research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of benzo[h]quinoline-3-carbox­amide

CROSSMARK_Color_square_no_text.svg

aInstitut für Pharmazie, Universität Greifswald, Friedrich-Ludwig-Jahn-Strasse 17, 17489 Greifswald, Germany, and bInstitut für Biochemie, Felix-Hausdorff-Strasse 4, 17489 Greifswald, Germany
*Correspondence e-mail: link@uni-greifswald.de, carola.schulzke@uni-greifswald.de

Edited by J. Simpson, University of Otago, New Zealand (Received 14 October 2019; accepted 22 October 2019; online 5 November 2019)

The title com­pound, C14H10N2O, crystallizes in the monoclinic space group P21/c with four mol­ecules in the unit cell. All 17 non-H atoms of one mol­ecule lie essentially in one plane. In the unit cell, two pairs of mol­ecules are exactly coplanar, while the angle between these two orientations is close to perfectly perpendicular at 87.64 (6)°. In the crystal, mol­ecules adopt a 50:50 crisscross arrangement, which is held together by two nonclassical and two classical inter­molecular hydrogen bonds. The hydrogen-bonding network together with off-centre ππ stacking inter­actions between the pyridine and outermost benzene rings, stack the mol­ecules along the b-axis direction.

1. Chemical context

Quinoline and benzo­quinoline scaffolds are common structural motifs in artificial, as well as natural products, and many of these com­pounds are of enormous value for pharmacotherapy. Their multifaceted biological efficacy is outstanding and ranges from cardiovascular (Ferlin et al., 2002[Ferlin, M. G., Chiarelotto, G., Antonucci, F., Caparrotta, L. & Froldi, G. (2002). Eur. J. Med. Chem. 37, 427-434.]; Abouzid et al., 2008[Abouzid, K., Abdel Hakeem, M., Khalil, O. & Maklad, Y. (2008). Bioorg. Med. Chem. 16, 382-389.]) and anti-inflammatory effects (Kumar et al., 2009[Kumar, S., Bawa, S. & Gupta, H. (2009). Mini Rev. Med. Chem. 9, 1648-1654.]; Hussaini, 2016[Hussaini, S. M. A. (2016). Expert Opin. Ther. Pat. 26, 1201-1221.]) to anti­microbial (El Shehry et al., 2018[El Shehry, M. F., Ghorab, M. M., Abbas, S. Y., Fayed, E. A., Shedid, S. A. & Ammar, Y. A. (2018). Eur. J. Med. Chem. 143, 1463-1473.]), as well as anti­cancer activity (Abdelsalam et al., 2019[Abdelsalam, E. A., Zaghary, W. A., Amin, K. M., Abou Taleb, N. A., Mekawey, A. A. I., Eldehna, W. M., Abdel-Aziz, H. A. & Hammad, S. F. (2019). Bioorg. Chem. 89, 102985.]; Haiba et al., 2019[Haiba, M. E., Al-Abdullah, E. S., Ahmed, N. S., Ghabbour, H. A. & Awad, H. M. (2019). J. Mol. Struct. 1195, 702-711.]; Jafari et al., 2019[Jafari, F., Baghayi, H., Lavaee, P., Hadizadeh, F., Soltani, F., Moallemzadeh, H., Mirzaei, S., Aboutorabzadeh, S. M. & Ghodsi, R. (2019). Eur. J. Med. Chem. 164, 292-303.]; Musiol, 2017[Musiol, R. (2017). Exp. Opin. Drug Discov. 12, 583-597.]; Marzaro et al., 2016[Marzaro, G., Dalla Via, L., García-Argáez, A. N., Dalla Via, M. & Chilin, A. (2016). Bioorg. Med. Chem. Lett. 26, 4875-4878.]). In a report on 3-(tetra­zol-5-yl)quinolines with anti­allergic potential, benzo[h]quinoline-3-carboxamide was mentioned as a synthetic inter­mediate, though its biological activity was not determined in that work (Erickson et al., 1979[Erickson, H. E., Hainline, C. F., Lenon, L. S., Matson, C. J., Rice, T. K., Swingle, K. F. & Van Winkle, M. (1979). J. Med. Chem. 22, 816-823.]). In our recent studies on photoswitchable sirtuin inhibitors, we obtained benzo[h]quinoline-3-carboxamide as a side product of aza­stilbene photoisomerization (Grathwol et al., 2019[Grathwol, C. W., Wössner, N., Swyter, S., Smith, A. C., Tapavicza, E., Hofstetter, R. K., Bodtke, A., Jung, M. & Link, A. (2019). Beilstein J. Org. Chem. 15, 2170-2183.]). By UV radiation, (E)-5-styrylnicotinamide was transformed to its Z isomer as envisioned, but underwent photocyclization and successive oxidation, yielding two isomeric benzo­quinoline derivatives; the identity of one of these was determined to be the benzo[h]quinoline derivative and its crystal structure is reported here.

[Scheme 1]

2. Structural commentary

The title com­pound, benzo[h]quinoline-3-carboxamide, crystallizes in the monoclinic space group P21/c. Four mol­ecules are present in the unit cell (Z = 4) and there is one mol­ecule in the asymmetric unit. Benzo[h]quinoline-3-carboxamide consists of a nicotinamide unit being fused with a benzo[h]quinoline moiety, while the pyridine ring is shared between these two common structural building blocks (Fig. 1[link]). The mol­ecule is essentially flat, with a largest deviation from the plane through all 17 non-H atoms of 0.050 (2) Å (O1) and an r.m.s. deviation of 0.020 (2) Å. In the unit cell, the four mol­ecules are arranged in two perfectly coplanar pairs, with a nearly perpendicular angle between the respective planes of the two pairs of 87.64 (6)° (Fig. 2[link]). A plethora of crystal structures are known for com­pounds with one or other of the two building blocks that make up this mol­ecule [for the nicotinamide scaffold, ConQuest finds over 2000 hits in the Cambridge Structural Database (CSD), while for benzo­quinoline, there are over 500; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]]. However, the specific combination in the title com­pound is unprecedented. Comparing the title com­pound to the known structures of unsubstituted nicotinamides, its pronounced planarity is most notable. In the six published structures in the space groups P21/c or P21/a, the angles between the aromatic plane (here C2/C3/N2/C4/C13/C14) and the amide substituent (here O1/N1/C1) range from 22.1 to 23.3° (general CSD refcode NICOAM; Wright & King, 1954[Wright, W. B. & King, G. S. D. (1954). Acta Cryst. 7, 283-288.]; Miwa et al., 1999[Miwa, Y., Mizuno, T., Tsuchida, K., Taga, T. & Iwata, Y. (1999). Acta Cryst. B55, 78-84.]; Fábián et al., 2011[Fábián, L., Hamill, N., Eccles, K. S., Moynihan, H. A., Maguire, A. R., McCausland, L. & Lawrence, S. E. (2011). Cryst. Growth Des. 11, 3522-3528.]; Jarzembska et al., 2014[Jarzembska, K. N., Hoser, A. A., Kamiński, R., Madsen, A., Durka, K. & Woźniak, K. (2014). Cryst. Growth Des. 14, 3453-3465.]), i.e. this angle is quite consistent. In the only distinct polymorph of a nicotinamide in the space group P2/a, four distinct mol­ecules were refined with this angle ranging from 8.1 to 22.4° (Li et al., 2011[Li, J., Bourne, S. A. & Caira, M. R. (2011). Chem. Commun. 47, 1530-1532.]), i.e. they are not very consistent but still considerably larger than the corresponding angle found in the title com­pound, which is a mere 3.3 (4)°. This points toward an extension of the aromatic resonance systems to include the amide substituent. In the parent nicotinamide scaffolds, this does not occur. Similarly, the com­paratively long C1=O1 distance of 1.238 (3) Å (average 1.23 Å) and the com­paratively short C1—C2 distance of 1.491 (3) Å (average 1.50 Å in other nicotinamide structures) indicate some involvement of these atoms in resonance effects. In support of this extended resonance, in the nicotinamide structures, the aromatic C—C bonds are much less diverse (range 1.38–1.39 Å, indicating very strong aromaticity in the pyridine ring) than in the structure reported here. In fact, the C—C [range 1.376 (3)–1.414 (3) Å] and C—N [1.321 (3) and 1.360 (3) Å] bond lengths here are much more similar to the two known structures of 2-unsubstituted and 3-substituted benzo[h]quinolines (refcodes JAFVEU and SUDVES), with ranges of average C—C and C—N bond lengths of 1.38–1.42 and 1.32–1.36 Å, respectively (Martínez et al., 1992[Martínez, R., Toscano, R. A., Linzaga, I. E. & Sánchez, H. (1992). J. Heterocycl. Chem. 29, 1385-1388.]; Luo et al., 2015[Luo, C.-Z., Gandeepan, P., Wu, Y.-C., Chen, W.-C. & Cheng, C.-H. (2015). RSC Adv. 5, 106012-106018.]). The benzo[h]quinoline structural motif therefore dominates the observed metrical parameters of the mol­ecule reported here, representing a fusion between a nicotinamide and a benzo[h]quinoline, with a partial extension of the aromaticity beyond the ring system and extending towards the amide substituent.

[Figure 1]
Figure 1
The mol­ecular structure of benzo[h]quinoline-3-carboxamide. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2]
Figure 2
The unit cell of benzo[h]quinoline-3-carboxamide in P21/c, with its four mol­ecules in a coplanar and perpendicular arrangement, viewed along the ac diagonal.

3. Supra­molecular features

In the crystal, the planar mol­ecules are all arranged in planes in two distinct orientations, which are nearly perpendicular to each other [angle 87.64 (6)°]. This forms a crisscross pattern when viewed along the ac diagonal (Fig. 2[link]). Classical inversion-related N1—H1P⋯O1 hydrogen bonds form dimers and generate R22(8) ring motifs (Fig. 3[link]). Each mol­ecule forms two classical (N—H⋯O and N—H⋯N) and two nonclassical (C—H⋯N and C—H⋯O) hydrogen bonds (Table 1[link]), and these contacts link adjacent dimers into zigzag chains along the c-axis direction (Fig. 4[link]). The observed packing is further stabilized by off-centre ππ stacking between the pyridine and outermost benzene rings of each of the coplanar layers [centroid-to-centroid distance = 3.610 (1) Å] (Fig. 5[link]). These contacts combine to stack the mol­ecules along the b-axis direction (Fig. 6[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N2i 0.97 (3) 2.17 (3) 3.133 (3) 173 (2)
N1—H1P⋯O1ii 0.93 (3) 1.96 (3) 2.895 (3) 175 (3)
C3—H3⋯N2i 0.95 2.41 3.361 (3) 174
C7—H7⋯O1iii 0.95 2.45 3.140 (3) 129
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y-1, -z+1; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
Dimers formed by N—H⋯O hydrogen bonds.
[Figure 4]
Figure 4
Chains of dimers along the c-axis.
[Figure 5]
Figure 5
ππ stacking inter­actions, with centroids shown as coloured spheres. Cg1 and Cg2 are the centroids of the C5–C10 and C2/C3/N2/C4/C13/C14 rings, respectively.
[Figure 6]
Figure 6
The overall packing of the title com­pound, viewed along the b-axis direction.

4. Synthesis and crystallization

A solution of (E)-5-styrylnicotinamide (673 mg, 3.00 mmol, 1.00 equiv.) in methanol (350 ml) was treated with a solution of iodine (38 mg, 0.15 mmol, 0.05 equiv.) in methanol (50 ml). A slow stream of com­pressed air was bubbled through the reaction mixture while it was irradiated with UV light (six Vilber-Lourmat T8-C lamps, 8 W, 254 nm). After com­plete consumption of the starting material (24 h), the solvent was removed under reduced pressure. Purification of the residue by silica-gel column chromatography (n-hexa­ne/THF, 1:1 v/v) gave pure benzo[h]quinoline-3-carboxamide as a colourless solid (yield 80 mg, 0.36 mmol, 12%). Crystallization was accom­plished by slow evaporation of a solution in THF (5 mg ml−1) and yielded the title com­pound as colourless needles: RF = 0.32 (n-hexa­ne/THF, 1:1 v/v); m.p. 549.8 K (decom­position); 1H NMR, H,H-COSY (400 MHz, DMSO-d6): δ (ppm) 9.48 (d, J = 2.2 Hz, 1H, C3-H), 9.26–9.19 (m, 1H, C6-H), 8.89 (d, J = 2.1 Hz, 1H, C14-H), 8.36 (s, br, 1H, N1-H), 8.12–8.07 (m, 1H, C9-H), 8.03 (d, J = 8.9 Hz, 1H, C11-H), 7.95 (d, J = 8.9 Hz, 1H, C12-H), 7.85–7.78 (m, 2H, C7-H, C8-H), 7.74 (s, br, 1H, N1-H); 13C NMR, DEPT135, HSQC, HMBC (101 MHz, DMSO-d6): δ (ppm) 166.4 (C1), 147.8 (C3), 146.7 (C4), 135.5 (C14), 133.8 (C13), 130.3 (C5), 129.0 (C8), 128.1 (C9/C11), 128.0 (C9/C11), 127.8 (C2), 127.3 (C7), 125.8 (C12), 124.9 (C10), 124.1 (C6); IR (ATR): ν (cm−1) 3336, 3136, 1686, 1482, 1395, 1295, 801, 691, 539, 489; ESI–HRMS calculated for [C14H10N2O + H]+ 222.0793, found 222.0796; compound purity (220 nm): 100%.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All C-bound H atoms constitute aromatic protons, which were attached in calculated positions and treated as riding with Uiso(H) = 1.2Ueq(C). The two amine H atoms were found and refined without any constraints or restraints.

Table 2
Experimental details

Crystal data
Chemical formula C14H10N2O
Mr 222.24
Crystal system, space group Monoclinic, P21/c
Temperature (K) 170
a, b, c (Å) 12.634 (3), 4.9426 (10), 16.778 (3)
β (°) 100.53 (3)
V3) 1030.0 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.37 × 0.07 × 0.04
 
Data collection
Diffractometer Stoe IPDS-2T
Absorption correction Numerical face indexed
Tmin, Tmax 0.727, 0.997
No. of measured, independent and observed [I > 2σ(I)] reflections 10053, 2551, 1320
Rint 0.087
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.167, 0.98
No. of reflections 2551
No. of parameters 163
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.23, −0.27
Computer programs: X-AREA (Stoe & Cie, 2010[Stoe & Cie (2010). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), CIFTAB (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2010).; cell refinement: X-AREA (Stoe & Cie, 2010).; data reduction: X-AREA (Stoe & Cie, 2010).; program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: CIFTAB (Sheldrick, 2015b) and publCIF (Westrip, 2010).

Benzo[h]quinoline-3-carboxamide top
Crystal data top
C14H10N2OF(000) = 464
Mr = 222.24Dx = 1.433 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.634 (3) ÅCell parameters from 11960 reflections
b = 4.9426 (10) Åθ = 6.4–59.0°
c = 16.778 (3) ŵ = 0.09 mm1
β = 100.53 (3)°T = 170 K
V = 1030.0 (4) Å3Needle, colourless
Z = 40.37 × 0.07 × 0.04 mm
Data collection top
Stoe IPDS2T
diffractometer
2551 independent reflections
Radiation source: fine-focus sealed tube1320 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.087
ω scansθmax = 28.3°, θmin = 3.2°
Absorption correction: numerical
face indexed
h = 1616
Tmin = 0.727, Tmax = 0.997k = 66
10053 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.167 w = 1/[σ2(Fo2) + (0.086P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
2551 reflectionsΔρmax = 0.23 e Å3
163 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dualExtinction coefficient: 0.019 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.60103 (14)0.2438 (3)0.51392 (9)0.0364 (4)
N20.63400 (15)0.2758 (4)0.28016 (11)0.0304 (5)
N10.48278 (17)0.3250 (4)0.39872 (12)0.0331 (5)
C10.56558 (19)0.1907 (4)0.44191 (13)0.0312 (5)
C20.61839 (18)0.0252 (4)0.40098 (12)0.0287 (5)
C30.58725 (19)0.0909 (4)0.31880 (13)0.0311 (5)
H30.5280100.0048710.2885730.037*
C40.71867 (17)0.4149 (4)0.32278 (12)0.0274 (5)
C50.77008 (18)0.6182 (4)0.28123 (13)0.0292 (5)
C60.7362 (2)0.6735 (5)0.19826 (13)0.0332 (5)
H60.6785370.5733370.1676870.040*
C70.7858 (2)0.8702 (5)0.16151 (14)0.0360 (6)
H70.7623310.9057030.1054140.043*
C80.8707 (2)1.0200 (5)0.20521 (15)0.0375 (6)
H80.9040891.1573650.1788430.045*
C90.90571 (19)0.9702 (5)0.28530 (14)0.0346 (6)
H90.9634771.0730760.3146610.041*
C100.85689 (18)0.7665 (4)0.32529 (13)0.0305 (5)
C110.8935 (2)0.7074 (5)0.40961 (14)0.0350 (6)
H110.9526620.8056640.4389920.042*
C120.84594 (19)0.5161 (5)0.44794 (13)0.0329 (5)
H120.8722110.4812420.5037360.039*
C130.75657 (17)0.3646 (4)0.40605 (12)0.0291 (5)
C140.70365 (19)0.1668 (4)0.44428 (13)0.0307 (5)
H140.7268530.1306400.5003580.037*
H1N0.449 (2)0.279 (6)0.344 (2)0.059 (9)*
H1P0.452 (2)0.464 (6)0.4246 (16)0.054 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0445 (10)0.0389 (9)0.0247 (8)0.0018 (8)0.0036 (7)0.0056 (7)
N20.0311 (11)0.0302 (10)0.0293 (9)0.0018 (8)0.0037 (8)0.0005 (8)
N10.0373 (12)0.0331 (11)0.0280 (10)0.0018 (9)0.0036 (9)0.0020 (8)
C10.0351 (13)0.0302 (11)0.0285 (11)0.0031 (10)0.0064 (10)0.0001 (9)
C20.0310 (12)0.0281 (11)0.0275 (10)0.0048 (9)0.0068 (9)0.0004 (9)
C30.0333 (12)0.0306 (11)0.0286 (11)0.0012 (10)0.0033 (9)0.0002 (9)
C40.0278 (11)0.0261 (11)0.0279 (11)0.0029 (9)0.0036 (9)0.0021 (9)
C50.0299 (12)0.0276 (11)0.0307 (11)0.0034 (10)0.0068 (9)0.0007 (9)
C60.0345 (13)0.0355 (13)0.0295 (11)0.0024 (10)0.0058 (10)0.0009 (9)
C70.0372 (14)0.0387 (13)0.0327 (11)0.0005 (11)0.0082 (10)0.0042 (10)
C80.0367 (13)0.0348 (13)0.0428 (13)0.0015 (11)0.0124 (11)0.0025 (11)
C90.0325 (13)0.0324 (12)0.0393 (13)0.0003 (10)0.0079 (10)0.0006 (10)
C100.0291 (12)0.0280 (11)0.0351 (11)0.0030 (9)0.0079 (9)0.0021 (9)
C110.0319 (13)0.0379 (13)0.0342 (12)0.0024 (10)0.0037 (10)0.0063 (10)
C120.0324 (12)0.0372 (12)0.0274 (11)0.0009 (10)0.0009 (9)0.0027 (9)
C130.0303 (12)0.0302 (11)0.0260 (10)0.0045 (10)0.0033 (9)0.0006 (9)
C140.0352 (13)0.0312 (12)0.0248 (10)0.0053 (10)0.0034 (9)0.0009 (9)
Geometric parameters (Å, º) top
O1—C11.238 (3)C6—H60.9500
N2—C31.321 (3)C7—C81.396 (3)
N2—C41.360 (3)C7—H70.9500
N1—C11.335 (3)C8—C91.358 (3)
N1—H1N0.97 (3)C8—H80.9500
N1—H1P0.93 (3)C9—C101.413 (3)
C1—C21.491 (3)C9—H90.9500
C2—C141.376 (3)C10—C111.436 (3)
C2—C31.401 (3)C11—C121.346 (3)
C3—H30.9500C11—H110.9500
C4—C131.414 (3)C12—C131.428 (3)
C4—C51.443 (3)C12—H120.9500
C5—C61.406 (3)C13—C141.404 (3)
C5—C101.411 (3)C14—H140.9500
C6—C71.364 (3)
C3—N2—C4118.11 (19)C6—C7—H7119.6
C1—N1—H1N124.6 (17)C8—C7—H7119.6
C1—N1—H1P117.5 (17)C9—C8—C7120.2 (2)
H1N—N1—H1P118 (2)C9—C8—H8119.9
O1—C1—N1122.2 (2)C7—C8—H8119.9
O1—C1—C2119.3 (2)C8—C9—C10120.5 (2)
N1—C1—C2118.55 (19)C8—C9—H9119.7
C14—C2—C3117.0 (2)C10—C9—H9119.7
C14—C2—C1119.62 (19)C5—C10—C9119.1 (2)
C3—C2—C1123.4 (2)C5—C10—C11119.4 (2)
N2—C3—C2125.0 (2)C9—C10—C11121.5 (2)
N2—C3—H3117.5C12—C11—C10121.5 (2)
C2—C3—H3117.5C12—C11—H11119.3
N2—C4—C13121.5 (2)C10—C11—H11119.3
N2—C4—C5118.57 (19)C11—C12—C13121.0 (2)
C13—C4—C5119.92 (19)C11—C12—H12119.5
C6—C5—C10119.0 (2)C13—C12—H12119.5
C6—C5—C4122.1 (2)C14—C13—C4118.1 (2)
C10—C5—C4118.95 (19)C14—C13—C12122.68 (19)
C7—C6—C5120.3 (2)C4—C13—C12119.3 (2)
C7—C6—H6119.9C2—C14—C13120.37 (19)
C5—C6—H6119.9C2—C14—H14119.8
C6—C7—C8120.9 (2)C13—C14—H14119.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N2i0.97 (3)2.17 (3)3.133 (3)173 (2)
N1—H1P···O1ii0.93 (3)1.96 (3)2.895 (3)175 (3)
C3—H3···N2i0.952.413.361 (3)174
C7—H7···O1iii0.952.453.140 (3)129
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y1, z+1; (iii) x, y+1/2, z1/2.
 

Acknowledgements

The authors acknowledge support for the Article Processing Charge from the DFG (German Research Foundation) and the Open Access Publication Fund of the University of Greifswald.

Funding information

Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. 393148499).

References

First citationAbdelsalam, E. A., Zaghary, W. A., Amin, K. M., Abou Taleb, N. A., Mekawey, A. A. I., Eldehna, W. M., Abdel-Aziz, H. A. & Hammad, S. F. (2019). Bioorg. Chem. 89, 102985.  Web of Science CrossRef PubMed Google Scholar
First citationAbouzid, K., Abdel Hakeem, M., Khalil, O. & Maklad, Y. (2008). Bioorg. Med. Chem. 16, 382–389.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl Shehry, M. F., Ghorab, M. M., Abbas, S. Y., Fayed, E. A., Shedid, S. A. & Ammar, Y. A. (2018). Eur. J. Med. Chem. 143, 1463–1473.  Web of Science CrossRef CAS PubMed Google Scholar
First citationErickson, H. E., Hainline, C. F., Lenon, L. S., Matson, C. J., Rice, T. K., Swingle, K. F. & Van Winkle, M. (1979). J. Med. Chem. 22, 816–823.  CrossRef PubMed CAS Web of Science Google Scholar
First citationFábián, L., Hamill, N., Eccles, K. S., Moynihan, H. A., Maguire, A. R., McCausland, L. & Lawrence, S. E. (2011). Cryst. Growth Des. 11, 3522–3528.  Google Scholar
First citationFerlin, M. G., Chiarelotto, G., Antonucci, F., Caparrotta, L. & Froldi, G. (2002). Eur. J. Med. Chem. 37, 427–434.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGrathwol, C. W., Wössner, N., Swyter, S., Smith, A. C., Tapavicza, E., Hofstetter, R. K., Bodtke, A., Jung, M. & Link, A. (2019). Beilstein J. Org. Chem. 15, 2170–2183.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHaiba, M. E., Al-Abdullah, E. S., Ahmed, N. S., Ghabbour, H. A. & Awad, H. M. (2019). J. Mol. Struct. 1195, 702–711.  Web of Science CSD CrossRef CAS Google Scholar
First citationHussaini, S. M. A. (2016). Expert Opin. Ther. Pat. 26, 1201–1221.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJafari, F., Baghayi, H., Lavaee, P., Hadizadeh, F., Soltani, F., Moallemzadeh, H., Mirzaei, S., Aboutorabzadeh, S. M. & Ghodsi, R. (2019). Eur. J. Med. Chem. 164, 292–303.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJarzembska, K. N., Hoser, A. A., Kamiński, R., Madsen, A., Durka, K. & Woźniak, K. (2014). Cryst. Growth Des. 14, 3453–3465.  Web of Science CSD CrossRef CAS Google Scholar
First citationKumar, S., Bawa, S. & Gupta, H. (2009). Mini Rev. Med. Chem. 9, 1648–1654.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, J., Bourne, S. A. & Caira, M. R. (2011). Chem. Commun. 47, 1530–1532.  Web of Science CSD CrossRef CAS Google Scholar
First citationLuo, C.-Z., Gandeepan, P., Wu, Y.-C., Chen, W.-C. & Cheng, C.-H. (2015). RSC Adv. 5, 106012–106018.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMartínez, R., Toscano, R. A., Linzaga, I. E. & Sánchez, H. (1992). J. Heterocycl. Chem. 29, 1385–1388.  Google Scholar
First citationMarzaro, G., Dalla Via, L., García-Argáez, A. N., Dalla Via, M. & Chilin, A. (2016). Bioorg. Med. Chem. Lett. 26, 4875–4878.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMiwa, Y., Mizuno, T., Tsuchida, K., Taga, T. & Iwata, Y. (1999). Acta Cryst. B55, 78–84.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMusiol, R. (2017). Exp. Opin. Drug Discov. 12, 583–597.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2010). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWright, W. B. & King, G. S. D. (1954). Acta Cryst. 7, 283–288.  CSD CrossRef IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds