 (3)C9—C14—C13—C122.2 (5)
C17—C16—C21—C201.0 (5)C14—C9—C10—C112.0 (5)
Br2—C16—C21—C20179.3 (2)C8—C9—C10—C11177.5 (3)
C17—C16—C21—N2179.7 (3)C16—C21—C20—C190.0 (5)
Br2—C16—C21—N20.6 (4)N2—C21—C20—C19178.6 (3)
C22—N2—C21—C204.1 (5)C9—C10—C11—C120.2 (6)
C22—N2—C21—C16177.3 (3)C13—C12—C11—C100.7 (6)
C21—N2—C22—C23178.8 (3)C2—C3—C4—C51.5 (6)
C28—C23—C22—N20.9 (5)C1—C3—C4—C5177.7 (4)
C24—C23—C22—N2178.5 (3)C28—C23—C24—C250.6 (5)
C24—C23—C28—O3178.5 (3)C22—C23—C24—C25178.9 (3)
C22—C23—C28—O32.1 (5)C2—C7—C6—C51.3 (5)
C24—C23—C28—C271.5 (5)N1—C7—C6—C5179.3 (3)
C22—C23—C28—C27177.9 (3)C7—C6—C5—C42.0 (6)
C7—C2—C3—C42.3 (5)C3—C4—C5—C60.6 (6)
Br1—C2—C3—C4177.8 (3)C16—C17—C18—C190.6 (5)
C7—C2—C3—C1176.9 (3)C15—C17—C18—C19179.9 (4)
Br1—C2—C3—C13.0 (5)C23—C24—C25—C260.4 (6)
C21—C16—C17—C181.3 (5)C27—C26—C25—C240.4 (6)
Br2—C16—C17—C18179.0 (2)C21—C20—C19—C180.7 (6)
C21—C16—C17—C15179.5 (3)C17—C18—C19—C200.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.852.571 (3)146
O3—H3···Br20.822.863.499 (2)136
O3—H3···N20.821.852.560 (3)145
O4—H4A···O10.822.022.790 (4)157
O4—H4A···O30.822.322.731 (4)112
O2—H2···O10.822.292.724 (3)114
O2—H2···O30.822.112.875 (3)156
C8—H8···O4i0.932.543.383 (4)151
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationBharti, S., Choudhary, M., Mohan, B., Rawat, S., Sharma, S. & Ahmad, K. (2017). J. Mol. Struct. 1149, 846–861.  CSD CrossRef CAS Google Scholar
First citationBurr, A. H. & Hobson, A. D. (1969). Acta Cryst. B25, 2662–2663.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationElmali, A., Elerman, Y. & Kendi, E. (1998). Acta Cryst. C54, 1137–1139.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuo, Y.-N. (2011). Wuji Huaxue Xuebao, 27, 1875–1880.  CAS Google Scholar
First citationKaradağ, A. T., Atalay, Ş. & Genç, H. (2010). Acta Cryst. E66, o2977.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKaur, G. & Choudhury, A. R. (2014). Cryst. Growth Des. 14, 1600–1616.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOjala, W. H., Smieja, J. M., Spude, J. M., Arola, T. M., Kuspa, M. K., Herrera, N. & Ojala, C. R. (2007). Acta Cryst. B63, 485–496.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchiff, H. (1864). Ann. Chem. Pharm. 131, 118–119.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTanak, H., Ağar, A. A. & Büyükgüngör, O. (2012). Spectrochim. Acta Part A, 87, 15–24.  CSD CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.  Google Scholar
First citationZhao, F.-W. & Zhang, F. (2012). Z. Kristallogr. New Cryst. Struct. 227, 53–54.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds