- 1. Chemical context
- 2. Structural commentary
- 3. Supramolecular features
- 4. Database survey
- 5. Experimental and theoretical lipophilicity of compounds I and II
- 6. Hirshfeld surface analysis and lipophilicity index versus C⋯H contact
- 7. Synthesis and crystallization
- 8. Refinement
- Supporting information
- References
- 1. Chemical context
- 2. Structural commentary
- 3. Supramolecular features
- 4. Database survey
- 5. Experimental and theoretical lipophilicity of compounds I and II
- 6. Hirshfeld surface analysis and lipophilicity index versus C⋯H contact
- 7. Synthesis and crystallization
- 8. Refinement
- Supporting information
- References
research communications
Crystal structures of (E)-3-(4-hydroxybenzylidene)chroman-4-one and (E)-3-(3-hydroxybenzylidene)-2-phenylchroman-4-one
aDepartment of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163/165, 90-236 Łódź, Poland, bDepartment of Inorganic Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12., 80-233 Gdańsk, Poland, and cDepartment of Cosmetic Raw Materials Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Łódź, Poland
*Correspondence e-mail: magdalena.malecka@chemia.uni.lodz.pl
The synthesis and crystal structures of (E)-3-(4-hydroxybenzylidene)chroman-4-one, C16H12O3, I, and (E)-3-(3-hydroxybenzylidene)-2-phenylchroman-4-one, C22H16O3, II, are reported. These compounds are of interest with respect to biological activity. Both structures display intermolecular C—H⋯O and O—H⋯O hydrogen bonding, forming layers in the The of compound I is consolidated by π–π interactions. The (logP) was determined as it is one of the parameters qualifying compounds as potential drugs. The logP value for compound I is associated with a larger contribution of C⋯H interaction in the Hirshfeld surface.
1. Chemical context
Chromanone (chroman-4-one) and flavanone (2-phenylchroman-4-one) belong to the class of γ-pyranone ring (Emami & Ghanbarimasir, 2015). 3-Arylidenechromanones/flavanones and their derivatives are naturally occurring homoisoflavones, and can be obtained by condensing the corresponding aryl with chromanone/flavanone. These compounds were synthesized for the first time by Robinson in the early 1920s by the condensation reaction of chromanone or flavanone with the appropriate aryl aldehyde using a catalyst (alcohol potassium hydroxide) (Perkin et al.,1926). In 1979, Levai and Schag synthesized E-3-arylidenechroman-4-one using piperidine as a catalyst (Levai & Schag, 1979). Several years later, in 1993, Pijewska and coworkers (Pijewska et al., 1993) obtained the series of 3-arylideneflavanones derivatives substituted by various groups using flavanones with aromatic in the presence of piperidine. Flavonoid compounds belong to one of the largest and most interesting groups of chemical compounds. They are of interest to many scientists because they show biological properties (Nijveldt et al., 2001; Williams et al., 2004). Natural and synthetic have a wide range of antioxidant, anti-allergic, anti-inflammatory, anti-microbial, anti-coagulant, anti-cholesterol or anti-cancer activities (Czaplińska et al., 2012).
and are composed of a benzene ring fused to a 2,3-dihydro-2. Structural commentary
The molecular structures of I and II are shown in Fig. 1. The main chroman skeleton of each molecule consists of a benzene ring fused with a pyran ring. In position 3 of the chroman moiety, a para-hydroxybenzylidene (I) or a meta-hydroxybenzylidene (II) substituent is connected to give the E-isomer, similar to the previously mentioned structure (Kupcewicz, et al., 2013). Moreover in compound II, the chroman moiety is subsituted at position 2 by a phenyl ring. The pyran rings adopt an with puckering parameters QT = 0.371 (2) Å, φ2 = 233.8 (4)°, θ2 = 120.0 (3)° for I, and QT = 0.423 (3) Å, φ2 = 65.9 (5)°, θ2 = 58.5 (4)° for II. The dihedral angles between the hydroxybenzylidene rings and the main chroman skeleton are 47.54 (8) and 69.46 (12)°, respectively, for I and II (Fig. 2).
3. Supramolecular features
In the crystal packing of I, molecules are connected into layers parallel to the bc plane via C—H⋯O and O—H⋯O hydrogen bonds (Table 1, Fig. 3). The stability of the layers is further enhanced by π–π stacking interactions occurring between the benzene rings fused with the pyran rings and the aromatic rings of adjacent hydroxybenzylidene groups (Table 2). In the crystal packing of II, molecules are also linked by O—H⋯O and C—H⋯O hydrogen bonds (Table 3, Fig. 4) into layers parallel to the ab plane.
|
4. Database survey
A search of the Cambridge Structural Database (CSD version 5.40, last update November 2018; Groom et al., 2016) using the scheme presented in Fig. 5 found 41 chromanone (Ishikawa et al., 2013a,b; Zimmerman et al., 2015; Marx, Suresh et al., 2007; Katrusiak et al., 1987; Brien et al., 2012; Suresh et al., 2007; Boonsri et al., 2005; Biruntha et al., 2018; Talhi et al., 2016; Wu, Liu et al., 2011; Marx et al., 2008; Cheng et al., 2011; Valkonen et al., 2012; Lepitre et al., 2017; Gopaul, Shaikh, Koorbanally et al., 2012; Gopaul, Koorbanally et al., 2012; Marx, Manivannan et al., 2007; Suresh et al., 2007; Marx et al., 2008; Hassaine et al., 2016; Chantrapromma et al., 2006; Zhang et al., 2012; Augustine et al., 2008; Gopaul, Shaikh, Ramjugernath et al., 2012; Gopaul & Koorbanally, 2012; Zhang et al., 2013) and four flavanone structures (Zhong et al., 2013; Kupcewicz et al., 2013; Wu, Zeng et al., 2011; Monserrat et al., 2013). In the flavanone structures, the phenyl substituent at the C2 position is always nearly perpendicular to the chroman moiety, with the C(phen)—C2—C3—C4 torsion angle in the range 82.44–107.90°. In both chromanone and flavanone structures, the pyran ring adopts a slightly distorted In the 41 chromanone derivatives, the bond distances and angles within the chroman moiety are in good agreement with those found in compound I.
5. Experimental and theoretical of compounds I and II
et al., 2001). Most often, the increase in increases the biological activity of compounds as a result of the affinity of substances with biological membranes and better permeability (Dołowy, 2009). However, a further increase in results in greater affinity for and hinders the transport of compound molecules through the aqueous phase. That is why it is important to choose substances with optimal hydrophobic and hydrophilic properties and logP (Dołowy, 2009).
is one of the descriptors that is currently used in the design of new drugs and in assessing the activity of medicinal substances (JóźwiakThe experimental P) of compounds I and II was determined using the RP–TLC method. The values of logP obtained are 2.95 and 3.98, respectively for I and II, the difference being due to the different, bulky substituent at the C2 position of the pyran ring. The theoretical values of (miLogP) also show the same trend, the value for compound I is lower (miLogP = 3.14) than that for compound II (miLogP = 4.70). This is in agreement with the values previously reported for similar arylidenochromanone/flavanone derivatives (Adamus-Grabicka et al., 2018). The theoretical values of were calculated using the online Molinspiration Cheminformatics software (https://www.molinspiration.com). According to the `rule of five' proposed by Lipinski et al. (2001), compounds I and II may be potential anti-cancer drugs, the most important parameters according to Lipinski being the logP value (logP < 5) and molar mass (< 500 Da).
(log6. Hirshfeld surface analysis and index versus C⋯H contact
As the Hirshfeld surface (HS) analysis may provide useful descriptors for QSAR study (Kupcewicz, et al., 2016) and the parameter in biologically active compounds is associated with the contribution of intermolecular interactions to the Hirshfeld surface (Małecka & Budzisz, 2014), we generated the Hirshfeld surfaces (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) using the CrystalExplorer program (Turner et al., 2017) for chromone and flavanone derivatives for which the parameters are available, i.e. compound I, II, 3-(4-chlorobenzylidene)-2-phenyl-2,3-dihydro-4H-chromen-4-one (III; Kupcewicz et al., 2013), (E)-3-(4-N,N-diethylaminobenzylidene)chroman-4-one (IV; Adamus-Grabicka et al., 2018) and (E)-3-(4-N,N-diethylaminobenzylidene)-2-phenylchroman-4-one (V; Adamus-Grabicka et al., 2018).
The Hirshfeld surfaces were mapped over dnorm (Fig. 6). The red, white and blue regions visible on the dnorm surfaces indicate contacts with distances shorter, longer and equal to the van der Waals radii. The decomposition of the HS into 2D fingerprint plots for particular contacts is presented in Fig. 7, together with the relative percentage of contributions of different contacts. The dominant interaction in all derivatives is the H⋯H interaction. The contribution to the Hirshfeld surface is in the range 39.2– 55.5% for III and V. Comparing the C⋯C contacts, we can observe a large spread of percentage contribution ranging from 0.3% for V to 13.1% for compound I. This is also reflected in the presence of π–π stacking interactions observed in compound I (Table 2).
As in our previous studies (Małecka et al., 2014; Kupcewicz et al., 2103), we found a relationship between the logP value and the fraction of the Hirshfeld surface covered by different intermolecular interactions. The increase of logP corresponds in fact to increasing the C⋯H contribution in the Hirshfeld surface. Furthermore, for compounds I–V, the contribution of the O⋯H interaction in the Hirshfeld surface is inversely proportional to the value of logP.
7. Synthesis and crystallization
The synthesis of compounds I and II is based on the condensation of chromanone or flavanone with an aryl aldehyde in the presence of piperidine (Fig. 8). Compound I was prepared according to a slightly modified procedure with respect to that described in the literature (Levai & Schag, 1979). A mechanically stirred mixture of chroman-4-one (0.01 mol), p-methoxybenzaldehyde (0.01 mol) and five drops of piperidine was heated at 413 K in an oil bath for four h. The progress of the synthesis was controlled by thin layer (TLC) using toluene/methanol (9:1 v/v) as After cooling the reaction mixture was left for 24 h at room temperature. The solidified product was filtered and crystallized from methanol. Compound I was obtained as a yellow powder. The isolated solid was further recrystallized by slow evaporation at room temperature of an acetone solution. Yield: 64%, M.p.: 501–502.5 K. MS (ESI+): m/z 253.3 C16H12O3 [M+H]+. IR (KBr): 3126 (O—H), 2809 (C—Haromat), 1652 (C=O), 1608, 1578 (C=C), 1164 (C–O—C), 751 (=C—H). 1H NMR (600 MHz, DMSO-d6) δ (ppm): 5.42 (1H, s, =CH), 6.86–7.86 (8H, m, C—H aromat), 7.87 (2H, d, JAB = 18 Hz C2—H), 10.12 (1H, s, OH). Analysis calculated for C16H12O3 (M = 252.23 g mol−1) % C: 76.18; % H: 4.81; % O: 19.01. Found % C: 75.3; % H: 5.01; % O: 19.69.
Compound II was synthesized according to the procedure described by Pijewska et al., (1993). A mixture of 2-phenylchroman-4-one (0.01 mol), 3-hydroxybenzaldehyde (0.01 mol) and five drops of piperidine was heated under reflux in an oil bath with mechanical stirring. The reaction proceeded at 413 K for 5 h. The progress of the reaction was controlled by TLC (eluent: toluene/methanol, 9:1 v/v). After cooling at room temperature, the mixture was dissolved in methanol. After 24 h compound II precipitated as a light-cream fine crystalline powder and was purified by crystallization from methanol. Crystal suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature. Yield: 52.4%. M.p.: 482–483 K. MS (ESI+): m/z 329.2 C22H16O3 [M+H]+. IR (KBr): 3297 (O—H), 3054 (C—Haromat), 2351 (C—Haliph), 1663 (C=O), 1608, 1590, 1504 (C=C), 1141 (C—O—C), 757 (=C—H). 1H NMR (600 MHz, DMSO-d6) δ (ppm): 6.57 (1H, s, C2—H), 5.69 (1H, s, =CH), 6.89–7.91 (14H, m, CHaromat), 8.12 (1H, s, OH). Analysis calculated For C22H16O3 (M = 328.19 g mol−1) %C: 80.51; %H: 4.87; % O: 14.62. Found %C: 79.99; %H: 5.11; % O: 14.90.
8. Refinement
Crystal data, data collection and structure . All hydrogen atoms were fixed geometrically at calculated positions (O—H = 0.84 Å, C—H = 0.95–0.99 Å) and refined as riding model with Uiso(H) = 1.5Ueq(O) or 1.2Ueq(C). A rotating model was used for the hydroxy groups.
details are summarized in Table 4
|
Supporting information
https://doi.org/10.1107/S2056989019015639/rz5266sup1.cif
contains datablocks I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019015639/rz5266Isup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019015639/rz5266Isup4.cml
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989019015639/rz5266IIsup5.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019015639/rz5266IIsup5.cml
For both structures, data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015b), publCIF (Westrip, 2010).C16H12O3 | Dx = 1.428 Mg m−3 |
Mr = 252.27 | Melting point: 220 K |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 3.8510 (2) Å | Cell parameters from 219 reflections |
b = 22.2541 (11) Å | θ = 4.1–28.9° |
c = 13.7837 (9) Å | µ = 0.10 mm−1 |
β = 96.766 (5)° | T = 120 K |
V = 1173.04 (11) Å3 | Needle, light-yellow |
Z = 4 | 0.4 × 0.2 × 0.1 mm |
F(000) = 528 |
STOE IPDS 2T diffractometer | 1618 reflections with I > 2σ(I) |
Radiation source: GeniX Mo, 0.05 x 0.05 mm2 microfocus | Rint = 0.050 |
Detector resolution: 6.67 pixels mm-1 | θmax = 26.5°, θmin = 3.7° |
rotation method, ω scans | h = −4→4 |
7027 measured reflections | k = −27→27 |
2413 independent reflections | l = −16→17 |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.115 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0546P)2 + 0.2287P] where P = (Fo2 + 2Fc2)/3 |
2413 reflections | (Δ/σ)max < 0.001 |
173 parameters | Δρmax = 0.19 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O3 | 0.5127 (4) | 0.21588 (6) | 0.68339 (10) | 0.0282 (4) | |
H3 | 0.5952 | 0.1823 | 0.6701 | 0.042* | |
O4 | −0.1988 (4) | 0.39218 (6) | 0.15977 (10) | 0.0304 (4) | |
O1 | 0.2599 (4) | 0.50810 (6) | 0.36926 (10) | 0.0252 (4) | |
C9 | 0.1347 (5) | 0.52849 (8) | 0.27851 (14) | 0.0217 (4) | |
C17 | 0.3626 (5) | 0.25884 (8) | 0.42639 (15) | 0.0218 (4) | |
H17 | 0.4012 | 0.2441 | 0.3639 | 0.026* | |
C3 | 0.0393 (5) | 0.40641 (8) | 0.32620 (14) | 0.0207 (4) | |
C14 | 0.2335 (5) | 0.29994 (8) | 0.60754 (15) | 0.0216 (4) | |
H14 | 0.1846 | 0.3135 | 0.6698 | 0.026* | |
C11 | 0.0949 (5) | 0.34735 (8) | 0.34238 (15) | 0.0219 (4) | |
H11 | 0.0614 | 0.3229 | 0.2856 | 0.026* | |
C10 | −0.0381 (5) | 0.49118 (8) | 0.20685 (15) | 0.0217 (4) | |
C12 | 0.1982 (5) | 0.31486 (8) | 0.43307 (14) | 0.0200 (4) | |
C13 | 0.1298 (5) | 0.33398 (8) | 0.52539 (15) | 0.0219 (4) | |
H13 | 0.0104 | 0.3709 | 0.5318 | 0.026* | |
C8 | 0.2011 (6) | 0.58826 (9) | 0.25768 (15) | 0.0256 (5) | |
H8 | 0.3229 | 0.6133 | 0.3061 | 0.031* | |
C15 | 0.4089 (5) | 0.24590 (8) | 0.59954 (15) | 0.0208 (4) | |
C7 | 0.0889 (6) | 0.61086 (9) | 0.16621 (16) | 0.0277 (5) | |
H7 | 0.1330 | 0.6518 | 0.1523 | 0.033* | |
C4 | −0.0782 (5) | 0.42671 (9) | 0.22612 (14) | 0.0216 (4) | |
C2 | 0.0920 (6) | 0.45481 (8) | 0.40230 (15) | 0.0227 (4) | |
H2A | −0.1381 | 0.4662 | 0.4220 | 0.027* | |
H2B | 0.2363 | 0.4387 | 0.4607 | 0.027* | |
C6 | −0.0882 (6) | 0.57486 (9) | 0.09380 (16) | 0.0283 (5) | |
H6 | −0.1649 | 0.5909 | 0.0311 | 0.034* | |
C5 | −0.1499 (6) | 0.51545 (9) | 0.11493 (15) | 0.0249 (5) | |
H5 | −0.2708 | 0.4906 | 0.0661 | 0.030* | |
C16 | 0.4693 (5) | 0.22483 (8) | 0.50797 (15) | 0.0217 (4) | |
H16 | 0.5830 | 0.1874 | 0.5018 | 0.026* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O3 | 0.0407 (9) | 0.0236 (7) | 0.0200 (8) | 0.0065 (7) | 0.0022 (7) | 0.0031 (6) |
O4 | 0.0459 (10) | 0.0235 (7) | 0.0198 (8) | −0.0049 (7) | −0.0044 (7) | −0.0004 (6) |
O1 | 0.0305 (8) | 0.0209 (7) | 0.0231 (8) | −0.0046 (6) | −0.0020 (6) | 0.0006 (6) |
C9 | 0.0221 (11) | 0.0231 (10) | 0.0200 (11) | 0.0031 (8) | 0.0023 (8) | 0.0014 (8) |
C17 | 0.0266 (11) | 0.0229 (10) | 0.0160 (10) | −0.0013 (8) | 0.0025 (8) | −0.0018 (8) |
C3 | 0.0204 (10) | 0.0223 (9) | 0.0190 (11) | −0.0003 (8) | 0.0015 (8) | 0.0008 (8) |
C14 | 0.0257 (11) | 0.0199 (9) | 0.0192 (11) | −0.0036 (8) | 0.0030 (8) | −0.0029 (7) |
C11 | 0.0229 (11) | 0.0242 (10) | 0.0179 (11) | −0.0002 (8) | −0.0003 (8) | −0.0023 (8) |
C10 | 0.0240 (11) | 0.0200 (9) | 0.0212 (11) | 0.0025 (8) | 0.0036 (9) | 0.0006 (8) |
C12 | 0.0205 (10) | 0.0215 (9) | 0.0178 (10) | −0.0019 (8) | 0.0009 (8) | −0.0008 (8) |
C13 | 0.0218 (10) | 0.0192 (10) | 0.0245 (11) | −0.0005 (8) | 0.0015 (8) | −0.0001 (8) |
C8 | 0.0271 (12) | 0.0228 (10) | 0.0276 (12) | −0.0012 (8) | 0.0052 (9) | −0.0029 (8) |
C15 | 0.0228 (10) | 0.0198 (9) | 0.0190 (10) | −0.0023 (8) | −0.0010 (8) | 0.0035 (8) |
C7 | 0.0345 (13) | 0.0200 (10) | 0.0303 (13) | 0.0021 (9) | 0.0111 (10) | 0.0028 (8) |
C4 | 0.0235 (11) | 0.0234 (10) | 0.0169 (11) | 0.0013 (8) | −0.0014 (8) | −0.0001 (8) |
C2 | 0.0280 (11) | 0.0203 (9) | 0.0193 (11) | −0.0016 (8) | 0.0000 (9) | 0.0005 (8) |
C6 | 0.0326 (12) | 0.0275 (11) | 0.0256 (12) | 0.0066 (9) | 0.0070 (9) | 0.0055 (9) |
C5 | 0.0285 (12) | 0.0250 (10) | 0.0211 (11) | 0.0024 (8) | 0.0024 (9) | −0.0008 (8) |
C16 | 0.0249 (11) | 0.0169 (9) | 0.0231 (11) | 0.0006 (8) | 0.0024 (9) | −0.0005 (8) |
O3—C15 | 1.354 (2) | C11—H11 | 0.9500 |
O3—H3 | 0.8400 | C10—C5 | 1.398 (3) |
O4—C4 | 1.242 (2) | C10—C4 | 1.471 (3) |
O1—C9 | 1.364 (2) | C12—C13 | 1.396 (3) |
O1—C2 | 1.450 (2) | C13—H13 | 0.9500 |
C9—C8 | 1.391 (3) | C8—C7 | 1.379 (3) |
C9—C10 | 1.397 (3) | C8—H8 | 0.9500 |
C17—C16 | 1.378 (3) | C15—C16 | 1.392 (3) |
C17—C12 | 1.406 (3) | C7—C6 | 1.394 (3) |
C17—H17 | 0.9500 | C7—H7 | 0.9500 |
C3—C11 | 1.346 (3) | C2—H2A | 0.9900 |
C3—C4 | 1.471 (3) | C2—H2B | 0.9900 |
C3—C2 | 1.501 (3) | C6—C5 | 1.381 (3) |
C14—C13 | 1.382 (3) | C6—H6 | 0.9500 |
C14—C15 | 1.390 (3) | C5—H5 | 0.9500 |
C14—H14 | 0.9500 | C16—H16 | 0.9500 |
C11—C12 | 1.458 (3) | ||
C15—O3—H3 | 109.5 | C7—C8—H8 | 120.3 |
C9—O1—C2 | 115.95 (15) | C9—C8—H8 | 120.3 |
O1—C9—C8 | 116.97 (18) | O3—C15—C14 | 117.16 (18) |
O1—C9—C10 | 122.55 (17) | O3—C15—C16 | 122.95 (18) |
C8—C9—C10 | 120.40 (18) | C14—C15—C16 | 119.89 (18) |
C16—C17—C12 | 121.80 (19) | C8—C7—C6 | 121.30 (19) |
C16—C17—H17 | 119.1 | C8—C7—H7 | 119.4 |
C12—C17—H17 | 119.1 | C6—C7—H7 | 119.4 |
C11—C3—C4 | 118.72 (18) | O4—C4—C10 | 120.57 (18) |
C11—C3—C2 | 125.41 (18) | O4—C4—C3 | 123.19 (18) |
C4—C3—C2 | 115.86 (16) | C10—C4—C3 | 116.22 (17) |
C13—C14—C15 | 120.37 (19) | O1—C2—C3 | 113.35 (16) |
C13—C14—H14 | 119.8 | O1—C2—H2A | 108.9 |
C15—C14—H14 | 119.8 | C3—C2—H2A | 108.9 |
C3—C11—C12 | 130.40 (19) | O1—C2—H2B | 108.9 |
C3—C11—H11 | 114.8 | C3—C2—H2B | 108.9 |
C12—C11—H11 | 114.8 | H2A—C2—H2B | 107.7 |
C5—C10—C9 | 118.78 (18) | C5—C6—C7 | 118.8 (2) |
C5—C10—C4 | 120.86 (18) | C5—C6—H6 | 120.6 |
C9—C10—C4 | 120.22 (18) | C7—C6—H6 | 120.6 |
C13—C12—C17 | 117.70 (18) | C6—C5—C10 | 121.3 (2) |
C13—C12—C11 | 124.65 (18) | C6—C5—H5 | 119.4 |
C17—C12—C11 | 117.57 (17) | C10—C5—H5 | 119.4 |
C14—C13—C12 | 120.83 (18) | C17—C16—C15 | 119.31 (18) |
C14—C13—H13 | 119.6 | C17—C16—H16 | 120.3 |
C12—C13—H13 | 119.6 | C15—C16—H16 | 120.3 |
C7—C8—C9 | 119.48 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11···O3i | 0.95 | 2.55 | 3.264 (2) | 132 |
C11—H11···O3ii | 0.95 | 2.52 | 3.194 (2) | 129 |
O3—H3···O4iii | 0.84 | 1.85 | 2.6852 (19) | 172 |
C2—H2A···O1iv | 0.99 | 2.53 | 3.397 (3) | 147 |
C11—H11···O4 | 0.95 | 2.45 | 2.818 (2) | 103 |
Symmetry codes: (i) x−1, −y+1/2, z−1/2; (ii) x, −y+1/2, z−1/2; (iii) x+1, −y+1/2, z+1/2; (iv) x−1, y, z. |
C22H16O3 | F(000) = 344 |
Mr = 328.37 | Dx = 1.367 Mg m−3 |
Triclinic, P1 | Melting point: 210 K |
a = 5.3969 (6) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.6576 (16) Å | Cell parameters from 3650 reflections |
c = 12.944 (2) Å | θ = 3.5–29.5° |
α = 91.992 (12)° | µ = 0.09 mm−1 |
β = 98.282 (10)° | T = 120 K |
γ = 97.568 (10)° | Plate, colourless |
V = 797.68 (19) Å3 | 0.8 × 0.2 × 0.05 mm |
Z = 2 |
STOE IPDS 2T diffractometer | 1804 reflections with I > 2σ(I) |
Radiation source: GeniX Mo, 0.05 x 0.05 mm2 microfocus | Rint = 0.077 |
Detector resolution: 6.67 pixels mm-1 | θmax = 26.5°, θmin = 3.5° |
rotation method, ω scans | h = −6→6 |
6849 measured reflections | k = −13→14 |
3281 independent reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.068 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.200 | H-atom parameters constrained |
S = 0.94 | w = 1/[σ2(Fo2) + (0.1159P)2] where P = (Fo2 + 2Fc2)/3 |
3281 reflections | (Δ/σ)max < 0.001 |
228 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.1107 (4) | 0.13471 (17) | 0.24184 (16) | 0.0423 (6) | |
O4 | 0.7889 (4) | 0.30522 (17) | 0.39197 (16) | 0.0432 (6) | |
O3 | −0.1593 (4) | 0.6939 (2) | 0.44060 (17) | 0.0503 (6) | |
H3 | −0.0545 | 0.6964 | 0.4956 | 0.075* | |
C10 | 0.5289 (5) | 0.1266 (2) | 0.3391 (2) | 0.0365 (7) | |
C17 | 0.1145 (5) | 0.5660 (2) | 0.3820 (2) | 0.0390 (7) | |
H17 | 0.1940 | 0.5611 | 0.4518 | 0.047* | |
C9 | 0.2888 (5) | 0.0736 (3) | 0.2913 (2) | 0.0386 (7) | |
C3 | 0.3849 (5) | 0.3163 (3) | 0.2945 (2) | 0.0378 (7) | |
C7 | 0.3920 (6) | −0.1113 (3) | 0.3446 (2) | 0.0453 (8) | |
H7 | 0.3455 | −0.1925 | 0.3474 | 0.054* | |
C5 | 0.6977 (6) | 0.0575 (3) | 0.3885 (2) | 0.0405 (7) | |
H5 | 0.8608 | 0.0925 | 0.4207 | 0.049* | |
C4 | 0.5884 (5) | 0.2528 (3) | 0.3452 (2) | 0.0370 (7) | |
C15 | −0.1803 (6) | 0.6487 (3) | 0.2598 (2) | 0.0431 (8) | |
H15 | −0.3077 | 0.6973 | 0.2454 | 0.052* | |
C16 | −0.0743 (5) | 0.6358 (3) | 0.3619 (2) | 0.0401 (7) | |
C11 | 0.3763 (5) | 0.4240 (3) | 0.3311 (2) | 0.0385 (7) | |
H11 | 0.5114 | 0.4544 | 0.3843 | 0.046* | |
C12 | 0.1891 (5) | 0.5030 (2) | 0.3014 (2) | 0.0378 (7) | |
C8 | 0.2210 (6) | −0.0459 (3) | 0.2943 (2) | 0.0431 (7) | |
H8 | 0.0587 | −0.0818 | 0.2620 | 0.052* | |
C13 | 0.0823 (6) | 0.5165 (3) | 0.1989 (3) | 0.0442 (8) | |
H13 | 0.1332 | 0.4755 | 0.1427 | 0.053* | |
C14 | −0.0998 (6) | 0.5905 (3) | 0.1791 (2) | 0.0440 (8) | |
H14 | −0.1694 | 0.6010 | 0.1090 | 0.053* | |
C2 | 0.2058 (5) | 0.2476 (2) | 0.2083 (2) | 0.0376 (7) | |
H2 | 0.0587 | 0.2908 | 0.1899 | 0.045* | |
C21 | 0.3266 (5) | 0.2321 (3) | 0.1100 (2) | 0.0387 (7) | |
C22 | 0.2451 (7) | 0.1373 (3) | 0.0408 (2) | 0.0517 (9) | |
H22 | 0.1084 | 0.0819 | 0.0531 | 0.062* | |
C6 | 0.6322 (6) | −0.0602 (3) | 0.3915 (2) | 0.0440 (8) | |
H6 | 0.7491 | −0.1062 | 0.4251 | 0.053* | |
C26 | 0.5228 (6) | 0.3134 (3) | 0.0894 (2) | 0.0493 (8) | |
H26 | 0.5783 | 0.3797 | 0.1357 | 0.059* | |
C23 | 0.3612 (8) | 0.1222 (3) | −0.0467 (3) | 0.0632 (11) | |
H23 | 0.3042 | 0.0566 | −0.0938 | 0.076* | |
C24 | 0.5596 (7) | 0.2024 (4) | −0.0654 (3) | 0.0593 (10) | |
H24 | 0.6417 | 0.1913 | −0.1244 | 0.071* | |
C25 | 0.6382 (6) | 0.2991 (3) | 0.0022 (3) | 0.0558 (9) | |
H25 | 0.7716 | 0.3556 | −0.0114 | 0.067* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0412 (11) | 0.0325 (12) | 0.0520 (13) | 0.0005 (9) | 0.0064 (10) | 0.0075 (10) |
O4 | 0.0394 (11) | 0.0355 (12) | 0.0525 (13) | 0.0035 (10) | 0.0017 (10) | −0.0001 (10) |
O3 | 0.0553 (13) | 0.0463 (14) | 0.0510 (13) | 0.0193 (11) | 0.0022 (10) | 0.0025 (11) |
C10 | 0.0432 (16) | 0.0317 (17) | 0.0372 (15) | 0.0082 (13) | 0.0115 (13) | 0.0044 (12) |
C17 | 0.0413 (16) | 0.0267 (16) | 0.0469 (17) | 0.0024 (13) | 0.0014 (13) | 0.0043 (13) |
C9 | 0.0412 (16) | 0.0344 (17) | 0.0416 (16) | 0.0037 (13) | 0.0122 (13) | 0.0036 (13) |
C3 | 0.0397 (15) | 0.0375 (17) | 0.0372 (16) | 0.0058 (13) | 0.0083 (13) | 0.0043 (13) |
C7 | 0.0550 (19) | 0.0309 (17) | 0.0522 (19) | 0.0020 (15) | 0.0195 (15) | 0.0020 (14) |
C5 | 0.0438 (16) | 0.0377 (18) | 0.0419 (16) | 0.0075 (14) | 0.0108 (13) | 0.0049 (13) |
C4 | 0.0406 (16) | 0.0363 (17) | 0.0343 (15) | 0.0048 (14) | 0.0077 (13) | −0.0015 (12) |
C15 | 0.0397 (16) | 0.0345 (17) | 0.0538 (18) | 0.0054 (13) | 0.0007 (14) | 0.0081 (14) |
C16 | 0.0428 (16) | 0.0294 (16) | 0.0478 (18) | 0.0044 (13) | 0.0063 (14) | 0.0033 (13) |
C11 | 0.0410 (16) | 0.0328 (17) | 0.0426 (16) | 0.0055 (13) | 0.0082 (13) | 0.0057 (13) |
C12 | 0.0383 (15) | 0.0275 (16) | 0.0469 (17) | 0.0018 (13) | 0.0053 (13) | 0.0053 (13) |
C8 | 0.0455 (16) | 0.0343 (18) | 0.0504 (18) | 0.0023 (14) | 0.0134 (14) | 0.0009 (14) |
C13 | 0.0481 (17) | 0.0372 (18) | 0.0479 (17) | 0.0061 (14) | 0.0079 (14) | 0.0074 (14) |
C14 | 0.0477 (17) | 0.0373 (18) | 0.0473 (18) | 0.0074 (14) | 0.0055 (14) | 0.0087 (14) |
C2 | 0.0374 (15) | 0.0285 (16) | 0.0463 (17) | 0.0015 (12) | 0.0063 (13) | 0.0070 (13) |
C21 | 0.0391 (15) | 0.0376 (17) | 0.0390 (16) | 0.0077 (13) | 0.0016 (13) | 0.0051 (13) |
C22 | 0.064 (2) | 0.041 (2) | 0.0476 (19) | 0.0048 (17) | 0.0052 (16) | −0.0032 (15) |
C6 | 0.0511 (18) | 0.0351 (18) | 0.0492 (18) | 0.0124 (14) | 0.0117 (15) | 0.0086 (14) |
C26 | 0.0465 (18) | 0.058 (2) | 0.0433 (18) | 0.0043 (16) | 0.0078 (15) | 0.0034 (16) |
C23 | 0.087 (3) | 0.057 (2) | 0.046 (2) | 0.023 (2) | 0.0006 (19) | −0.0052 (17) |
C24 | 0.059 (2) | 0.079 (3) | 0.0456 (19) | 0.032 (2) | 0.0082 (17) | 0.0074 (19) |
C25 | 0.0512 (19) | 0.070 (3) | 0.0469 (19) | 0.0052 (18) | 0.0094 (15) | 0.0139 (18) |
O1—C9 | 1.369 (3) | C15—H15 | 0.9500 |
O1—C2 | 1.453 (3) | C11—C12 | 1.475 (4) |
O4—C4 | 1.234 (3) | C11—H11 | 0.9500 |
O3—C16 | 1.370 (4) | C12—C13 | 1.391 (4) |
O3—H3 | 0.8400 | C8—H8 | 0.9500 |
C10—C5 | 1.397 (4) | C13—C14 | 1.393 (4) |
C10—C9 | 1.405 (4) | C13—H13 | 0.9500 |
C10—C4 | 1.460 (4) | C14—H14 | 0.9500 |
C17—C12 | 1.392 (4) | C2—C21 | 1.526 (4) |
C17—C16 | 1.388 (4) | C2—H2 | 1.0000 |
C17—H17 | 0.9500 | C21—C22 | 1.381 (4) |
C9—C8 | 1.396 (4) | C21—C26 | 1.388 (4) |
C3—C11 | 1.335 (4) | C22—C23 | 1.387 (5) |
C3—C4 | 1.492 (4) | C22—H22 | 0.9500 |
C3—C2 | 1.499 (4) | C6—H6 | 0.9500 |
C7—C8 | 1.380 (4) | C26—C25 | 1.381 (4) |
C7—C6 | 1.396 (4) | C26—H26 | 0.9500 |
C7—H7 | 0.9500 | C23—C24 | 1.381 (5) |
C5—C6 | 1.374 (4) | C23—H23 | 0.9500 |
C5—H5 | 0.9500 | C24—C25 | 1.383 (5) |
C15—C14 | 1.378 (4) | C24—H24 | 0.9500 |
C15—C16 | 1.383 (4) | C25—H25 | 0.9500 |
C9—O1—C2 | 115.9 (2) | C7—C8—H8 | 120.3 |
C16—O3—H3 | 109.5 | C9—C8—H8 | 120.3 |
C5—C10—C9 | 118.8 (3) | C12—C13—C14 | 119.7 (3) |
C5—C10—C4 | 121.1 (3) | C12—C13—H13 | 120.1 |
C9—C10—C4 | 119.8 (2) | C14—C13—H13 | 120.1 |
C12—C17—C16 | 120.9 (3) | C15—C14—C13 | 121.0 (3) |
C12—C17—H17 | 119.5 | C15—C14—H14 | 119.5 |
C16—C17—H17 | 119.5 | C13—C14—H14 | 119.5 |
O1—C9—C8 | 117.0 (3) | O1—C2—C3 | 111.0 (2) |
O1—C9—C10 | 122.8 (3) | O1—C2—C21 | 109.4 (2) |
C8—C9—C10 | 120.2 (3) | C3—C2—C21 | 112.3 (2) |
C11—C3—C4 | 118.3 (3) | O1—C2—H2 | 108.0 |
C11—C3—C2 | 127.3 (3) | C3—C2—H2 | 108.0 |
C4—C3—C2 | 114.4 (2) | C21—C2—H2 | 108.0 |
C8—C7—C6 | 121.1 (3) | C22—C21—C26 | 118.9 (3) |
C8—C7—H7 | 119.5 | C22—C21—C2 | 121.1 (3) |
C6—C7—H7 | 119.5 | C26—C21—C2 | 120.1 (3) |
C6—C5—C10 | 121.2 (3) | C21—C22—C23 | 120.6 (3) |
C6—C5—H5 | 119.4 | C21—C22—H22 | 119.7 |
C10—C5—H5 | 119.4 | C23—C22—H22 | 119.7 |
O4—C4—C10 | 123.2 (3) | C5—C6—C7 | 119.3 (3) |
O4—C4—C3 | 121.2 (3) | C5—C6—H6 | 120.3 |
C10—C4—C3 | 115.6 (3) | C7—C6—H6 | 120.3 |
C14—C15—C16 | 119.6 (3) | C25—C26—C21 | 120.7 (3) |
C14—C15—H15 | 120.2 | C25—C26—H26 | 119.6 |
C16—C15—H15 | 120.2 | C21—C26—H26 | 119.6 |
O3—C16—C15 | 118.4 (2) | C24—C23—C22 | 120.1 (3) |
O3—C16—C17 | 121.8 (3) | C24—C23—H23 | 120.0 |
C15—C16—C17 | 119.8 (3) | C22—C23—H23 | 120.0 |
C3—C11—C12 | 129.9 (3) | C23—C24—C25 | 119.7 (3) |
C3—C11—H11 | 115.1 | C23—C24—H24 | 120.2 |
C12—C11—H11 | 115.1 | C25—C24—H24 | 120.2 |
C17—C12—C13 | 118.9 (2) | C26—C25—C24 | 120.0 (4) |
C17—C12—C11 | 117.1 (3) | C26—C25—H25 | 120.0 |
C13—C12—C11 | 124.1 (3) | C24—C25—H25 | 120.0 |
C7—C8—C9 | 119.4 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O4i | 0.84 | 1.89 | 2.728 (3) | 172 |
C17—H17···O4i | 0.95 | 2.49 | 3.184 (4) | 130 |
C6—H6···O3ii | 0.95 | 2.45 | 3.265 (4) | 143 |
C11—H11···O4 | 0.95 | 2.43 | 2.807 (3) | 103 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y−1, z. |
Cg(1) and Cg(2) are the centroids of the C5–C10 and C12–C17 rings, respectively; α refers to the dihedral angle between planes (I) and (J); β refers to the angle between the Cg(I))–Cg(J) vector and normal to plane (I); γ refers to the angle between the Cg(I))–Cg(J) vector and normal to plane (J). |
Cg(I)···Cg(J) | Cg(I)_Perp | Cg(J)_Perp | α | β | γ | |
Cg(1)···Cg(1)i | 3.8508 (13) | 3.5260 (9) | -3.5259 (9) | 0.03 (10) | 23.7 | 23.7 |
Cg(1)···Cg(1)ii | 3.8512 (13) | 3.5260 (9) | -3.5262 (9) | 0.03 (10) | 23.7 | 23.7 |
Cg(2)···Cg(2)i | 3.8510 (13) | 3.3739 (8) | -3.3738 (8) | 0.03 (10) | 28.8 | 28.8 |
Cg(2)···Cg(2)ii | 3.8510 (13) | 3.3740 (8) | -3.3738 (8) | 0.03 (10) | 28.8 | 28.8 |
Symmetry codes: (i) -1 + x, y, z; (ii) 1 + x, y, z. |
Funding information
Funding for this research was provided by: Uniwesytet Łódzki, Uniwersytet Medyczny w Łodzi (grant No. SGB_148_Suchojad_Kamil to K. Suchojad; grant No. 502-03/3-066-02/502-34-118 to A. Adamus-Grabicka, E. Budzisz).
References
Adamus-Grabicka, A., Markowicz-Piasecka, M., Ponczek, M. B., Kusz, J., Małecka, M., Krajewska, U. & Budzisz, E. (2018). Molecules, 23, 3172–3188. Google Scholar
Augustine, T., Vithiya, S. M., Ramkumar, V. & Kanakam, C. C. (2008). Acta Cryst. E64, o2080. Web of Science CSD CrossRef IUCr Journals Google Scholar
Biruntha, K., Reuben Jonathan, D., Mohamooda Sumaya, U., Dravida Thendral, E. R. A. & Usha, G. (2018). IUCrData, 3, x181273. Google Scholar
Boonsri, S., Chantrapromma, S., Fun, H.-K., Karalai, C., Kanjana-opas, A. & Anjum, S. (2005). Acta Cryst. E61, o3930–o3932. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brien, K. A., Bandi, R. K., Behera, A. K., Mishra, B. K., Majumdar, P., Satam, V., Savagian, M., Tzou, S., Lee, M., Zeller, M., Robles, A. J., Mooberry, S., Pati, H. & Lee, M. (2012). Arch. Pharm. Pharm. Med. Chem. 345, 341–348. CSD CrossRef CAS Google Scholar
Chantrapromma, S., Boonsri, S., Fun, H.-K., Anjum, S. & Kanjana-opas, A. (2006). Acta Cryst. E62, o1254–o1256. Web of Science CSD CrossRef IUCr Journals Google Scholar
Cheng, X.-M., Huang, Z.-T. & Zheng, Q.-Y. (2011). Tetrahedron, 67, 9093–9098. CSD CrossRef CAS Google Scholar
Czaplińska, M., Czepas, J. & Gwoździński, K. (2012). Post. Bioch. 58, 235–242. Google Scholar
Dołowy, M. (2009). Farm. Pol. 65(10), 689–693. Google Scholar
Emami, S. & Ghanbarimasir, Z. (2015). Eur. J. Med. Chem. 93, 539–563. CrossRef CAS PubMed Google Scholar
Gopaul, K. & Koorbanally, N. A. (2012). Private Communication (refcode ????). CCDC, Cambridge, England. Google Scholar
Gopaul, K., Koorbanally, N. A., Shaikh, M. M., Su, H. & Ramjugernath, D. (2012). Acta Cryst. E68, o3062. CSD CrossRef IUCr Journals Google Scholar
Gopaul, K., Shaikh, M. M., Koorbanally, N. A., Ramjugernath, D. & Omondi, B. (2012). Acta Cryst. E68, o1972. CSD CrossRef IUCr Journals Google Scholar
Gopaul, K., Shaikh, M., Ramjugernath, D., Koorbanally, N. A. & Omondi, B. (2012). Acta Cryst. E68, o1006. CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hassaine, R., Talhi, O., Taibi, N., Almeida Paz, F., Bensaid, O., Bachari, K. & Silva, A. M. S. (2016). Synlett, 27, 465–470. CAS Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Ishikawa, Y. & Motohashi, Y. (2013a). Acta Cryst. E69, o1225. CSD CrossRef IUCr Journals Google Scholar
Ishikawa, Y. & Motohashi, Y. (2013b). Acta Cryst. E69, o1226. CSD CrossRef IUCr Journals Google Scholar
Jóźwiak, K., Szumiło, H. & Soczewiński, E. (2001). Wiad. Chem. 55, 1047–1073. Google Scholar
Katrusiak, A., Ratajczak-Sitarz, M., Kałuski, Z. & Orlov, V. D. (1987). Acta Cryst. C43, 103–105. CSD CrossRef CAS IUCr Journals Google Scholar
Kupcewicz, B., Balcerowska-Czerniak, G., Małecka, M., Paneth, P., Krajewska, U. & Rozalski, M. (2013). Bioorg. Med. Chem. Lett. 23, 4102–4106. CSD CrossRef CAS PubMed Google Scholar
Kupcewicz, B., Małecka, M., Zapadka, M., Krajewska, U., Rozalski, M. & Budzisz, E. (2016). Bioorg. Med. Chem. Lett. 26, 3336–3341. CSD CrossRef CAS PubMed Google Scholar
Lepitre, T., Denhez, C., Moncol, J., Othman, M., Lawson, A. M. & Daïch, A. (2017). J. Org. Chem. 82, 12188–12201. CSD CrossRef CAS PubMed Google Scholar
Levai, A. & Schag, J. B. (1979). Pharmazie, 34, 748–749. Google Scholar
Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. (2001). Adv. Drug Deliv. Rev. 46, 3–26. Web of Science CrossRef PubMed CAS Google Scholar
Małecka, M. & Budzisz, E. (2014). CrystEngComm 16, 6654–6663. Google Scholar
Marx, A., Manivannan, V., Suresh, R., Kanagam, C. C. & Büyükgüngör, O. (2007). Acta Cryst. E63, o4383. Web of Science CSD CrossRef IUCr Journals Google Scholar
Marx, A., Suresh, R., Kanagam, C. C., Manivannan, V. & Büyükgüngör, O. (2007). Acta Cryst. E63, o4530. Web of Science CSD CrossRef IUCr Journals Google Scholar
Marx, A., Suresh, R., Kanakam, C. C., Manivannan, V. & Vasam, C. S. (2008). Acta Cryst. E64, o27. CSD CrossRef IUCr Journals Google Scholar
Monserrat, J.-P., Tiwari, K. N., Quentin, L., Pigeon, P., Jaouen, G., Vessières, A., Chabot, G. G. & Hillard, E. A. (2013). J. Organomet. Chem. 734, 78–85. CSD CrossRef CAS Google Scholar
Nijveldt, R. J., van Nood, E., van Hoorn, D., Boelens, P. G., van Norren, K. & van Leeuwen, P. (2001). Am. J. Clin. Nutr. 74, 418–425. CrossRef PubMed CAS Google Scholar
Perkin, W. H., Rây, J. N. & Robinson, R. (1926). J. Chem. Soc. 129, 941–953. CrossRef Google Scholar
Pijewska, L., Kamecki, J. & Perka-Karolczak, W. (1993). Pharmazie, 48, 254–257. CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Google Scholar
Suresh, R., Kanagam, C. C., Umarani, P. R., Manivannan, V. & Büyükgüngör, O. (2007). Acta Cryst. E63, o4248. Web of Science CSD CrossRef IUCr Journals Google Scholar
Talhi, O., Brodziak-Jarosz, L., Panning, J., Orlikova, B., Zwergel, C., Tzanova, T., Philippot, S., Pinto, D. C. G. A., Paz, F. A. A., Gerhäuser, C., Dick, T. P., Jacob, C., Diederich, M., Bagrel, D., Kirsch, G. & Silva, A. M. S. (2016). Eur. J. Org. Chem. pp. 965–975. CSD CrossRef Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Valkonen, A., Laihia, K., Kolehmainen, E., Kauppinen, R. & Perjési, P. (2012). Struct. Chem. 23, 209–217. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Williams, R. J., Spencer, J. P. & Rice-Evans, C. (2004). Free Radical Biol. Med. 36, 838–849. CrossRef CAS Google Scholar
Wu, Ch., Liu, Y., Zeng, H., Liu, L., Wang, D. & Chen, Y. (2011). Org. Biomol. Chem. 9, 253–256. CSD CrossRef CAS PubMed Google Scholar
Wu, Ch., Zeng, H., Liu, L., Wang, D. & Chen, Y. (2011). Tetrahedron, 67, 1231–1237. CSD CrossRef CAS Google Scholar
Zhang, H.-J., Becker, P., Huang, H., Pirwerdjan, R., Pan, F.-F. & Bolm, C. (2012). Adv. Synth. Catal. 354, 2157–2161. CSD CrossRef CAS Google Scholar
Zhang, Y., Lv, Z., Zhang, M. & Li, K. (2013). Tetrahedron, 69, 8839–8846. CSD CrossRef CAS Google Scholar
Zhong, N.-J., Liu, L., Wang, D. & Chen, Y.-J. (2013). Chem. Commun. 49, 3697–3699. CSD CrossRef CAS Google Scholar
Zimmerman, J. R., Johntony, O., Steigerwald, D., Criss, C., Myers, B. J. & Kinder, D. H. (2015). Org. Lett. 17, 3256–3259. CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.