research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of (E)-3-(4-hy­dr­oxy­benzyl­­idene)chroman-4-one and (E)-3-(3-hy­dr­oxy­benzyl­­idene)-2-phenyl­chroman-4-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163/165, 90-236 Łódź, Poland, bDepartment of Inorganic Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12., 80-233 Gdańsk, Poland, and cDepartment of Cosmetic Raw Materials Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Łódź, Poland
*Correspondence e-mail: magdalena.malecka@chemia.uni.lodz.pl

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 8 October 2019; accepted 19 November 2019; online 22 November 2019)

The synthesis and crystal structures of (E)-3-(4-hy­droxy­benzyl­idene)chroman-4-one, C16H12O3, I, and (E)-3-(3-hy­droxy­benzyl­idene)-2-phenyl­chroman-4-one, C22H16O3, II, are reported. These compounds are of inter­est with respect to biological activity. Both structures display inter­molecular C—H⋯O and O—H⋯O hydrogen bonding, forming layers in the crystal lattice. The crystal structure of compound I is consolidated by ππ inter­actions. The lipophilicity (logP) was determined as it is one of the parameters qualifying compounds as potential drugs. The logP value for compound I is associated with a larger contribution of C⋯H inter­action in the Hirshfeld surface.

1. Chemical context

Chromanone (chroman-4-one) and flavanone (2-phenyl­chroman-4-one) belong to the class of heterocyclic compounds and are composed of a benzene ring fused to a 2,3-di­hydro-γ-pyran­one ring (Emami & Ghanbarimasir, 2015[Emami, S. & Ghanbarimasir, Z. (2015). Eur. J. Med. Chem. 93, 539-563.]). 3-Aryl­idenechromanones/flavanones and their derivatives are naturally occurring homoisoflavones, and can be obtained by condensing the corresponding aryl aldehydes with chromanone/flavanone. These compounds were synthesized for the first time by Robinson in the early 1920s by the condensation reaction of chromanone or flavanone with the appropriate aryl aldehyde using a catalyst (alcohol potassium hydroxide) (Perkin et al.,1926[Perkin, W. H., Rây, J. N. & Robinson, R. (1926). J. Chem. Soc. 129, 941-953.]). In 1979, Levai and Schag synthesized E-3-aryl­idenechroman-4-one using piperidine as a catalyst (Levai & Schag, 1979[Levai, A. & Schag, J. B. (1979). Pharmazie, 34, 748-749.]). Several years later, in 1993, Pijewska and coworkers (Pijewska et al., 1993[Pijewska, L., Kamecki, J. & Perka-Karolczak, W. (1993). Pharmazie, 48, 254-257.]) obtained the series of 3-aryl­ideneflavanones derivatives substituted by various groups using flavanones with aromatic aldehydes in the presence of piperidine. Flavonoid compounds belong to one of the largest and most inter­esting groups of chemical compounds. They are of inter­est to many scientists because they show biological properties (Nijveldt et al., 2001[Nijveldt, R. J., van Nood, E., van Hoorn, D., Boelens, P. G., van Norren, K. & van Leeuwen, P. (2001). Am. J. Clin. Nutr. 74, 418-425.]; Williams et al., 2004[Williams, R. J., Spencer, J. P. & Rice-Evans, C. (2004). Free Radical Biol. Med. 36, 838-849.]). Natural and synthetic flavonoids have a wide range of anti­oxidant, anti-allergic, anti-inflammatory, anti-microbial, anti-coagulant, anti-cholesterol or anti-cancer activities (Czaplińska et al., 2012[Czaplińska, M., Czepas, J. & Gwoździński, K. (2012). Post. Bioch. 58, 235-242.]).

[Scheme 1]

2. Structural commentary

The mol­ecular structures of I and II are shown in Fig. 1[link]. The main chroman skeleton of each mol­ecule consists of a benzene ring fused with a pyran ring. In position 3 of the chroman moiety, a para-hy­droxy­benzyl­idene (I) or a meta-hy­droxy­benzyl­idene (II) substituent is connected to give the E-isomer, similar to the previously mentioned structure (Kupcewicz, et al., 2013[Kupcewicz, B., Balcerowska-Czerniak, G., Małecka, M., Paneth, P., Krajewska, U. & Rozalski, M. (2013). Bioorg. Med. Chem. Lett. 23, 4102-4106.]). Moreover in compound II, the chroman moiety is subsituted at position 2 by a phenyl ring. The pyran rings adopt an envelope conformation with puckering parameters QT = 0.371 (2) Å, φ2 = 233.8 (4)°, θ2 = 120.0 (3)° for I, and QT = 0.423 (3) Å, φ2 = 65.9 (5)°, θ2 = 58.5 (4)° for II. The dihedral angles between the hy­droxy­benzyl­idene rings and the main chroman skeleton are 47.54 (8) and 69.46 (12)°, respectively, for I and II (Fig. 2[link]).

[Figure 1]
Figure 1
The mol­ecular structures of compounds I and II with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Overlay of compound I (green) and compound II (red).

3. Supra­molecular features

In the crystal packing of I, mol­ecules are connected into layers parallel to the bc plane via C—H⋯O and O—H⋯O hydrogen bonds (Table 1[link], Fig. 3[link]). The stability of the layers is further enhanced by ππ stacking inter­actions occurring between the benzene rings fused with the pyran rings and the aromatic rings of adjacent hy­droxy­benzyl­idene groups (Table 2[link]). In the crystal packing of II, mol­ecules are also linked by O—H⋯O and C—H⋯O hydrogen bonds (Table 3[link], Fig. 4[link]) into layers parallel to the ab plane.

Table 1
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O3i 0.95 2.55 3.264 (2) 132
C11—H11⋯O3ii 0.95 2.52 3.194 (2) 129
O3—H3⋯O4iii 0.84 1.85 2.6852 (19) 172
C2—H2A⋯O1iv 0.99 2.53 3.397 (3) 147
C11—H11⋯O4 0.95 2.45 2.818 (2) 103
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) x-1, y, z.

Table 2
Geometrical parameters (Å, °) for the π–π stacking inter­actions for compound I

Cg(1) and Cg(2) are the centroids of the C5–C10 and C12–C17 rings, respectively; α refers to the dihedral angle between planes (I)[link] and (J); β refers to the angle between the Cg(I))–Cg(J) vector and normal to plane (I); γ refers to the angle between the Cg(I))–Cg(J) vector and normal to plane (J).

  Cg(I)⋯Cg(J) Cg(I)_Perp Cg(J)_Perp α β γ
Cg(1)⋯Cg(1)i 3.8508 (13) 3.5260 (9) −3.5259 (9) 0.03 (10) 23.7 23.7
Cg(1)⋯Cg(1)ii 3.8512 (13) 3.5260 (9) −3.5262 (9) 0.03 (10) 23.7 23.7
Cg(2)⋯Cg(2)i 3.8510 (13) 3.3739 (8) −3.3738 (8) 0.03 (10) 28.8 28.8
Cg(2)⋯Cg(2)ii 3.8510 (13) 3.3740 (8) −3.3738 (8) 0.03 (10) 28.8 28.8
Symmetry codes: (i) −1 + x, y, z; (ii) 1 + x, y, z.

Table 3
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O4i 0.84 1.89 2.728 (3) 172
C17—H17⋯O4i 0.95 2.49 3.184 (4) 130
C6—H6⋯O3ii 0.95 2.45 3.265 (4) 143
C11—H11⋯O4 0.95 2.43 2.807 (3) 103
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y-1, z.
[Figure 3]
Figure 3
Partial packing of compound I showing the O—H⋯O (blue dotted lines) and C—H⋯O (cyan dotted lines) hydrogen-bonding network.
[Figure 4]
Figure 4
Partial packing of compound II showing the O—H⋯O (blue dotted lines) and C—H⋯O (cyan dotted lines) hydrogen-bonding network.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.40, last update November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using the scheme presented in Fig. 5[link] found 41 chromanone (Ishikawa et al., 2013a[Ishikawa, Y. & Motohashi, Y. (2013a). Acta Cryst. E69, o1225.],b[Ishikawa, Y. & Motohashi, Y. (2013b). Acta Cryst. E69, o1226.]; Zimmerman et al., 2015[Zimmerman, J. R., Johntony, O., Steigerwald, D., Criss, C., Myers, B. J. & Kinder, D. H. (2015). Org. Lett. 17, 3256-3259.]; Marx, Suresh et al., 2007[Marx, A., Suresh, R., Kanagam, C. C., Manivannan, V. & Büyükgüngör, O. (2007). Acta Cryst. E63, o4530.]; Katrusiak et al., 1987[Katrusiak, A., Ratajczak-Sitarz, M., Kałuski, Z. & Orlov, V. D. (1987). Acta Cryst. C43, 103-105.]; Brien et al., 2012[Brien, K. A., Bandi, R. K., Behera, A. K., Mishra, B. K., Majumdar, P., Satam, V., Savagian, M., Tzou, S., Lee, M., Zeller, M., Robles, A. J., Mooberry, S., Pati, H. & Lee, M. (2012). Arch. Pharm. Pharm. Med. Chem. 345, 341-348.]; Suresh et al., 2007[Suresh, R., Kanagam, C. C., Umarani, P. R., Manivannan, V. & Büyükgüngör, O. (2007). Acta Cryst. E63, o4248.]; Boonsri et al., 2005[Boonsri, S., Chantrapromma, S., Fun, H.-K., Karalai, C., Kanjana-opas, A. & Anjum, S. (2005). Acta Cryst. E61, o3930-o3932.]; Biruntha et al., 2018[Biruntha, K., Reuben Jonathan, D., Mohamooda Sumaya, U., Dravida Thendral, E. R. A. & Usha, G. (2018). IUCrData, 3, x181273.]; Talhi et al., 2016[Talhi, O., Brodziak-Jarosz, L., Panning, J., Orlikova, B., Zwergel, C., Tzanova, T., Philippot, S., Pinto, D. C. G. A., Paz, F. A. A., Gerhäuser, C., Dick, T. P., Jacob, C., Diederich, M., Bagrel, D., Kirsch, G. & Silva, A. M. S. (2016). Eur. J. Org. Chem. pp. 965-975.]; Wu, Liu et al., 2011[Wu, Ch., Liu, Y., Zeng, H., Liu, L., Wang, D. & Chen, Y. (2011). Org. Biomol. Chem. 9, 253-256.]; Marx et al., 2008[Marx, A., Suresh, R., Kanakam, C. C., Manivannan, V. & Vasam, C. S. (2008). Acta Cryst. E64, o27.]; Cheng et al., 2011[Cheng, X.-M., Huang, Z.-T. & Zheng, Q.-Y. (2011). Tetrahedron, 67, 9093-9098.]; Valkonen et al., 2012[Valkonen, A., Laihia, K., Kolehmainen, E., Kauppinen, R. & Perjési, P. (2012). Struct. Chem. 23, 209-217.]; Lepitre et al., 2017[Lepitre, T., Denhez, C., Moncol, J., Othman, M., Lawson, A. M. & Daïch, A. (2017). J. Org. Chem. 82, 12188-12201.]; Gopaul, Shaikh, Koorbanally et al., 2012[Gopaul, K., Shaikh, M. M., Koorbanally, N. A., Ramjugernath, D. & Omondi, B. (2012). Acta Cryst. E68, o1972.]; Gopaul, Koorbanally et al., 2012[Gopaul, K., Koorbanally, N. A., Shaikh, M. M., Su, H. & Ramjugernath, D. (2012). Acta Cryst. E68, o3062.]; Marx, Manivannan et al., 2007[Marx, A., Manivannan, V., Suresh, R., Kanagam, C. C. & Büyükgüngör, O. (2007). Acta Cryst. E63, o4383.]; Suresh et al., 2007[Suresh, R., Kanagam, C. C., Umarani, P. R., Manivannan, V. & Büyükgüngör, O. (2007). Acta Cryst. E63, o4248.]; Marx et al., 2008[Marx, A., Suresh, R., Kanakam, C. C., Manivannan, V. & Vasam, C. S. (2008). Acta Cryst. E64, o27.]; Hassaine et al., 2016[Hassaine, R., Talhi, O., Taibi, N., Almeida Paz, F., Bensaid, O., Bachari, K. & Silva, A. M. S. (2016). Synlett, 27, 465-470.]; Chantrapromma et al., 2006[Chantrapromma, S., Boonsri, S., Fun, H.-K., Anjum, S. & Kanjana-opas, A. (2006). Acta Cryst. E62, o1254-o1256.]; Zhang et al., 2012[Zhang, H.-J., Becker, P., Huang, H., Pirwerdjan, R., Pan, F.-F. & Bolm, C. (2012). Adv. Synth. Catal. 354, 2157-2161.]; Augustine et al., 2008[Augustine, T., Vithiya, S. M., Ramkumar, V. & Kanakam, C. C. (2008). Acta Cryst. E64, o2080.]; Gopaul, Shaikh, Ramjugernath et al., 2012[Gopaul, K., Shaikh, M., Ramjugernath, D., Koorbanally, N. A. & Omondi, B. (2012). Acta Cryst. E68, o1006.]; Gopaul & Koorbanally, 2012[Gopaul, K. & Koorbanally, N. A. (2012). Private Communication (refcode ????). CCDC, Cambridge, England.]; Zhang et al., 2013[Zhang, Y., Lv, Z., Zhang, M. & Li, K. (2013). Tetrahedron, 69, 8839-8846.]) and four flavanone structures (Zhong et al., 2013[Zhong, N.-J., Liu, L., Wang, D. & Chen, Y.-J. (2013). Chem. Commun. 49, 3697-3699.]; Kupcewicz et al., 2013[Kupcewicz, B., Balcerowska-Czerniak, G., Małecka, M., Paneth, P., Krajewska, U. & Rozalski, M. (2013). Bioorg. Med. Chem. Lett. 23, 4102-4106.]; Wu, Zeng et al., 2011[Wu, Ch., Zeng, H., Liu, L., Wang, D. & Chen, Y. (2011). Tetrahedron, 67, 1231-1237.]; Monserrat et al., 2013[Monserrat, J.-P., Tiwari, K. N., Quentin, L., Pigeon, P., Jaouen, G., Vessières, A., Chabot, G. G. & Hillard, E. A. (2013). J. Organomet. Chem. 734, 78-85.]). In the flavanone structures, the phenyl substituent at the C2 position is always nearly perpendicular to the chroman moiety, with the C(phen)—C2—C3—C4 torsion angle in the range 82.44–107.90°. In both chromanone and flavanone structures, the pyran ring adopts a slightly distorted envelope conformation. In the 41 chromanone derivatives, the bond distances and angles within the chroman moiety are in good agreement with those found in compound I.

[Figure 5]
Figure 5
Reference moiety for database survey.

5. Experimental and theoretical lipophilicity of compounds I and II

Lipophilicity is one of the descriptors that is currently used in the design of new drugs and in assessing the activity of medicinal substances (Jóźwiak et al., 2001[Jóźwiak, K., Szumiło, H. & Soczewiński, E. (2001). Wiad. Chem. 55, 1047-1073.]). Most often, the increase in lipophilicity increases the biological activity of compounds as a result of the affinity of substances with biological membranes and better permeability (Dołowy, 2009[Dołowy, M. (2009). Farm. Pol. 65(10), 689-693.]). However, a further increase in lipophilicity results in greater affinity for lipids and hinders the transport of compound mol­ecules through the aqueous phase. That is why it is important to choose substances with optimal hydro­phobic and hydro­philic properties and partition coefficient logP (Dołowy, 2009[Dołowy, M. (2009). Farm. Pol. 65(10), 689-693.]).

The experimental lipophilicity (logP) of compounds I and II was determined using the RP–TLC method. The values of logP obtained are 2.95 and 3.98, respectively for I and II, the difference being due to the different, bulky substituent at the C2 position of the pyran ring. The theoretical values of lipophilicity (miLogP) also show the same trend, the value for compound I is lower (miLogP = 3.14) than that for compound II (miLogP = 4.70). This is in agreement with the values previously reported for similar aryl­idenochromanone/flavanone derivatives (Adamus-Grabicka et al., 2018[Adamus-Grabicka, A., Markowicz-Piasecka, M., Ponczek, M. B., Kusz, J., Małecka, M., Krajewska, U. & Budzisz, E. (2018). Molecules, 23, 3172-3188.]). The theoretical values of lipophilicity were calculated using the online Molinspiration Cheminformatics software (https://www.molinspiration.com). According to the `rule of five' proposed by Lipinski et al. (2001[Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. (2001). Adv. Drug Deliv. Rev. 46, 3-26.]), compounds I and II may be potential anti-cancer drugs, the most important parameters according to Lipinski being the logP value (logP < 5) and molar mass (< 500 Da).

6. Hirshfeld surface analysis and lipophilicity index versus C⋯H contact

As the Hirshfeld surface (HS) analysis may provide useful descriptors for QSAR study (Kupcewicz, et al., 2016[Kupcewicz, B., Małecka, M., Zapadka, M., Krajewska, U., Rozalski, M. & Budzisz, E. (2016). Bioorg. Med. Chem. Lett. 26, 3336-3341.]) and the lipophilicity parameter in biologically active compounds is associated with the contribution of inter­molecular inter­actions to the Hirshfeld surface (Małecka & Budzisz, 2014[Małecka, M. & Budzisz, E. (2014). CrystEngComm 16, 6654-6663.]), we generated the Hirshfeld surfaces (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) using the CrystalExplorer program (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]) for chromone and flavanone derivatives for which the lipophilicity parameters are available, i.e. compound I, II, 3-(4-chloro­benzyl­idene)-2-phenyl-2,3-di­hydro-4H-chromen-4-one (III; Kupcewicz et al., 2013[Kupcewicz, B., Balcerowska-Czerniak, G., Małecka, M., Paneth, P., Krajewska, U. & Rozalski, M. (2013). Bioorg. Med. Chem. Lett. 23, 4102-4106.]), (E)-3-(4-N,N-di­ethyl­amino­benzyl­idene)chroman-4-one (IV; Adam­us-Grabicka et al., 2018[Adamus-Grabicka, A., Markowicz-Piasecka, M., Ponczek, M. B., Kusz, J., Małecka, M., Krajewska, U. & Budzisz, E. (2018). Molecules, 23, 3172-3188.]) and (E)-3-(4-N,N-di­ethyl­amino­benzyl­idene)-2-phenyl­chroman-4-one (V; Adamus-Grabicka et al., 2018[Adamus-Grabicka, A., Markowicz-Piasecka, M., Ponczek, M. B., Kusz, J., Małecka, M., Krajewska, U. & Budzisz, E. (2018). Molecules, 23, 3172-3188.]).

The Hirshfeld surfaces were mapped over dnorm (Fig. 6[link]). The red, white and blue regions visible on the dnorm surfaces indicate contacts with distances shorter, longer and equal to the van der Waals radii. The decomposition of the HS into 2D fingerprint plots for particular contacts is presented in Fig. 7[link], together with the relative percentage of contributions of different contacts. The dominant inter­action in all derivatives is the H⋯H inter­action. The contribution to the Hirshfeld surface is in the range 39.2– 55.5% for III and V. Comparing the C⋯C contacts, we can observe a large spread of percentage contribution ranging from 0.3% for V to 13.1% for compound I. This is also reflected in the presence of ππ stacking inter­actions observed in compound I (Table 2[link]).

[Figure 6]
Figure 6
View of the three-dimensional Hirshfeld surfaces of the title compounds plotted over dnorm (left) and shape-index (right); first row: compound I, second row: compound II.
[Figure 7]
Figure 7
Fingerprint plots of the title compounds; full Hirshfeld surface (left) and delineated into H⋯O, H⋯C, C⋯C, and H⋯H contacts, showing the percentage contributions of the contacts to the total Hirshfeld surface area of the mol­ecules. First row: compound I; second row: compound II; third row: 3-(4-chloro­benzyl­idene)-2-phenyl-2,3-di­hydro-4H-chromen-4-one (Kupcewicz et al., 2013[Kupcewicz, B., Balcerowska-Czerniak, G., Małecka, M., Paneth, P., Krajewska, U. & Rozalski, M. (2013). Bioorg. Med. Chem. Lett. 23, 4102-4106.]); fourth row: (E)-3-(4-N,N-di­ethyl­amino­benzyl­idene)chroman-4-one (Adamus-Grabicka et al., 2018[Adamus-Grabicka, A., Markowicz-Piasecka, M., Ponczek, M. B., Kusz, J., Małecka, M., Krajewska, U. & Budzisz, E. (2018). Molecules, 23, 3172-3188.]); fifth row: (E)-3-(4-N,N-di­ethyl­amino­benzyl­idene)-2-phenyl­chroman-4-one (Adamus-Grabicka et al., 2018[Adamus-Grabicka, A., Markowicz-Piasecka, M., Ponczek, M. B., Kusz, J., Małecka, M., Krajewska, U. & Budzisz, E. (2018). Molecules, 23, 3172-3188.]).

