research communications
Synthesis,
and Hirshfeld surface analysis of diethyl 2,6-dimethyl-4-(thiophen-3-yl)-1,4-dihydropyridine-3,5-dicarboxylateaFaculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, bBien Hoa Gifted High School, 86 Chu Van An Street, Phu Ly City, Ha Nam Province, Vietnam, cPhan Boi Chau Gifted High School, 119 Le Hong Phong Street, Vinh City, Nghe An Province, Vietnam, dFaculty of Foundation Science, College of Printing Industry, Phuc Dien, Bac Tu Liem, Hanoi, Vietnam, and eDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
*Correspondence e-mail: trungvq@hnue.edu.vn, luc.vanmeervelt@kuleuven.be
In the title compound, C17H21NO4S, the 1,4-dihydropyridine ring has an with the Csp3 atom at the flap. The thiophene ring is nearly perpendicular to the best plane through the 1,4-dihydropyridine ring, the dihedral angle being 82.19 (13)°. In the crystal, chains running along the b-axis direction are formed through N—H⋯O interactions between the 1,4-dihydropyridine N atom and one of the O atoms of the ester groups. Neighbouring chains are linked by C—H⋯O and C—H⋯π interactions. A Hirshfeld surface analysis shows that the most prominent contributuion to the surface contacts are H⋯H contacts (55.1%).
1. Chemical context
1,4-Dihydropyridine derivatives exhibit a large range of biological activities (Stout & Meyers, 1982; Wei et al., 1989; Bossert & Vater, 1989; Mauzerall & Westheimer, 1955). They have been used as anticonvulsant, antidepressive, antianxiety, analgesic, antitumoral, vasodilator and anti-inflammatory agents (Sausins & Duburs, 1988; Boecker & Guenguerich, 1986; Godfraind et al., 1986). Some of them, such as amlodipine, felodipine and isradipine are drugs effective as calcium-channel blockers for the treatment of cardiovascular diseases and hypertension (Bossert et al., 1981; Nakayama & Kanoaka, 1996; Gordeev et al., 1996). 1,4-Dihydropyridines are also good precursors of the corresponding substituted pyridine derivatives and constitute useful reducing agents for in the presence of a catalytic amount of (Xia & Wang, 2005; Heravi et al., 2005; Bagley & Lubinu, 2006).
As a continuation of our research on the chemical and physical properties of novel polythiophenes (Nguyen et al., 2016; Vu et al., 2016), some new thiophene monomers have been prepared (Vu et al., 2017, 2018, 2019; Nguyen et al., 2017). In this study, the synthesis and of diethyl 2,6-dimethyl-4-(thiophen-3-yl)-1,4-dihydropyridine-3,5-dicarboxylate are presented together with a Hirshfeld surface analysis and non-covalent interaction plots.
2. Structural commentary
The title compound crystallizes in the monoclinic P21/c with one molecule in the (Fig. 1). The 1,4-dihydropyridine ring (N6,C7–C11) has an with atom C9 at the flap [puckering parameters: Q = 0.300 (3) Å, θ = 73.9 (6)°, φ = 182.0 (5)°]. The best plane through the 1,4-dihydropyridine ring makes an angle of 82.19 (13)° with the plane through the thiophene ring (S1/C2–C5; r.m.s. deviation = 0.001 Å). Both methyl C atoms are closer to the best plane through the 1,4-dihydropyridine [deviations: C12 − 0.164 (3) Å, C23 − 0.162 (3) Å] than the C atoms of the two ester substituents [deviations: C13 − 0.363 (3) Å, C18 − 0.446 (2) Å]. All four of these C atoms are at the opposite sides with respect to the thiophene substituent which is in an axial position. Atoms O15, O19 and O20 are involved in intramolecular short contacts (Table 1). Both ester groups have a different conformation as illustrated by torsion angles C13—O15—C16—C17 [177.2 (3)°, +ap] and C18—O20—C21—C22 [85.3 (8)°, +sc].
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, the 1,4-dihydropyridine N6 atom acts as a hydrogen-bond donor to the O14 atom of one of the ester groups, resulting in chain formation along the b-axis direction (Fig. 2, Table 1). Parallel chains are linked by C—H⋯O hydrogen bonds between the thiophene H5 atom and the carbonyl O19 atom of the second ester group (Fig. 2, Table 1). In addition, inversion dimers are formed by C—H⋯π interactions (Fig. 3, Table 1). No voids are observed in the crystal packing of the title compound.
In order to gain further insight into the packing, the Hirshfeld surface and fingerprint plots were calculated using CrystalExplorer (Turner et al., 2017). The Hirshfeld surface (Spackman & Jayatilaka, 2009) mapped over dnorm in Fig. 4 shows bright-red spots near the atoms participating in the already discussed intermolecular interactions. In addition a faint-red spot is present near atoms H9 and H23A indicating a short H9⋯H23Aiv contact distance of 2.276 Å [symmetry code: (iv) x, y + 1, z]. The associated two-dimensional fingerprint plots (McKinnon et al., 2007) are shown in Fig. 5 and give additional information about the intermolecular contacts. H⋯H Van der Waals contacts dominate (55.1%) and appear in the middle of the scattered points in the fingerprint plot (Fig. 5b). The contribution (16.4%) from the O⋯H/H⋯O contacts shows a pair of sharp spikes corresponding to the N—H⋯O interactions (Fig. 5c). In addition, C⋯H/H⋯C and S⋯H/H⋯S contacts contribute 15.7 and 9.6%, respectively, to the Hirshfeld surface. A further small contribution is from N⋯H/H⋯N contacts (1.5%, Fig. 5f). The percentage contributions of the other contact types are negligible.
Enrichment ratios (Table 2) were calculated according to the method described by Jelsch et al. (2014). A ratio EXY greater than unity for a pair of elements X and Y indicates a high likelihood of forming X⋯Y contacts in the crystal packing. The favourable O⋯H and H⋯π contacts in the crystal packing are reflected in the enrichment ratios EOH of 1.24 and ECH of 1.23 for these contacts. The slight ESH enrichment (1.11) refers to the multiple S⋯H contacts between S1 and neighbouring methyl groups (S⋯H distances ranging from 3.01 to 3.50 Å). However, the high enrichment ratio ENH must be interpreted with caution as it results from the quotient of two small numbers (Jelsch et al., 2014).
|
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, update of May 2019; Groom et al., 2016) for diethyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate derivatives with a ring substituent at C4 results in 70 hits for which coordinates are available. Most similar to the title compound is the 4-(2-thienyl) derivative (refcode QIWWEY; Caignan et al., 2000; refcode QIWWEY01; Huang & Cui, 2016). In these compounds the thienyl group is disordered over two sets of sites with an occupancy ratio of 0.51:0.49. An overlay between the title compound and QIWWEY excluding the thiophene ring gives an r.m.s. deviation of 0.318 Å. In QIWWEY, the 1,4-dihydropyridine and thiophene rings make an angle of 83.19 (17)°. Fig. 6 shows the four possible orientations of the two C=O substituents on the 1,4-dihydropyridine ring. Most popular are the s-trans/s-cis (35%), the s-cis/s-cis (31%) and the s-cis/s-trans conformation (29%). The s-trans/s-trans conformation occurs only for 5% of the derivatives. In the title compound, both C=O substituents are present in an s-trans/s-cis conformation.
5. Synthesis and crystallization
The reaction scheme for the synthesis of the title compound is given in Fig. 7.
Synthesis of diethyl 2,6-dimethyl-4-(thiophen-3-yl)-1,4-dihydropyridine-3,5-dicarboxylate:
A mixture of thiophene-3-carbaldehyde (3 mmol), ethyl acetoacetate (6 mmol) and NH4OAc (3 mmol) in ethanol (10 mL) was exposed to microwave radiation for 3 min. at a power of 450W. The reaction mixture was cooled down and the solid product was separated by filtration and purified by recrystallization in ethanol to give the compound as yellowish transparent crystals (yield 82%), m.p. 423 K. IR (KBr, cm−1): 3346, 3244 (NH), 3099, 2979 (C–H), 1699 (C=O), 1490 (C=C). 1H NMR [Bruker XL-500, 500 MHz, d6-CDCl3, δ (ppm), J (Hz), see Fig. 7 for numbering scheme]: 7.12 (m, 1H, J = 4.5, H4), 6.99 (m, 1H, J = 4.5, H5), 6.91 (d, 1H,, J = 2.5, H2), 5.93 (s, 1H, H9), 5.14 (s, 1H, H6), 4.13 (m, 4H, J = 7.5Hz, H13,13′), 2.30 (s, 6H, H10,10′), 1.25 (m, 6H, J = 7.25 H14,14′). 13C NMR [Bruker XL-500, 125 MHz, d6-CDCl3, (ppm)]: 19.4 (C10,10′), 14.3 (C14,14′), 34.6 (C6), 59.7 (C13,13′), 103.4 (C7,7′), 120.3 (C2), 124.6 (C4), 127.6 (C5), 144.4 (C3), 147.9 (C8,C8′), 167.7 (C11,11′). Calculated for C17H21NO4S: M[+H] = 335.4 au.
6. Refinement
Crystal data, data collection and structure . H atom H6 was found in a difference electron-density map and refined freely. The other H atoms were placed in idealized positions and included as riding contributions with Uiso(H) values of 1.2Ueq or 1.5Ueq of the parent atoms, with C—H distances of 0.93 (aromatic), 0.98 (CH), 0.97 (CH2) and 0.96 Å (CH3). In the final cycles of four outlying reflections were omitted.
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989019015081/sj5585sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019015081/sj5585Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019015081/sj5585Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C17H21NO4S | F(000) = 712 |
Mr = 335.41 | Dx = 1.317 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 15.6801 (8) Å | Cell parameters from 8195 reflections |
b = 7.4311 (3) Å | θ = 3.1–27.9° |
c = 15.5968 (8) Å | µ = 0.21 mm−1 |
β = 111.424 (6)° | T = 293 K |
V = 1691.77 (16) Å3 | Block, colourless |
Z = 4 | 0.5 × 0.2 × 0.05 mm |
Rigaku Oxford Diffraction SuperNova, single source at offset/far, Eos diffractometer | 3446 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source | 2805 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.027 |
Detector resolution: 15.9631 pixels mm-1 | θmax = 26.4°, θmin = 2.6° |
ω scans | h = −19→19 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2018) | k = −9→9 |
Tmin = 0.555, Tmax = 1.000 | l = −19→19 |
19775 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.061 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.187 | w = 1/[σ2(Fo2) + (0.0981P)2 + 1.416P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
3446 reflections | Δρmax = 0.53 e Å−3 |
216 parameters | Δρmin = −0.46 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.23846 (6) | 0.68160 (12) | 0.53767 (5) | 0.0587 (3) | |
C2 | 0.28608 (18) | 0.6398 (4) | 0.45764 (17) | 0.0407 (6) | |
H2 | 0.340156 | 0.575481 | 0.470126 | 0.049* | |
C3 | 0.23681 (15) | 0.7104 (3) | 0.37324 (15) | 0.0293 (5) | |
C4 | 0.15812 (17) | 0.8010 (4) | 0.37597 (18) | 0.0405 (6) | |
H4 | 0.115977 | 0.858331 | 0.325101 | 0.049* | |
C5 | 0.14966 (17) | 0.7959 (4) | 0.46445 (18) | 0.0393 (6) | |
H5 | 0.102525 | 0.847582 | 0.478796 | 0.047* | |
N6 | 0.32530 (15) | 0.3391 (3) | 0.28906 (16) | 0.0406 (5) | |
H6 | 0.346 (2) | 0.236 (5) | 0.297 (2) | 0.053 (9)* | |
C7 | 0.39001 (16) | 0.4737 (3) | 0.31863 (17) | 0.0351 (5) | |
C8 | 0.36158 (15) | 0.6465 (3) | 0.31363 (16) | 0.0302 (5) | |
C9 | 0.26034 (14) | 0.6872 (3) | 0.28729 (15) | 0.0273 (5) | |
H9 | 0.246735 | 0.800269 | 0.252562 | 0.033* | |
C10 | 0.20195 (15) | 0.5392 (3) | 0.22653 (15) | 0.0303 (5) | |
C11 | 0.23455 (16) | 0.3689 (3) | 0.23509 (17) | 0.0359 (5) | |
C12 | 0.48666 (18) | 0.4023 (4) | 0.3531 (2) | 0.0533 (8) | |
H12A | 0.509780 | 0.397134 | 0.419186 | 0.080* | |
H12B | 0.524659 | 0.480463 | 0.333367 | 0.080* | |
H12C | 0.487105 | 0.283768 | 0.328792 | 0.080* | |
C13 | 0.42150 (16) | 0.8049 (3) | 0.33895 (17) | 0.0348 (5) | |
O14 | 0.39447 (13) | 0.9578 (2) | 0.32155 (16) | 0.0545 (6) | |
O15 | 0.50981 (12) | 0.7683 (2) | 0.38631 (16) | 0.0516 (5) | |
C16 | 0.57344 (18) | 0.9188 (4) | 0.4152 (2) | 0.0532 (7) | |
H16A | 0.553963 | 1.002135 | 0.452336 | 0.064* | |
H16B | 0.575719 | 0.982674 | 0.361883 | 0.064* | |
C17 | 0.6646 (2) | 0.8441 (5) | 0.4697 (3) | 0.0831 (13) | |
H17A | 0.683923 | 0.764533 | 0.431803 | 0.125* | |
H17B | 0.661164 | 0.778721 | 0.521443 | 0.125* | |
H17C | 0.707965 | 0.940521 | 0.491285 | 0.125* | |
C18 | 0.10811 (16) | 0.5808 (4) | 0.16274 (16) | 0.0363 (5) | |
O19 | 0.05131 (14) | 0.4733 (3) | 0.11903 (16) | 0.0646 (7) | |
O20 | 0.09182 (12) | 0.7592 (2) | 0.15614 (12) | 0.0410 (4) | |
C21 | 0.00100 (19) | 0.8172 (5) | 0.0952 (2) | 0.0525 (7) | |
H21A | −0.020354 | 0.738253 | 0.042024 | 0.063* | |
H21B | 0.005081 | 0.938003 | 0.073416 | 0.063* | |
C22 | −0.0661 (3) | 0.8156 (6) | 0.1416 (3) | 0.0767 (11) | |
H22A | −0.124239 | 0.858116 | 0.099750 | 0.115* | |
H22B | −0.044950 | 0.892617 | 0.194641 | 0.115* | |
H22C | −0.072715 | 0.695134 | 0.160476 | 0.115* | |
C23 | 0.1849 (2) | 0.2020 (4) | 0.1900 (2) | 0.0542 (8) | |
H23A | 0.218986 | 0.098199 | 0.220459 | 0.081* | |
H23B | 0.178354 | 0.200892 | 0.126401 | 0.081* | |
H23C | 0.125325 | 0.199968 | 0.194332 | 0.081* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0677 (5) | 0.0662 (6) | 0.0442 (4) | 0.0079 (4) | 0.0228 (4) | 0.0059 (3) |
C2 | 0.0385 (13) | 0.0430 (14) | 0.0386 (13) | 0.0084 (11) | 0.0117 (10) | 0.0040 (11) |
C3 | 0.0288 (10) | 0.0250 (11) | 0.0327 (11) | −0.0019 (8) | 0.0094 (9) | −0.0028 (8) |
C4 | 0.0339 (12) | 0.0462 (14) | 0.0391 (13) | 0.0080 (11) | 0.0104 (10) | −0.0014 (11) |
C5 | 0.0313 (12) | 0.0424 (14) | 0.0466 (14) | 0.0033 (10) | 0.0169 (11) | −0.0069 (11) |
N6 | 0.0372 (11) | 0.0225 (10) | 0.0547 (13) | 0.0035 (8) | 0.0082 (10) | 0.0007 (9) |
C7 | 0.0298 (11) | 0.0306 (12) | 0.0422 (13) | 0.0026 (9) | 0.0101 (10) | 0.0014 (10) |
C8 | 0.0266 (11) | 0.0267 (11) | 0.0362 (11) | 0.0012 (8) | 0.0100 (9) | 0.0014 (9) |
C9 | 0.0269 (10) | 0.0209 (10) | 0.0333 (11) | 0.0021 (8) | 0.0098 (9) | 0.0024 (8) |
C10 | 0.0289 (11) | 0.0289 (11) | 0.0314 (11) | −0.0019 (9) | 0.0091 (9) | 0.0004 (9) |
C11 | 0.0350 (12) | 0.0312 (12) | 0.0399 (12) | −0.0025 (10) | 0.0116 (10) | −0.0027 (10) |
C12 | 0.0359 (14) | 0.0342 (14) | 0.080 (2) | 0.0093 (11) | 0.0095 (13) | −0.0009 (14) |
C13 | 0.0295 (11) | 0.0292 (12) | 0.0465 (13) | 0.0007 (9) | 0.0146 (10) | 0.0007 (10) |
O14 | 0.0375 (10) | 0.0254 (9) | 0.0918 (15) | 0.0001 (7) | 0.0134 (10) | 0.0048 (9) |
O15 | 0.0300 (9) | 0.0301 (9) | 0.0830 (15) | −0.0027 (7) | 0.0068 (9) | 0.0011 (9) |
C16 | 0.0378 (14) | 0.0339 (14) | 0.081 (2) | −0.0091 (11) | 0.0137 (13) | 0.0000 (14) |
C17 | 0.0435 (17) | 0.056 (2) | 0.124 (3) | −0.0095 (15) | 0.0001 (19) | 0.009 (2) |
C18 | 0.0321 (11) | 0.0432 (14) | 0.0312 (11) | 0.0001 (10) | 0.0084 (9) | −0.0009 (10) |
O19 | 0.0429 (11) | 0.0552 (13) | 0.0715 (14) | −0.0041 (10) | −0.0079 (10) | −0.0129 (11) |
O20 | 0.0338 (9) | 0.0420 (10) | 0.0395 (9) | 0.0080 (7) | 0.0043 (7) | 0.0042 (7) |
C21 | 0.0391 (14) | 0.0634 (19) | 0.0449 (15) | 0.0146 (13) | 0.0035 (12) | 0.0102 (13) |
C22 | 0.055 (2) | 0.091 (3) | 0.084 (3) | 0.0277 (19) | 0.0258 (18) | 0.005 (2) |
C23 | 0.0489 (16) | 0.0326 (14) | 0.073 (2) | −0.0062 (12) | 0.0128 (14) | −0.0139 (13) |
S1—C2 | 1.701 (3) | C12—H12C | 0.9600 |
S1—C5 | 1.674 (3) | C13—O14 | 1.208 (3) |
C2—H2 | 0.9300 | C13—O15 | 1.338 (3) |
C2—C3 | 1.364 (3) | O15—C16 | 1.456 (3) |
C3—C4 | 1.420 (3) | C16—H16A | 0.9700 |
C3—C9 | 1.525 (3) | C16—H16B | 0.9700 |
C4—H4 | 0.9300 | C16—C17 | 1.479 (4) |
C4—C5 | 1.434 (4) | C17—H17A | 0.9600 |
C5—H5 | 0.9300 | C17—H17B | 0.9600 |
N6—H6 | 0.82 (4) | C17—H17C | 0.9600 |
N6—C7 | 1.379 (3) | C18—O19 | 1.205 (3) |
N6—C11 | 1.381 (3) | C18—O20 | 1.347 (3) |
C7—C8 | 1.352 (3) | O20—C21 | 1.459 (3) |
C7—C12 | 1.507 (3) | C21—H21A | 0.9700 |
C8—C9 | 1.518 (3) | C21—H21B | 0.9700 |
C8—C13 | 1.468 (3) | C21—C22 | 1.479 (5) |
C9—H9 | 0.9800 | C22—H22A | 0.9600 |
C9—C10 | 1.521 (3) | C22—H22B | 0.9600 |
C10—C11 | 1.353 (3) | C22—H22C | 0.9600 |
C10—C18 | 1.477 (3) | C23—H23A | 0.9600 |
C11—C23 | 1.496 (3) | C23—H23B | 0.9600 |
C12—H12A | 0.9600 | C23—H23C | 0.9600 |
C12—H12B | 0.9600 | ||
C5—S1—C2 | 94.05 (12) | H12B—C12—H12C | 109.5 |
S1—C2—H2 | 123.5 | O14—C13—C8 | 123.8 (2) |
C3—C2—S1 | 113.10 (19) | O14—C13—O15 | 121.5 (2) |
C3—C2—H2 | 123.5 | O15—C13—C8 | 114.7 (2) |
C2—C3—C4 | 110.2 (2) | C13—O15—C16 | 118.0 (2) |
C2—C3—C9 | 124.8 (2) | O15—C16—H16A | 110.2 |
C4—C3—C9 | 124.9 (2) | O15—C16—H16B | 110.2 |
C3—C4—H4 | 123.1 | O15—C16—C17 | 107.4 (2) |
C3—C4—C5 | 113.8 (2) | H16A—C16—H16B | 108.5 |
C5—C4—H4 | 123.1 | C17—C16—H16A | 110.2 |
S1—C5—H5 | 125.6 | C17—C16—H16B | 110.2 |
C4—C5—S1 | 108.88 (18) | C16—C17—H17A | 109.5 |
C4—C5—H5 | 125.6 | C16—C17—H17B | 109.5 |
C7—N6—H6 | 115 (2) | C16—C17—H17C | 109.5 |
C7—N6—C11 | 123.8 (2) | H17A—C17—H17B | 109.5 |
C11—N6—H6 | 120 (2) | H17A—C17—H17C | 109.5 |
N6—C7—C12 | 112.6 (2) | H17B—C17—H17C | 109.5 |
C8—C7—N6 | 118.9 (2) | O19—C18—C10 | 126.2 (2) |
C8—C7—C12 | 128.5 (2) | O19—C18—O20 | 121.9 (2) |
C7—C8—C9 | 119.7 (2) | O20—C18—C10 | 111.8 (2) |
C7—C8—C13 | 125.5 (2) | C18—O20—C21 | 117.0 (2) |
C13—C8—C9 | 114.60 (19) | O20—C21—H21A | 109.2 |
C3—C9—H9 | 108.4 | O20—C21—H21B | 109.2 |
C8—C9—C3 | 110.47 (18) | O20—C21—C22 | 112.2 (3) |
C8—C9—H9 | 108.4 | H21A—C21—H21B | 107.9 |
C8—C9—C10 | 110.90 (18) | C22—C21—H21A | 109.2 |
C10—C9—C3 | 110.21 (18) | C22—C21—H21B | 109.2 |
C10—C9—H9 | 108.4 | C21—C22—H22A | 109.5 |
C11—C10—C9 | 119.68 (19) | C21—C22—H22B | 109.5 |
C11—C10—C18 | 120.6 (2) | C21—C22—H22C | 109.5 |
C18—C10—C9 | 119.6 (2) | H22A—C22—H22B | 109.5 |
N6—C11—C23 | 113.4 (2) | H22A—C22—H22C | 109.5 |
C10—C11—N6 | 118.6 (2) | H22B—C22—H22C | 109.5 |
C10—C11—C23 | 128.0 (2) | C11—C23—H23A | 109.5 |
C7—C12—H12A | 109.5 | C11—C23—H23B | 109.5 |
C7—C12—H12B | 109.5 | C11—C23—H23C | 109.5 |
C7—C12—H12C | 109.5 | H23A—C23—H23B | 109.5 |
H12A—C12—H12B | 109.5 | H23A—C23—H23C | 109.5 |
H12A—C12—H12C | 109.5 | H23B—C23—H23C | 109.5 |
S1—C2—C3—C4 | 0.1 (3) | C9—C3—C4—C5 | 177.0 (2) |
S1—C2—C3—C9 | −177.09 (17) | C9—C8—C13—O14 | −16.0 (4) |
C2—S1—C5—C4 | −0.1 (2) | C9—C8—C13—O15 | 161.9 (2) |
C2—C3—C4—C5 | −0.2 (3) | C9—C10—C11—N6 | −9.6 (4) |
C2—C3—C9—C8 | −23.5 (3) | C9—C10—C11—C23 | 172.7 (3) |
C2—C3—C9—C10 | 99.4 (3) | C9—C10—C18—O19 | −170.8 (3) |
C3—C4—C5—S1 | 0.2 (3) | C9—C10—C18—O20 | 10.6 (3) |
C3—C9—C10—C11 | −93.6 (3) | C10—C18—O20—C21 | −179.8 (2) |
C3—C9—C10—C18 | 82.7 (2) | C11—N6—C7—C8 | 15.7 (4) |
C4—C3—C9—C8 | 159.7 (2) | C11—N6—C7—C12 | −164.1 (3) |
C4—C3—C9—C10 | −77.4 (3) | C11—C10—C18—O19 | 5.5 (4) |
C5—S1—C2—C3 | 0.0 (2) | C11—C10—C18—O20 | −173.1 (2) |
N6—C7—C8—C9 | 7.6 (4) | C12—C7—C8—C9 | −172.6 (3) |
N6—C7—C8—C13 | −177.6 (2) | C12—C7—C8—C13 | 2.2 (4) |
C7—N6—C11—C10 | −14.7 (4) | C13—C8—C9—C3 | −80.8 (2) |
C7—N6—C11—C23 | 163.4 (3) | C13—C8—C9—C10 | 156.7 (2) |
C7—C8—C9—C3 | 94.5 (3) | C13—O15—C16—C17 | 177.2 (3) |
C7—C8—C9—C10 | −28.0 (3) | O14—C13—O15—C16 | −1.1 (4) |
C7—C8—C13—O14 | 169.0 (3) | C18—C10—C11—N6 | 174.1 (2) |
C7—C8—C13—O15 | −13.1 (4) | C18—C10—C11—C23 | −3.6 (4) |
C8—C9—C10—C11 | 29.0 (3) | C18—O20—C21—C22 | 85.3 (3) |
C8—C9—C10—C18 | −154.6 (2) | O19—C18—O20—C21 | 1.5 (4) |
C8—C13—O15—C16 | −179.1 (2) |
Cg1 is the centroid of the thiophene S1/C2–C5 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N6—H6···O14i | 0.82 (4) | 2.19 (4) | 3.010 (3) | 176 (3) |
C5—H5···O19ii | 0.93 | 2.52 | 3.220 (4) | 133 |
C9—H9···O20 | 0.98 | 2.36 | 2.739 (3) | 102 |
C12—H12B···O15 | 0.96 | 2.33 | 2.768 (3) | 107 |
C23—H23C···O19 | 0.96 | 2.42 | 2.826 (4) | 105 |
C17—H17C···Cg1iii | 0.96 | 2.79 | 3.720 (4) | 162 |
Symmetry codes: (i) x, y−1, z; (ii) −x, y+1/2, −z+1/2; (iii) −x+1, −y+2, −z+1. |
Parameter | Ratio |
H···H | 0.94 |
C···H | 1.23 |
O···H | 1.24 |
N···H | 1.30 |
S···H | 1.11 |
S···C | 0.96 |
S···O | 0.82 |
Funding information
This research was funded by the Vietnam Ministry of Education and Training under grant No. B2019-SPH.562–05. LVM thanks the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/0035.
References
Bagley, M. C. & Lubinu, M. C. (2006). Synthesis, pp. 1283–1288. Web of Science CrossRef Google Scholar
Boecker, R. H. & Guengerich, F. P. (1986). J. Med. Chem. 29, 1596–1603. CrossRef CAS PubMed Google Scholar
Bossert, F., Meyer, H. & Wehinger, H. (1981). Angew. Chem. Int. Ed. Engl. 20, 762–769. CrossRef Web of Science Google Scholar
Bossert, F. & Vater, W. (1989). Med. Res. Rev. 9, 291–324. CrossRef CAS PubMed Web of Science Google Scholar
Caignan, G. A., Metcalf, S. K. & Holt, E. M. (2000). J. Chem. Cryst. 30, 415–422. Web of Science CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Godfraind, T., Miller, R. & Wibo, M. (1986). Pharmacol. Rev. 38, 321–416. CAS PubMed Web of Science Google Scholar
Gordeev, M. F., Patel, D. V. & Gordon, E. M. (1996). J. Org. Chem. 61, 924–928. CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Heravi, M. M., Behbahani, F. K., Oskooie, H. A. & Shoar, R. H. (2005). Tetrahedron Lett. 46, 2775–2777. Web of Science CrossRef CAS Google Scholar
Huang, X. & Cui, C. (2016). Private Communication (refcode QIWWEY). CCDC, Cambridge, England. Google Scholar
Jelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119–128. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Mauzerall, D. & Westheimer, F. H. (1955). J. Am. Chem. Soc. 77, 2261–2264. CrossRef CAS Web of Science Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814. Google Scholar
Nakayama, H. & Kanaoka, Y. (1996). Heterocycles, 42, 901–909. CrossRef CAS Web of Science Google Scholar
Nguyen, N. L., Tran, T. D., Nguyen, T. C., Duong, K. L., Pfleger, J. & Vu, Q. T. (2016). Vietnam. J. Chem. 54, 259–263. Google Scholar
Nguyen Ngoc, L., Vu Quoc, T., Duong Quoc, H., Vu Quoc, M., Truong Minh, L., Thang Pham, C. & Van Meervelt, L. (2017). Acta Cryst. E73, 1647–1651. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sausins, A. & Duburs, G. (1988). Heterocycles, 27, 269–272. CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Stout, D. M. & Meyers, A. I. (1982). Chem. Rev. 82, 223–243. CrossRef CAS Web of Science Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net Google Scholar
Vu, Q. T., Nguyen, N. L., Duong, K. L. & Pfleger, J. (2016). Vietnam. J. Chem. 54, 730–735. Google Scholar
Vu Quoc, T., Nguyen Ngoc, L., Do Ba, D., Pham Chien, T., Nguyen Huy, H. & Van Meervelt, L. (2018). Acta Cryst. E74, 812–815. Web of Science CSD CrossRef IUCr Journals Google Scholar
Vu Quoc, T., Nguyen Ngoc, L., Nguyen Tien, C., Thang Pham, C. & Van Meervelt, L. (2017). Acta Cryst. E73, 901–904. Web of Science CSD CrossRef IUCr Journals Google Scholar
Vu Quoc, T., Tran Thi Thuy, D., Dang Thanh, T., Phung Ngoc, T., Nguyen Thien, V., Nguyen Thuy, C. & Van Meervelt, L. (2019). Acta Cryst. E75, 957–963. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wei, X. Y., Rutledge, A. & Triggle, D. J. (1989). Mol. Pharmacol. 35, 541–552. CAS PubMed Web of Science Google Scholar
Xia, J. J. & Wang, G. W. (2005). Synthesis, pp. 2379–2383. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.