As in our previous studies (Małecka et al., 2014[Małecka, M. & Budzisz, E. (2014). CrystEngComm 16, 6654-6663.]; Kupcewicz et al., 2103), we found a relationship between the logP value and the fraction of the Hirshfeld surface covered by different inter­molecular inter­actions. The increase of logP corresponds in fact to increasing the C⋯H contribution in the Hirshfeld surface. Furthermore, for compounds IV, the contribution of the O⋯H inter­action in the Hirshfeld surface is inversely proportional to the value of logP.

7. Synthesis and crystallization

The synthesis of compounds I and II is based on the condensation of chromanone or flavanone with an aryl aldehyde in the presence of piperidine (Fig. 8[link]). Compound I was prepared according to a slightly modified procedure with respect to that described in the literature (Levai & Schag, 1979[Levai, A. & Schag, J. B. (1979). Pharmazie, 34, 748-749.]). A mechanically stirred mixture of chroman-4-one (0.01 mol), p-meth­oxy­benzaldehyde (0.01 mol) and five drops of piperidine was heated at 413 K in an oil bath for four h. The progress of the synthesis was controlled by thin layer chromatography (TLC) using toluene/methanol (9:1 v/v) as eluent. After cooling the reaction mixture was left for 24 h at room temperature. The solidified product was filtered and crystallized from methanol. Compound I was obtained as a yellow powder. The isolated solid was further recrystallized by slow evaporation at room temperature of an acetone solution. Yield: 64%, M.p.: 501–502.5 K. MS (ESI+): m/z 253.3 C16H12O3 [M+H]+. IR (KBr): 3126 (O—H), 2809 (C—Haromat), 1652 (C=O), 1608, 1578 (C=C), 1164 (C–O—C), 751 (=C—H). 1H NMR (600 MHz, DMSO-d6) δ (ppm): 5.42 (1H, s, =CH), 6.86–7.86 (8H, m, C—H aromat), 7.87 (2H, d, JAB = 18 Hz C2—H), 10.12 (1H, s, OH). Analysis calculated for C16H12O3 (M = 252.23 g mol−1) % C: 76.18; % H: 4.81; % O: 19.01. Found % C: 75.3; % H: 5.01; % O: 19.69.

[Figure 8]
Figure 8
Scheme of the synthesis of compounds I and II. R1 = H/Ph, R2 = H/OH, R3 = OH/H, respectively for compound I and II.

Compound II was synthesized according to the procedure described by Pijewska et al., (1993[Pijewska, L., Kamecki, J. & Perka-Karolczak, W. (1993). Pharmazie, 48, 254-257.]). A mixture of 2-phenyl­chroman-4-one (0.01 mol), 3-hy­droxy­benzaldehyde (0.01 mol) and five drops of piperidine was heated under reflux in an oil bath with mechanical stirring. The reaction proceeded at 413 K for 5 h. The progress of the reaction was controlled by TLC (eluent: toluene/methanol, 9:1 v/v). After cooling at room temperature, the mixture was dissolved in methanol. After 24 h compound II precipitated as a light-cream fine crystalline powder and was purified by crystallization from methanol. Crystal suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature. Yield: 52.4%. M.p.: 482–483 K. MS (ESI+): m/z 329.2 C22H16O3 [M+H]+. IR (KBr): 3297 (O—H), 3054 (C—Haromat), 2351 (C—Haliph), 1663 (C=O), 1608, 1590, 1504 (C=C), 1141 (C—O—C), 757 (=C—H). 1H NMR (600 MHz, DMSO-d6) δ (ppm): 6.57 (1H, s, C2—H), 5.69 (1H, s, =CH), 6.89–7.91 (14H, m, CHaromat), 8.12 (1H, s, OH). Analysis calculated For C22H16O3 (M = 328.19 g mol−1) %C: 80.51; %H: 4.87; % O: 14.62. Found %C: 79.99; %H: 5.11; % O: 14.90.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All hydrogen atoms were fixed geometrically at calculated positions (O—H = 0.84 Å, C—H = 0.95–0.99 Å) and refined as riding model with Uiso(H) = 1.5Ueq(O) or 1.2Ueq(C). A rotating model was used for the hy­droxy groups.

Table 4
Experimental details

  I II
Crystal data
Chemical formula C16H12O3 C22H16O3
Mr 252.27 328.37
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 120 120
a, b, c (Å) 3.8510 (2), 22.2541 (11), 13.7837 (9) 5.3969 (6), 11.6576 (16), 12.944 (2)
α, β, γ (°) 90, 96.766 (5), 90 91.992 (12), 98.282 (10), 97.568 (10)
V3) 1173.04 (11) 797.68 (19)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.10 0.09
Crystal size (mm) 0.4 × 0.2 × 0.1 0.8 × 0.2 × 0.05
 
Data collection
Diffractometer STOE IPDS 2T STOE IPDS 2T
Absorption correction
No. of measured, independent and observed [I > 2σ(I)] reflections 7027, 2413, 1618 6849, 3281, 1804
Rint 0.050 0.077
(sin θ/λ)max−1) 0.628 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.115, 1.03 0.068, 0.200, 0.94
No. of reflections 2413 3281
No. of parameters 173 228
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.19 0.23, −0.29
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015b), publCIF (Westrip, 2010).

(E)-3-(4-Hydroxybenzylidene)chroman-4-one (I) top
Crystal data top
C16H12O3Dx = 1.428 Mg m3
Mr = 252.27Melting point: 220 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 3.8510 (2) ÅCell parameters from 219 reflections
b = 22.2541 (11) Åθ = 4.1–28.9°
c = 13.7837 (9) ŵ = 0.10 mm1
β = 96.766 (5)°T = 120 K
V = 1173.04 (11) Å3Needle, light-yellow
Z = 40.4 × 0.2 × 0.1 mm
F(000) = 528
Data collection top
STOE IPDS 2T
diffractometer
1618 reflections with I > 2σ(I)
Radiation source: GeniX Mo, 0.05 x 0.05 mm2 microfocusRint = 0.050
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 3.7°
rotation method, ω scansh = 44
7027 measured reflectionsk = 2727
2413 independent reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.2287P]
where P = (Fo2 + 2Fc2)/3
2413 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.5127 (4)0.21588 (6)0.68339 (10)0.0282 (4)
H30.59520.18230.67010.042*
O40.1988 (4)0.39218 (6)0.15977 (10)0.0304 (4)
O10.2599 (4)0.50810 (6)0.36926 (10)0.0252 (4)
C90.1347 (5)0.52849 (8)0.27851 (14)0.0217 (4)
C170.3626 (5)0.25884 (8)0.42639 (15)0.0218 (4)
H170.40120.24410.36390.026*
C30.0393 (5)0.40641 (8)0.32620 (14)0.0207 (4)
C140.2335 (5)0.29994 (8)0.60754 (15)0.0216 (4)
H140.18460.31350.66980.026*
C110.0949 (5)0.34735 (8)0.34238 (15)0.0219 (4)
H110.06140.32290.28560.026*
C100.0381 (5)0.49118 (8)0.20685 (15)0.0217 (4)
C120.1982 (5)0.31486 (8)0.43307 (14)0.0200 (4)
C130.1298 (5)0.33398 (8)0.52539 (15)0.0219 (4)
H130.01040.37090.53180.026*
C80.2011 (6)0.58826 (9)0.25768 (15)0.0256 (5)
H80.32290.61330.30610.031*
C150.4089 (5)0.24590 (8)0.59954 (15)0.0208 (4)
C70.0889 (6)0.61086 (9)0.16621 (16)0.0277 (5)
H70.13300.65180.15230.033*
C40.0782 (5)0.42671 (9)0.22612 (14)0.0216 (4)
C20.0920 (6)0.45481 (8)0.40230 (15)0.0227 (4)
H2A0.13810.46620.42200.027*
H2B0.23630.43870.46070.027*
C60.0882 (6)0.57486 (9)0.09380 (16)0.0283 (5)
H60.16490.59090.03110.034*
C50.1499 (6)0.51545 (9)0.11493 (15)0.0249 (5)
H50.27080.49060.06610.030*
C160.4693 (5)0.22483 (8)0.50797 (15)0.0217 (4)
H160.58300.18740.50180.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0407 (9)0.0236 (7)0.0200 (8)0.0065 (7)0.0022 (7)0.0031 (6)
O40.0459 (10)0.0235 (7)0.0198 (8)0.0049 (7)0.0044 (7)0.0004 (6)
O10.0305 (8)0.0209 (7)0.0231 (8)0.0046 (6)0.0020 (6)0.0006 (6)
C90.0221 (11)0.0231 (10)0.0200 (11)0.0031 (8)0.0023 (8)0.0014 (8)
C170.0266 (11)0.0229 (10)0.0160 (10)0.0013 (8)0.0025 (8)0.0018 (8)
C30.0204 (10)0.0223 (9)0.0190 (11)0.0003 (8)0.0015 (8)0.0008 (8)
C140.0257 (11)0.0199 (9)0.0192 (11)0.0036 (8)0.0030 (8)0.0029 (7)
C110.0229 (11)0.0242 (10)0.0179 (11)0.0002 (8)0.0003 (8)0.0023 (8)
C100.0240 (11)0.0200 (9)0.0212 (11)0.0025 (8)0.0036 (9)0.0006 (8)
C120.0205 (10)0.0215 (9)0.0178 (10)0.0019 (8)0.0009 (8)0.0008 (8)
C130.0218 (10)0.0192 (10)0.0245 (11)0.0005 (8)0.0015 (8)0.0001 (8)
C80.0271 (12)0.0228 (10)0.0276 (12)0.0012 (8)0.0052 (9)0.0029 (8)
C150.0228 (10)0.0198 (9)0.0190 (10)0.0023 (8)0.0010 (8)0.0035 (8)
C70.0345 (13)0.0200 (10)0.0303 (13)0.0021 (9)0.0111 (10)0.0028 (8)
C40.0235 (11)0.0234 (10)0.0169 (11)0.0013 (8)0.0014 (8)0.0001 (8)
C20.0280 (11)0.0203 (9)0.0193 (11)0.0016 (8)0.0000 (9)0.0005 (8)
C60.0326 (12)0.0275 (11)0.0256 (12)0.0066 (9)0.0070 (9)0.0055 (9)
C50.0285 (12)0.0250 (10)0.0211 (11)0.0024 (8)0.0024 (9)0.0008 (8)
C160.0249 (11)0.0169 (9)0.0231 (11)0.0006 (8)0.0024 (9)0.0005 (8)
Geometric parameters (Å, º) top
O3—C151.354 (2)C11—H110.9500
O3—H30.8400C10—C51.398 (3)
O4—C41.242 (2)C10—C41.471 (3)
O1—C91.364 (2)C12—C131.396 (3)
O1—C21.450 (2)C13—H130.9500
C9—C81.391 (3)C8—C71.379 (3)
C9—C101.397 (3)C8—H80.9500
C17—C161.378 (3)C15—C161.392 (3)
C17—C121.406 (3)C7—C61.394 (3)
C17—H170.9500C7—H70.9500
C3—C111.346 (3)C2—H2A0.9900
C3—C41.471 (3)C2—H2B0.9900
C3—C21.501 (3)C6—C51.381 (3)
C14—C131.382 (3)C6—H60.9500
C14—C151.390 (3)C5—H50.9500
C14—H140.9500C16—H160.9500
C11—C121.458 (3)
C15—O3—H3109.5C7—C8—H8120.3
C9—O1—C2115.95 (15)C9—C8—H8120.3
O1—C9—C8116.97 (18)O3—C15—C14117.16 (18)
O1—C9—C10122.55 (17)O3—C15—C16122.95 (18)
C8—C9—C10120.40 (18)C14—C15—C16119.89 (18)
C16—C17—C12121.80 (19)C8—C7—C6121.30 (19)
C16—C17—H17119.1C8—C7—H7119.4
C12—C17—H17119.1C6—C7—H7119.4
C11—C3—C4118.72 (18)O4—C4—C10120.57 (18)
C11—C3—C2125.41 (18)O4—C4—C3123.19 (18)
C4—C3—C2115.86 (16)C10—C4—C3116.22 (17)
C13—C14—C15120.37 (19)O1—C2—C3113.35 (16)
C13—C14—H14119.8O1—C2—H2A108.9
C15—C14—H14119.8C3—C2—H2A108.9
C3—C11—C12130.40 (19)O1—C2—H2B108.9
C3—C11—H11114.8C3—C2—H2B108.9
C12—C11—H11114.8H2A—C2—H2B107.7
C5—C10—C9118.78 (18)C5—C6—C7118.8 (2)
C5—C10—C4120.86 (18)C5—C6—H6120.6
C9—C10—C4120.22 (18)C7—C6—H6120.6
C13—C12—C17117.70 (18)C6—C5—C10121.3 (2)
C13—C12—C11124.65 (18)C6—C5—H5119.4
C17—C12—C11117.57 (17)C10—C5—H5119.4
C14—C13—C12120.83 (18)C17—C16—C15119.31 (18)
C14—C13—H13119.6C17—C16—H16120.3
C12—C13—H13119.6C15—C16—H16120.3
C7—C8—C9119.48 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O3i0.952.553.264 (2)132
C11—H11···O3ii0.952.523.194 (2)129
O3—H3···O4iii0.841.852.6852 (19)172
C2—H2A···O1iv0.992.533.397 (3)147
C11—H11···O40.952.452.818 (2)103
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y+1/2, z+1/2; (iv) x1, y, z.
(E)-3-(3-Hydroxybenzylidene)-2-phenylchroman-4-one (II) top
Crystal data top
C22H16O3F(000) = 344
Mr = 328.37Dx = 1.367 Mg m3
Triclinic, P1Melting point: 210 K
a = 5.3969 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.6576 (16) ÅCell parameters from 3650 reflections
c = 12.944 (2) Åθ = 3.5–29.5°
α = 91.992 (12)°µ = 0.09 mm1
β = 98.282 (10)°T = 120 K
γ = 97.568 (10)°Plate, colourless
V = 797.68 (19) Å30.8 × 0.2 × 0.05 mm
Z = 2
Data collection top
STOE IPDS 2T
diffractometer
1804 reflections with I > 2σ(I)
Radiation source: GeniX Mo, 0.05 x 0.05 mm2 microfocusRint = 0.077
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 3.5°
rotation method, ω scansh = 66
6849 measured reflectionsk = 1314
3281 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.200H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.1159P)2]
where P = (Fo2 + 2Fc2)/3
3281 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1107 (4)0.13471 (17)0.24184 (16)0.0423 (6)
O40.7889 (4)0.30522 (17)0.39197 (16)0.0432 (6)
O30.1593 (4)0.6939 (2)0.44060 (17)0.0503 (6)
H30.05450.69640.49560.075*
C100.5289 (5)0.1266 (2)0.3391 (2)0.0365 (7)
C170.1145 (5)0.5660 (2)0.3820 (2)0.0390 (7)
H170.19400.56110.45180.047*
C90.2888 (5)0.0736 (3)0.2913 (2)0.0386 (7)
C30.3849 (5)0.3163 (3)0.2945 (2)0.0378 (7)
C70.3920 (6)0.1113 (3)0.3446 (2)0.0453 (8)
H70.34550.19250.34740.054*
C50.6977 (6)0.0575 (3)0.3885 (2)0.0405 (7)
H50.86080.09250.42070.049*
C40.5884 (5)0.2528 (3)0.3452 (2)0.0370 (7)
C150.1803 (6)0.6487 (3)0.2598 (2)0.0431 (8)
H150.30770.69730.24540.052*
C160.0743 (5)0.6358 (3)0.3619 (2)0.0401 (7)
C110.3763 (5)0.4240 (3)0.3311 (2)0.0385 (7)
H110.51140.45440.38430.046*
C120.1891 (5)0.5030 (2)0.3014 (2)0.0378 (7)
C80.2210 (6)0.0459 (3)0.2943 (2)0.0431 (7)
H80.05870.08180.26200.052*
C130.0823 (6)0.5165 (3)0.1989 (3)0.0442 (8)
H130.13320.47550.14270.053*
C140.0998 (6)0.5905 (3)0.1791 (2)0.0440 (8)
H140.16940.60100.10900.053*
C20.2058 (5)0.2476 (2)0.2083 (2)0.0376 (7)
H20.05870.29080.18990.045*
C210.3266 (5)0.2321 (3)0.1100 (2)0.0387 (7)
C220.2451 (7)0.1373 (3)0.0408 (2)0.0517 (9)
H220.10840.08190.05310.062*
C60.6322 (6)0.0602 (3)0.3915 (2)0.0440 (8)
H60.74910.10620.42510.053*
C260.5228 (6)0.3134 (3)0.0894 (2)0.0493 (8)
H260.57830.37970.13570.059*
C230.3612 (8)0.1222 (3)0.0467 (3)0.0632 (11)
H230.30420.05660.09380.076*
C240.5596 (7)0.2024 (4)0.0654 (3)0.0593 (10)
H240.64170.19130.12440.071*
C250.6382 (6)0.2991 (3)0.0022 (3)0.0558 (9)
H250.77160.35560.01140.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0412 (11)0.0325 (12)0.0520 (13)0.0005 (9)0.0064 (10)0.0075 (10)
O40.0394 (11)0.0355 (12)0.0525 (13)0.0035 (10)0.0017 (10)0.0001 (10)
O30.0553 (13)0.0463 (14)0.0510 (13)0.0193 (11)0.0022 (10)0.0025 (11)
C100.0432 (16)0.0317 (17)0.0372 (15)0.0082 (13)0.0115 (13)0.0044 (12)
C170.0413 (16)0.0267 (16)0.0469 (17)0.0024 (13)0.0014 (13)0.0043 (13)
C90.0412 (16)0.0344 (17)0.0416 (16)0.0037 (13)0.0122 (13)0.0036 (13)
C30.0397 (15)0.0375 (17)0.0372 (16)0.0058 (13)0.0083 (13)0.0043 (13)
C70.0550 (19)0.0309 (17)0.0522 (19)0.0020 (15)0.0195 (15)0.0020 (14)
C50.0438 (16)0.0377 (18)0.0419 (16)0.0075 (14)0.0108 (13)0.0049 (13)
C40.0406 (16)0.0363 (17)0.0343 (15)0.0048 (14)0.0077 (13)0.0015 (12)
C150.0397 (16)0.0345 (17)0.0538 (18)0.0054 (13)0.0007 (14)0.0081 (14)
C160.0428 (16)0.0294 (16)0.0478 (18)0.0044 (13)0.0063 (14)0.0033 (13)
C110.0410 (16)0.0328 (17)0.0426 (16)0.0055 (13)0.0082 (13)0.0057 (13)
C120.0383 (15)0.0275 (16)0.0469 (17)0.0018 (13)0.0053 (13)0.0053 (13)
C80.0455 (16)0.0343 (18)0.0504 (18)0.0023 (14)0.0134 (14)0.0009 (14)
C130.0481 (17)0.0372 (18)0.0479 (17)0.0061 (14)0.0079 (14)0.0074 (14)
C140.0477 (17)0.0373 (18)0.0473 (18)0.0074 (14)0.0055 (14)0.0087 (14)
C20.0374 (15)0.0285 (16)0.0463 (17)0.0015 (12)0.0063 (13)0.0070 (13)
C210.0391 (15)0.0376 (17)0.0390 (16)0.0077 (13)0.0016 (13)0.0051 (13)
C220.064 (2)0.041 (2)0.0476 (19)0.0048 (17)0.0052 (16)0.0032 (15)
C60.0511 (18)0.0351 (18)0.0492 (18)0.0124 (14)0.0117 (15)0.0086 (14)
C260.0465 (18)0.058 (2)0.0433 (18)0.0043 (16)0.0078 (15)0.0034 (16)
C230.087 (3)0.057 (2)0.046 (2)0.023 (2)0.0006 (19)0.0052 (17)
C240.059 (2)0.079 (3)0.0456 (19)0.032 (2)0.0082 (17)0.0074 (19)
C250.0512 (19)0.070 (3)0.0469 (19)0.0052 (18)0.0094 (15)0.0139 (18)
Geometric parameters (Å, º) top
O1—C91.369 (3)C15—H150.9500
O1—C21.453 (3)C11—C121.475 (4)
O4—C41.234 (3)C11—H110.9500
O3—C161.370 (4)C12—C131.391 (4)
O3—H30.8400C8—H80.9500
C10—C51.397 (4)C13—C141.393 (4)
C10—C91.405 (4)C13—H130.9500
C10—C41.460 (4)C14—H140.9500
C17—C121.392 (4)C2—C211.526 (4)
C17—C161.388 (4)C2—H21.0000
C17—H170.9500C21—C221.381 (4)
C9—C81.396 (4)C21—C261.388 (4)
C3—C111.335 (4)C22—C231.387 (5)
C3—C41.492 (4)C22—H220.9500
C3—C21.499 (4)C6—H60.9500
C7—C81.380 (4)C26—C251.381 (4)
C7—C61.396 (4)C26—H260.9500
C7—H70.9500C23—C241.381 (5)
C5—C61.374 (4)C23—H230.9500
C5—H50.9500C24—C251.383 (5)
C15—C141.378 (4)C24—H240.9500
C15—C161.383 (4)C25—H250.9500
C9—O1—C2115.9 (2)C7—C8—H8120.3
C16—O3—H3109.5C9—C8—H8120.3
C5—C10—C9118.8 (3)C12—C13—C14119.7 (3)
C5—C10—C4121.1 (3)C12—C13—H13120.1
C9—C10—C4119.8 (2)C14—C13—H13120.1
C12—C17—C16120.9 (3)C15—C14—C13121.0 (3)
C12—C17—H17119.5C15—C14—H14119.5
C16—C17—H17119.5C13—C14—H14119.5
O1—C9—C8117.0 (3)O1—C2—C3111.0 (2)
O1—C9—C10122.8 (3)O1—C2—C21109.4 (2)
C8—C9—C10120.2 (3)C3—C2—C21112.3 (2)
C11—C3—C4118.3 (3)O1—C2—H2108.0
C11—C3—C2127.3 (3)C3—C2—H2108.0
C4—C3—C2114.4 (2)C21—C2—H2108.0
C8—C7—C6121.1 (3)C22—C21—C26118.9 (3)
C8—C7—H7119.5C22—C21—C2121.1 (3)
C6—C7—H7119.5C26—C21—C2120.1 (3)
C6—C5—C10121.2 (3)C21—C22—C23120.6 (3)
C6—C5—H5119.4C21—C22—H22119.7
C10—C5—H5119.4C23—C22—H22119.7
O4—C4—C10123.2 (3)C5—C6—C7119.3 (3)
O4—C4—C3121.2 (3)C5—C6—H6120.3
C10—C4—C3115.6 (3)C7—C6—H6120.3
C14—C15—C16119.6 (3)C25—C26—C21120.7 (3)
C14—C15—H15120.2C25—C26—H26119.6
C16—C15—H15120.2C21—C26—H26119.6
O3—C16—C15118.4 (2)C24—C23—C22120.1 (3)
O3—C16—C17121.8 (3)C24—C23—H23120.0
C15—C16—C17119.8 (3)C22—C23—H23120.0
C3—C11—C12129.9 (3)C23—C24—C25119.7 (3)
C3—C11—H11115.1C23—C24—H24120.2
C12—C11—H11115.1C25—C24—H24120.2
C17—C12—C13118.9 (2)C26—C25—C24120.0 (4)
C17—C12—C11117.1 (3)C26—C25—H25120.0
C13—C12—C11124.1 (3)C24—C25—H25120.0
C7—C8—C9119.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O4i0.841.892.728 (3)172
C17—H17···O4i0.952.493.184 (4)130
C6—H6···O3ii0.952.453.265 (4)143
C11—H11···O40.952.432.807 (3)103
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1, z.
Geometrical parameters (Å, °) for the ππ stacking interactions for compound I top
Cg(1) and Cg(2) are the centroids of the C5–C10 and C12–C17 rings, respectively; α refers to the dihedral angle between planes (I) and (J); β refers to the angle between the Cg(I))–Cg(J) vector and normal to plane (I); γ refers to the angle between the Cg(I))–Cg(J) vector and normal to plane (J).
Cg(I)···Cg(J)Cg(I)_PerpCg(J)_Perpαβγ
Cg(1)···Cg(1)i3.8508 (13)3.5260 (9)-3.5259 (9)0.03 (10)23.723.7
Cg(1)···Cg(1)ii3.8512 (13)3.5260 (9)-3.5262 (9)0.03 (10)23.723.7
Cg(2)···Cg(2)i3.8510 (13)3.3739 (8)-3.3738 (8)0.03 (10)28.828.8
Cg(2)···Cg(2)ii3.8510 (13)3.3740 (8)-3.3738 (8)0.03 (10)28.828.8
Symmetry codes: (i) -1 + x, y, z; (ii) 1 + x, y, z.
 

Funding information

Funding for this research was provided by: Uniwesytet Łódzki, Uniwersytet Medyczny w Łodzi (grant No. SGB_148_Suchojad_Kamil to K. Suchojad; grant No. 502-03/3-066-02/502-34-118 to A. Adamus-Grabicka, E. Budzisz).

References

First citationAdamus-Grabicka, A., Markowicz-Piasecka, M., Ponczek, M. B., Kusz, J., Małecka, M., Krajewska, U. & Budzisz, E. (2018). Molecules, 23, 3172–3188.  Google Scholar
First citationAugustine, T., Vithiya, S. M., Ramkumar, V. & Kanakam, C. C. (2008). Acta Cryst. E64, o2080.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBiruntha, K., Reuben Jonathan, D., Mohamooda Sumaya, U., Dravida Thendral, E. R. A. & Usha, G. (2018). IUCrData, 3, x181273.  Google Scholar
First citationBoonsri, S., Chantrapromma, S., Fun, H.-K., Karalai, C., Kanjana-opas, A. & Anjum, S. (2005). Acta Cryst. E61, o3930–o3932.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrien, K. A., Bandi, R. K., Behera, A. K., Mishra, B. K., Majumdar, P., Satam, V., Savagian, M., Tzou, S., Lee, M., Zeller, M., Robles, A. J., Mooberry, S., Pati, H. & Lee, M. (2012). Arch. Pharm. Pharm. Med. Chem. 345, 341–348.  CSD CrossRef CAS Google Scholar
First citationChantrapromma, S., Boonsri, S., Fun, H.-K., Anjum, S. & Kanjana-opas, A. (2006). Acta Cryst. E62, o1254–o1256.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCheng, X.-M., Huang, Z.-T. & Zheng, Q.-Y. (2011). Tetrahedron, 67, 9093–9098.  CSD CrossRef CAS Google Scholar
First citationCzaplińska, M., Czepas, J. & Gwoździński, K. (2012). Post. Bioch. 58, 235–242.  Google Scholar
First citationDołowy, M. (2009). Farm. Pol. 65(10), 689–693.  Google Scholar
First citationEmami, S. & Ghanbarimasir, Z. (2015). Eur. J. Med. Chem. 93, 539–563.  CrossRef CAS PubMed Google Scholar
First citationGopaul, K. & Koorbanally, N. A. (2012). Private Communication (refcode ????). CCDC, Cambridge, England.  Google Scholar
First citationGopaul, K., Koorbanally, N. A., Shaikh, M. M., Su, H. & Ramjugernath, D. (2012). Acta Cryst. E68, o3062.  CSD CrossRef IUCr Journals Google Scholar
First citationGopaul, K., Shaikh, M. M., Koorbanally, N. A., Ramjugernath, D. & Omondi, B. (2012). Acta Cryst. E68, o1972.  CSD CrossRef IUCr Journals Google Scholar
First citationGopaul, K., Shaikh, M., Ramjugernath, D., Koorbanally, N. A. & Omondi, B. (2012). Acta Cryst. E68, o1006.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHassaine, R., Talhi, O., Taibi, N., Almeida Paz, F., Bensaid, O., Bachari, K. & Silva, A. M. S. (2016). Synlett, 27, 465–470.  CAS Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationIshikawa, Y. & Motohashi, Y. (2013a). Acta Cryst. E69, o1225.  CSD CrossRef IUCr Journals Google Scholar
First citationIshikawa, Y. & Motohashi, Y. (2013b). Acta Cryst. E69, o1226.  CSD CrossRef IUCr Journals Google Scholar
First citationJóźwiak, K., Szumiło, H. & Soczewiński, E. (2001). Wiad. Chem. 55, 1047–1073.  Google Scholar
First citationKatrusiak, A., Ratajczak-Sitarz, M., Kałuski, Z. & Orlov, V. D. (1987). Acta Cryst. C43, 103–105.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKupcewicz, B., Balcerowska-Czerniak, G., Małecka, M., Paneth, P., Krajewska, U. & Rozalski, M. (2013). Bioorg. Med. Chem. Lett. 23, 4102–4106.  CSD CrossRef CAS PubMed Google Scholar
First citationKupcewicz, B., Małecka, M., Zapadka, M., Krajewska, U., Rozalski, M. & Budzisz, E. (2016). Bioorg. Med. Chem. Lett. 26, 3336–3341.  CSD CrossRef CAS PubMed Google Scholar
First citationLepitre, T., Denhez, C., Moncol, J., Othman, M., Lawson, A. M. & Daïch, A. (2017). J. Org. Chem. 82, 12188–12201.  CSD CrossRef CAS PubMed Google Scholar
First citationLevai, A. & Schag, J. B. (1979). Pharmazie, 34, 748–749.  Google Scholar
First citationLipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. (2001). Adv. Drug Deliv. Rev. 46, 3–26.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMałecka, M. & Budzisz, E. (2014). CrystEngComm 16, 6654–6663.  Google Scholar
First citationMarx, A., Manivannan, V., Suresh, R., Kanagam, C. C. & Büyükgüngör, O. (2007). Acta Cryst. E63, o4383.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMarx, A., Suresh, R., Kanagam, C. C., Manivannan, V. & Büyükgüngör, O. (2007). Acta Cryst. E63, o4530.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMarx, A., Suresh, R., Kanakam, C. C., Manivannan, V. & Vasam, C. S. (2008). Acta Cryst. E64, o27.  CSD CrossRef IUCr Journals Google Scholar
First citationMonserrat, J.-P., Tiwari, K. N., Quentin, L., Pigeon, P., Jaouen, G., Vessières, A., Chabot, G. G. & Hillard, E. A. (2013). J. Organomet. Chem. 734, 78–85.  CSD CrossRef CAS Google Scholar
First citationNijveldt, R. J., van Nood, E., van Hoorn, D., Boelens, P. G., van Norren, K. & van Leeuwen, P. (2001). Am. J. Clin. Nutr. 74, 418–425.  CrossRef PubMed CAS Google Scholar
First citationPerkin, W. H., Rây, J. N. & Robinson, R. (1926). J. Chem. Soc. 129, 941–953.  CrossRef Google Scholar
First citationPijewska, L., Kamecki, J. & Perka-Karolczak, W. (1993). Pharmazie, 48, 254–257.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSuresh, R., Kanagam, C. C., Umarani, P. R., Manivannan, V. & Büyükgüngör, O. (2007). Acta Cryst. E63, o4248.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTalhi, O., Brodziak-Jarosz, L., Panning, J., Orlikova, B., Zwergel, C., Tzanova, T., Philippot, S., Pinto, D. C. G. A., Paz, F. A. A., Gerhäuser, C., Dick, T. P., Jacob, C., Diederich, M., Bagrel, D., Kirsch, G. & Silva, A. M. S. (2016). Eur. J. Org. Chem. pp. 965–975.  CSD CrossRef Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationValkonen, A., Laihia, K., Kolehmainen, E., Kauppinen, R. & Perjési, P. (2012). Struct. Chem. 23, 209–217.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilliams, R. J., Spencer, J. P. & Rice-Evans, C. (2004). Free Radical Biol. Med. 36, 838–849.  CrossRef CAS Google Scholar
First citationWu, Ch., Liu, Y., Zeng, H., Liu, L., Wang, D. & Chen, Y. (2011). Org. Biomol. Chem. 9, 253–256.  CSD CrossRef CAS PubMed Google Scholar
First citationWu, Ch., Zeng, H., Liu, L., Wang, D. & Chen, Y. (2011). Tetrahedron, 67, 1231–1237.  CSD CrossRef CAS Google Scholar
First citationZhang, H.-J., Becker, P., Huang, H., Pirwerdjan, R., Pan, F.-F. & Bolm, C. (2012). Adv. Synth. Catal. 354, 2157–2161.  CSD CrossRef CAS Google Scholar
First citationZhang, Y., Lv, Z., Zhang, M. & Li, K. (2013). Tetrahedron, 69, 8839–8846.  CSD CrossRef CAS Google Scholar
First citationZhong, N.-J., Liu, L., Wang, D. & Chen, Y.-J. (2013). Chem. Commun. 49, 3697–3699.  CSD CrossRef CAS Google Scholar
First citationZimmerman, J. R., Johntony, O., Steigerwald, D., Criss, C., Myers, B. J. & Kinder, D. H. (2015). Org. Lett. 17, 3256–3259.  CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds