research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of di­ethyl 2,6-di­methyl-4-(thio­phen-3-yl)-1,4-di­hydro­pyridine-3,5-di­carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aFaculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, bBien Hoa Gifted High School, 86 Chu Van An Street, Phu Ly City, Ha Nam Province, Vietnam, cPhan Boi Chau Gifted High School, 119 Le Hong Phong Street, Vinh City, Nghe An Province, Vietnam, dFaculty of Foundation Science, College of Printing Industry, Phuc Dien, Bac Tu Liem, Hanoi, Vietnam, and eDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
*Correspondence e-mail: trungvq@hnue.edu.vn, luc.vanmeervelt@kuleuven.be

Edited by J. Simpson, University of Otago, New Zealand (Received 6 November 2019; accepted 8 November 2019; online 15 November 2019)

In the title compound, C17H21NO4S, the 1,4-di­hydro­pyridine ring has an envelope conformation with the Csp3 atom at the flap. The thio­phene ring is nearly perpendicular to the best plane through the 1,4-di­hydro­pyridine ring, the dihedral angle being 82.19 (13)°. In the crystal, chains running along the b-axis direction are formed through N—H⋯O inter­actions between the 1,4-di­hydro­pyridine N atom and one of the O atoms of the ester groups. Neighbouring chains are linked by C—H⋯O and C—H⋯π inter­actions. A Hirshfeld surface analysis shows that the most prominent contributuion to the surface contacts are H⋯H contacts (55.1%).

1. Chemical context

1,4-Di­hydro­pyridine derivatives exhibit a large range of biological activities (Stout & Meyers, 1982[Stout, D. M. & Meyers, A. I. (1982). Chem. Rev. 82, 223-243.]; Wei et al., 1989[Wei, X. Y., Rutledge, A. & Triggle, D. J. (1989). Mol. Pharmacol. 35, 541-552.]; Bossert & Vater, 1989[Bossert, F. & Vater, W. (1989). Med. Res. Rev. 9, 291-324.]; Mauzerall & Westheimer, 1955[Mauzerall, D. & Westheimer, F. H. (1955). J. Am. Chem. Soc. 77, 2261-2264.]). They have been used as anti­convulsant, anti­depressive, anti­anxiety, analgesic, anti­tumoral, vasodilator and anti-inflammatory agents (Sausins & Duburs, 1988[Sausins, A. & Duburs, G. (1988). Heterocycles, 27, 269-272.]; Boecker & Guenguerich, 1986[Boecker, R. H. & Guengerich, F. P. (1986). J. Med. Chem. 29, 1596-1603.]; Godfraind et al., 1986[Godfraind, T., Miller, R. & Wibo, M. (1986). Pharmacol. Rev. 38, 321-416.]). Some of them, such as amlodipine, felodipine and isradipine are drugs effective as calcium-channel blockers for the treatment of cardiovascular diseases and hypertension (Bossert et al., 1981[Bossert, F., Meyer, H. & Wehinger, H. (1981). Angew. Chem. Int. Ed. Engl. 20, 762-769.]; Nakayama & Kanoaka, 1996[Nakayama, H. & Kanaoka, Y. (1996). Heterocycles, 42, 901-909.]; Gordeev et al., 1996[Gordeev, M. F., Patel, D. V. & Gordon, E. M. (1996). J. Org. Chem. 61, 924-928.]). 1,4-Di­hydro­pyridines are also good precursors of the corresponding substituted pyridine derivatives and constitute useful reducing agents for imines in the presence of a catalytic amount of Lewis acid (Xia & Wang, 2005[Xia, J. J. & Wang, G. W. (2005). Synthesis, pp. 2379-2383.]; Heravi et al., 2005[Heravi, M. M., Behbahani, F. K., Oskooie, H. A. & Shoar, R. H. (2005). Tetrahedron Lett. 46, 2775-2777.]; Bagley & Lubinu, 2006[Bagley, M. C. & Lubinu, M. C. (2006). Synthesis, pp. 1283-1288.]).

[Scheme 1]

As a continuation of our research on the chemical and physical properties of novel polythio­phenes (Nguyen et al., 2016[Nguyen, N. L., Tran, T. D., Nguyen, T. C., Duong, K. L., Pfleger, J. & Vu, Q. T. (2016). Vietnam. J. Chem. 54, 259-263.]; Vu et al., 2016[Vu, Q. T., Nguyen, N. L., Duong, K. L. & Pfleger, J. (2016). Vietnam. J. Chem. 54, 730-735.]), some new thio­phene monomers have been prepared (Vu et al., 2017[Vu Quoc, T., Nguyen Ngoc, L., Nguyen Tien, C., Thang Pham, C. & Van Meervelt, L. (2017). Acta Cryst. E73, 901-904.], 2018[Vu Quoc, T., Nguyen Ngoc, L., Do Ba, D., Pham Chien, T., Nguyen Huy, H. & Van Meervelt, L. (2018). Acta Cryst. E74, 812-815.], 2019[Vu Quoc, T., Tran Thi Thuy, D., Dang Thanh, T., Phung Ngoc, T., Nguyen Thien, V., Nguyen Thuy, C. & Van Meervelt, L. (2019). Acta Cryst. E75, 957-963.]; Nguyen et al., 2017[Nguyen Ngoc, L., Vu Quoc, T., Duong Quoc, H., Vu Quoc, M., Truong Minh, L., Thang Pham, C. & Van Meervelt, L. (2017). Acta Cryst. E73, 1647-1651.]). In this study, the synthesis and crystal structure of diethyl 2,6-dimethyl-4-(thio­phen-3-yl)-1,4-di­hydro­pyridine-3,5-di­carb­ox­y­l­ate are presented together with a Hirshfeld surface analysis and non-covalent inter­action plots.

2. Structural commentary

The title compound crystallizes in the monoclinic space group P21/c with one mol­ecule in the asymmetric unit (Fig. 1[link]). The 1,4-di­hydro­pyridine ring (N6,C7–C11) has an envelope conformation with atom C9 at the flap [puckering parameters: Q = 0.300 (3) Å, θ = 73.9 (6)°, φ = 182.0 (5)°]. The best plane through the 1,4-di­hydro­pyridine ring makes an angle of 82.19 (13)° with the plane through the thio­phene ring (S1/C2–C5; r.m.s. deviation = 0.001 Å). Both methyl C atoms are closer to the best plane through the 1,4-di­hydro­pyridine [deviations: C12 − 0.164 (3) Å, C23 − 0.162 (3) Å] than the C atoms of the two ester substituents [deviations: C13 − 0.363 (3) Å, C18 − 0.446 (2) Å]. All four of these C atoms are at the opposite sides with respect to the thio­phene substituent which is in an axial position. Atoms O15, O19 and O20 are involved in intra­molecular short contacts (Table 1[link]). Both ester groups have a different conformation as illustrated by torsion angles C13—O15—C16—C17 [177.2 (3)°, +ap] and C18—O20—C21—C22 [85.3 (8)°, +sc].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the thio­phene S1/C2–C5 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6⋯O14i 0.82 (4) 2.19 (4) 3.010 (3) 176 (3)
C5—H5⋯O19ii 0.93 2.52 3.220 (4) 133
C9—H9⋯O20 0.98 2.36 2.739 (3) 102
C12—H12B⋯O15 0.96 2.33 2.768 (3) 107
C23—H23C⋯O19 0.96 2.42 2.826 (4) 105
C17—H17CCg1iii 0.96 2.79 3.720 (4) 162
Symmetry codes: (i) x, y-1, z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+2, -z+1.
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, with atom labels and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small circles of arbitrary radii.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, the 1,4-di­hydro­pyridine N6 atom acts as a hydrogen-bond donor to the O14 atom of one of the ester groups, resulting in chain formation along the b-axis direction (Fig. 2[link], Table 1[link]). Parallel chains are linked by C—H⋯O hydrogen bonds between the thio­phene H5 atom and the carbonyl O19 atom of the second ester group (Fig. 2[link], Table 1[link]). In addition, inversion dimers are formed by C—H⋯π inter­actions (Fig. 3[link], Table 1[link]). No voids are observed in the crystal packing of the title compound.

[Figure 2]
Figure 2
Partial crystal packing of the title compound, showing the chain formation along the b axis by N—H⋯O inter­actions (blue dashed lines). Parallel chains are linked by C—H⋯O inter­actions (red dashed lines; see Table 1[link] for symmetry codes).
[Figure 3]
Figure 3
Partial crystal packing of the title compound, showing the inversion dimer formation through C—H⋯π inter­actions (grey dashed lines; Cg1 is the centroid of the S1/C2–C5 ring; see Table 1[link] for symmetry code).

In order to gain further insight into the packing, the Hirshfeld surface and fingerprint plots were calculated using CrystalExplorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]). The Hirshfeld surface (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) mapped over dnorm in Fig. 4[link] shows bright-red spots near the atoms participating in the already discussed inter­molecular inter­actions. In addition a faint-red spot is present near atoms H9 and H23A indicating a short H9⋯H23Aiv contact distance of 2.276 Å [symmetry code: (iv) x, y + 1, z]. The associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814.]) are shown in Fig. 5[link] and give additional information about the inter­molecular contacts. H⋯H Van der Waals contacts dominate (55.1%) and appear in the middle of the scattered points in the fingerprint plot (Fig. 5[link]b). The contribution (16.4%) from the O⋯H/H⋯O contacts shows a pair of sharp spikes corresponding to the N—H⋯O inter­actions (Fig. 5[link]c). In addition, C⋯H/H⋯C and S⋯H/H⋯S contacts contribute 15.7 and 9.6%, respectively, to the Hirshfeld surface. A further small contribution is from N⋯H/H⋯N contacts (1.5%, Fig. 5[link]f). The percentage contributions of the other contact types are negligible.

[Figure 4]
Figure 4
Two views of the Hirshfeld surface mapped over dnorm for the title compound in the range −0.4662 to +1.2830 arbitrary units.
[Figure 5]
Figure 5
Full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C, (e) S⋯H/H⋯S, (f) N⋯H/H⋯N inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from a given point on the Hirshfeld surface.

Enrichment ratios (Table 2[link]) were calculated according to the method described by Jelsch et al. (2014[Jelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119-128.]). A ratio EXY greater than unity for a pair of elements X and Y indicates a high likelihood of forming XY contacts in the crystal packing. The favourable O⋯H and H⋯π contacts in the crystal packing are reflected in the enrichment ratios EOH of 1.24 and ECH of 1.23 for these contacts. The slight ESH enrichment (1.11) refers to the multiple S⋯H contacts between S1 and neighbouring methyl groups (S⋯H distances ranging from 3.01 to 3.50 Å). However, the high enrichment ratio ENH must be inter­preted with caution as it results from the quotient of two small numbers (Jelsch et al., 2014[Jelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119-128.]).

Table 2
Enrichment ratios for the title compound

Parameter Ratio
H⋯H 0.94
C⋯H 1.23
O⋯H 1.24
N⋯H 1.30
S⋯H 1.11
S⋯C 0.96
S⋯O 0.82

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, update of May 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for diethyl 2,6-dimethyl-1,4-di­hydro­pyridine-3,5-di­carboxyl­ate derivatives with a ring substituent at C4 results in 70 hits for which coordinates are available. Most similar to the title compound is the 4-(2-thien­yl) derivative (refcode QIWWEY; Caignan et al., 2000[Caignan, G. A., Metcalf, S. K. & Holt, E. M. (2000). J. Chem. Cryst. 30, 415-422.]; refcode QIWWEY01; Huang & Cui, 2016[Huang, X. & Cui, C. (2016). Private Communication (refcode QIWWEY). CCDC, Cambridge, England.]). In these compounds the thienyl group is disordered over two sets of sites with an occupancy ratio of 0.51:0.49. An overlay between the title compound and QIWWEY excluding the thio­phene ring gives an r.m.s. deviation of 0.318 Å. In QIWWEY, the 1,4-di­hydro­pyridine and thio­phene rings make an angle of 83.19 (17)°. Fig. 6[link] shows the four possible orientations of the two C=O substituents on the 1,4-di­hydro­pyridine ring. Most popular are the s-trans/s-cis (35%), the s-cis/s-cis (31%) and the s-cis/s-trans conformation (29%). The s-trans/s-trans conformation occurs only for 5% of the deriv­atives. In the title compound, both C=O substituents are present in an s-trans/s-cis conformation.

[Figure 6]
Figure 6
Four possible orientations of the C=O groups for diethyl 2,6-dimethyl-1,4-di­hydro­pyridine-3,5-di­carboxyl­ate derivatives with a ring substituent (R) at C4.

5. Synthesis and crystallization

The reaction scheme for the synthesis of the title compound is given in Fig. 7[link].

[Figure 7]
Figure 7
Reaction scheme for the synthesis of the title compound.

Synthesis of diethyl 2,6-dimethyl-4-(thio­phen-3-yl)-1,4-di­hydro­pyridine-3,5-di­carboxyl­ate:

A mixture of thio­phene-3-carbaldehyde (3 mmol), ethyl aceto­acetate (6 mmol) and NH4OAc (3 mmol) in ethanol (10 mL) was exposed to microwave radiation for 3 min. at a power of 450W. The reaction mixture was cooled down and the solid product was separated by filtration and purified by recrystallization in ethanol to give the compound as yellowish transparent crystals (yield 82%), m.p. 423 K. IR (KBr, cm−1): 3346, 3244 (NH), 3099, 2979 (C–H), 1699 (C=O), 1490 (C=C). 1H NMR [Bruker XL-500, 500 MHz, d6-CDCl3, δ (ppm), J (Hz), see Fig. 7[link] for numbering scheme]: 7.12 (m, 1H, J = 4.5, H4), 6.99 (m, 1H, J = 4.5, H5), 6.91 (d, 1H,, J = 2.5, H2), 5.93 (s, 1H, H9), 5.14 (s, 1H, H6), 4.13 (m, 4H, J = 7.5Hz, H13,13′), 2.30 (s, 6H, H10,10′), 1.25 (m, 6H, J = 7.25 H14,14′). 13C NMR [Bruker XL-500, 125 MHz, d6-CDCl3, (ppm)]: 19.4 (C10,10′), 14.3 (C14,14′), 34.6 (C6), 59.7 (C13,13′), 103.4 (C7,7′), 120.3 (C2), 124.6 (C4), 127.6 (C5), 144.4 (C3), 147.9 (C8,C8′), 167.7 (C11,11′). Calculated for C17H21NO4S: M[+H] = 335.4 au.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atom H6 was found in a difference electron-density map and refined freely. The other H atoms were placed in idealized positions and included as riding contributions with Uiso(H) values of 1.2Ueq or 1.5Ueq of the parent atoms, with C—H distances of 0.93 (aromatic), 0.98 (CH), 0.97 (CH2) and 0.96 Å (CH3). In the final cycles of refinement, four outlying reflections were omitted.

Table 3
Experimental details

Crystal data
Chemical formula C17H21NO4S
Mr 335.41
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 15.6801 (8), 7.4311 (3), 15.5968 (8)
β (°) 111.424 (6)
V3) 1691.77 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.5 × 0.2 × 0.05
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, single source at offset/far, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.555, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 19775, 3446, 2805
Rint 0.027
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.187, 1.05
No. of reflections 3446
No. of parameters 216
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.53, −0.47
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Diethyl 2,6-dimethyl-4-(thiophen-3-yl)-1,4-dihydropyridine-3,5-dicarboxylate top
Crystal data top
C17H21NO4SF(000) = 712
Mr = 335.41Dx = 1.317 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.6801 (8) ÅCell parameters from 8195 reflections
b = 7.4311 (3) Åθ = 3.1–27.9°
c = 15.5968 (8) ŵ = 0.21 mm1
β = 111.424 (6)°T = 293 K
V = 1691.77 (16) Å3Block, colourless
Z = 40.5 × 0.2 × 0.05 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, single source at offset/far, Eos
diffractometer
3446 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source2805 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 15.9631 pixels mm-1θmax = 26.4°, θmin = 2.6°
ω scansh = 1919
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
k = 99
Tmin = 0.555, Tmax = 1.000l = 1919
19775 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.061H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.187 w = 1/[σ2(Fo2) + (0.0981P)2 + 1.416P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3446 reflectionsΔρmax = 0.53 e Å3
216 parametersΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.23846 (6)0.68160 (12)0.53767 (5)0.0587 (3)
C20.28608 (18)0.6398 (4)0.45764 (17)0.0407 (6)
H20.3401560.5754810.4701260.049*
C30.23681 (15)0.7104 (3)0.37324 (15)0.0293 (5)
C40.15812 (17)0.8010 (4)0.37597 (18)0.0405 (6)
H40.1159770.8583310.3251010.049*
C50.14966 (17)0.7959 (4)0.46445 (18)0.0393 (6)
H50.1025250.8475820.4787960.047*
N60.32530 (15)0.3391 (3)0.28906 (16)0.0406 (5)
H60.346 (2)0.236 (5)0.297 (2)0.053 (9)*
C70.39001 (16)0.4737 (3)0.31863 (17)0.0351 (5)
C80.36158 (15)0.6465 (3)0.31363 (16)0.0302 (5)
C90.26034 (14)0.6872 (3)0.28729 (15)0.0273 (5)
H90.2467350.8002690.2525620.033*
C100.20195 (15)0.5392 (3)0.22653 (15)0.0303 (5)
C110.23455 (16)0.3689 (3)0.23509 (17)0.0359 (5)
C120.48666 (18)0.4023 (4)0.3531 (2)0.0533 (8)
H12A0.5097800.3971340.4191860.080*
H12B0.5246590.4804630.3333670.080*
H12C0.4871050.2837680.3287920.080*
C130.42150 (16)0.8049 (3)0.33895 (17)0.0348 (5)
O140.39447 (13)0.9578 (2)0.32155 (16)0.0545 (6)
O150.50981 (12)0.7683 (2)0.38631 (16)0.0516 (5)
C160.57344 (18)0.9188 (4)0.4152 (2)0.0532 (7)
H16A0.5539631.0021350.4523360.064*
H16B0.5757190.9826740.3618830.064*
C170.6646 (2)0.8441 (5)0.4697 (3)0.0831 (13)
H17A0.6839230.7645330.4318030.125*
H17B0.6611640.7787210.5214430.125*
H17C0.7079650.9405210.4912850.125*
C180.10811 (16)0.5808 (4)0.16274 (16)0.0363 (5)
O190.05131 (14)0.4733 (3)0.11903 (16)0.0646 (7)
O200.09182 (12)0.7592 (2)0.15614 (12)0.0410 (4)
C210.00100 (19)0.8172 (5)0.0952 (2)0.0525 (7)
H21A0.0203540.7382530.0420240.063*
H21B0.0050810.9380030.0734160.063*
C220.0661 (3)0.8156 (6)0.1416 (3)0.0767 (11)
H22A0.1242390.8581160.0997500.115*
H22B0.0449500.8926170.1946410.115*
H22C0.0727150.6951340.1604760.115*
C230.1849 (2)0.2020 (4)0.1900 (2)0.0542 (8)
H23A0.2189860.0981990.2204590.081*
H23B0.1783540.2008920.1264010.081*
H23C0.1253250.1999680.1943320.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0677 (5)0.0662 (6)0.0442 (4)0.0079 (4)0.0228 (4)0.0059 (3)
C20.0385 (13)0.0430 (14)0.0386 (13)0.0084 (11)0.0117 (10)0.0040 (11)
C30.0288 (10)0.0250 (11)0.0327 (11)0.0019 (8)0.0094 (9)0.0028 (8)
C40.0339 (12)0.0462 (14)0.0391 (13)0.0080 (11)0.0104 (10)0.0014 (11)
C50.0313 (12)0.0424 (14)0.0466 (14)0.0033 (10)0.0169 (11)0.0069 (11)
N60.0372 (11)0.0225 (10)0.0547 (13)0.0035 (8)0.0082 (10)0.0007 (9)
C70.0298 (11)0.0306 (12)0.0422 (13)0.0026 (9)0.0101 (10)0.0014 (10)
C80.0266 (11)0.0267 (11)0.0362 (11)0.0012 (8)0.0100 (9)0.0014 (9)
C90.0269 (10)0.0209 (10)0.0333 (11)0.0021 (8)0.0098 (9)0.0024 (8)
C100.0289 (11)0.0289 (11)0.0314 (11)0.0019 (9)0.0091 (9)0.0004 (9)
C110.0350 (12)0.0312 (12)0.0399 (12)0.0025 (10)0.0116 (10)0.0027 (10)
C120.0359 (14)0.0342 (14)0.080 (2)0.0093 (11)0.0095 (13)0.0009 (14)
C130.0295 (11)0.0292 (12)0.0465 (13)0.0007 (9)0.0146 (10)0.0007 (10)
O140.0375 (10)0.0254 (9)0.0918 (15)0.0001 (7)0.0134 (10)0.0048 (9)
O150.0300 (9)0.0301 (9)0.0830 (15)0.0027 (7)0.0068 (9)0.0011 (9)
C160.0378 (14)0.0339 (14)0.081 (2)0.0091 (11)0.0137 (13)0.0000 (14)
C170.0435 (17)0.056 (2)0.124 (3)0.0095 (15)0.0001 (19)0.009 (2)
C180.0321 (11)0.0432 (14)0.0312 (11)0.0001 (10)0.0084 (9)0.0009 (10)
O190.0429 (11)0.0552 (13)0.0715 (14)0.0041 (10)0.0079 (10)0.0129 (11)
O200.0338 (9)0.0420 (10)0.0395 (9)0.0080 (7)0.0043 (7)0.0042 (7)
C210.0391 (14)0.0634 (19)0.0449 (15)0.0146 (13)0.0035 (12)0.0102 (13)
C220.055 (2)0.091 (3)0.084 (3)0.0277 (19)0.0258 (18)0.005 (2)
C230.0489 (16)0.0326 (14)0.073 (2)0.0062 (12)0.0128 (14)0.0139 (13)
Geometric parameters (Å, º) top
S1—C21.701 (3)C12—H12C0.9600
S1—C51.674 (3)C13—O141.208 (3)
C2—H20.9300C13—O151.338 (3)
C2—C31.364 (3)O15—C161.456 (3)
C3—C41.420 (3)C16—H16A0.9700
C3—C91.525 (3)C16—H16B0.9700
C4—H40.9300C16—C171.479 (4)
C4—C51.434 (4)C17—H17A0.9600
C5—H50.9300C17—H17B0.9600
N6—H60.82 (4)C17—H17C0.9600
N6—C71.379 (3)C18—O191.205 (3)
N6—C111.381 (3)C18—O201.347 (3)
C7—C81.352 (3)O20—C211.459 (3)
C7—C121.507 (3)C21—H21A0.9700
C8—C91.518 (3)C21—H21B0.9700
C8—C131.468 (3)C21—C221.479 (5)
C9—H90.9800C22—H22A0.9600
C9—C101.521 (3)C22—H22B0.9600
C10—C111.353 (3)C22—H22C0.9600
C10—C181.477 (3)C23—H23A0.9600
C11—C231.496 (3)C23—H23B0.9600
C12—H12A0.9600C23—H23C0.9600
C12—H12B0.9600
C5—S1—C294.05 (12)H12B—C12—H12C109.5
S1—C2—H2123.5O14—C13—C8123.8 (2)
C3—C2—S1113.10 (19)O14—C13—O15121.5 (2)
C3—C2—H2123.5O15—C13—C8114.7 (2)
C2—C3—C4110.2 (2)C13—O15—C16118.0 (2)
C2—C3—C9124.8 (2)O15—C16—H16A110.2
C4—C3—C9124.9 (2)O15—C16—H16B110.2
C3—C4—H4123.1O15—C16—C17107.4 (2)
C3—C4—C5113.8 (2)H16A—C16—H16B108.5
C5—C4—H4123.1C17—C16—H16A110.2
S1—C5—H5125.6C17—C16—H16B110.2
C4—C5—S1108.88 (18)C16—C17—H17A109.5
C4—C5—H5125.6C16—C17—H17B109.5
C7—N6—H6115 (2)C16—C17—H17C109.5
C7—N6—C11123.8 (2)H17A—C17—H17B109.5
C11—N6—H6120 (2)H17A—C17—H17C109.5
N6—C7—C12112.6 (2)H17B—C17—H17C109.5
C8—C7—N6118.9 (2)O19—C18—C10126.2 (2)
C8—C7—C12128.5 (2)O19—C18—O20121.9 (2)
C7—C8—C9119.7 (2)O20—C18—C10111.8 (2)
C7—C8—C13125.5 (2)C18—O20—C21117.0 (2)
C13—C8—C9114.60 (19)O20—C21—H21A109.2
C3—C9—H9108.4O20—C21—H21B109.2
C8—C9—C3110.47 (18)O20—C21—C22112.2 (3)
C8—C9—H9108.4H21A—C21—H21B107.9
C8—C9—C10110.90 (18)C22—C21—H21A109.2
C10—C9—C3110.21 (18)C22—C21—H21B109.2
C10—C9—H9108.4C21—C22—H22A109.5
C11—C10—C9119.68 (19)C21—C22—H22B109.5
C11—C10—C18120.6 (2)C21—C22—H22C109.5
C18—C10—C9119.6 (2)H22A—C22—H22B109.5
N6—C11—C23113.4 (2)H22A—C22—H22C109.5
C10—C11—N6118.6 (2)H22B—C22—H22C109.5
C10—C11—C23128.0 (2)C11—C23—H23A109.5
C7—C12—H12A109.5C11—C23—H23B109.5
C7—C12—H12B109.5C11—C23—H23C109.5
C7—C12—H12C109.5H23A—C23—H23B109.5
H12A—C12—H12B109.5H23A—C23—H23C109.5
H12A—C12—H12C109.5H23B—C23—H23C109.5
S1—C2—C3—C40.1 (3)C9—C3—C4—C5177.0 (2)
S1—C2—C3—C9177.09 (17)C9—C8—C13—O1416.0 (4)
C2—S1—C5—C40.1 (2)C9—C8—C13—O15161.9 (2)
C2—C3—C4—C50.2 (3)C9—C10—C11—N69.6 (4)
C2—C3—C9—C823.5 (3)C9—C10—C11—C23172.7 (3)
C2—C3—C9—C1099.4 (3)C9—C10—C18—O19170.8 (3)
C3—C4—C5—S10.2 (3)C9—C10—C18—O2010.6 (3)
C3—C9—C10—C1193.6 (3)C10—C18—O20—C21179.8 (2)
C3—C9—C10—C1882.7 (2)C11—N6—C7—C815.7 (4)
C4—C3—C9—C8159.7 (2)C11—N6—C7—C12164.1 (3)
C4—C3—C9—C1077.4 (3)C11—C10—C18—O195.5 (4)
C5—S1—C2—C30.0 (2)C11—C10—C18—O20173.1 (2)
N6—C7—C8—C97.6 (4)C12—C7—C8—C9172.6 (3)
N6—C7—C8—C13177.6 (2)C12—C7—C8—C132.2 (4)
C7—N6—C11—C1014.7 (4)C13—C8—C9—C380.8 (2)
C7—N6—C11—C23163.4 (3)C13—C8—C9—C10156.7 (2)
C7—C8—C9—C394.5 (3)C13—O15—C16—C17177.2 (3)
C7—C8—C9—C1028.0 (3)O14—C13—O15—C161.1 (4)
C7—C8—C13—O14169.0 (3)C18—C10—C11—N6174.1 (2)
C7—C8—C13—O1513.1 (4)C18—C10—C11—C233.6 (4)
C8—C9—C10—C1129.0 (3)C18—O20—C21—C2285.3 (3)
C8—C9—C10—C18154.6 (2)O19—C18—O20—C211.5 (4)
C8—C13—O15—C16179.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the thiophene S1/C2–C5 ring.
D—H···AD—HH···AD···AD—H···A
N6—H6···O14i0.82 (4)2.19 (4)3.010 (3)176 (3)
C5—H5···O19ii0.932.523.220 (4)133
C9—H9···O200.982.362.739 (3)102
C12—H12B···O150.962.332.768 (3)107
C23—H23C···O190.962.422.826 (4)105
C17—H17C···Cg1iii0.962.793.720 (4)162
Symmetry codes: (i) x, y1, z; (ii) x, y+1/2, z+1/2; (iii) x+1, y+2, z+1.
Enrichment ratios for the title compound top
ParameterRatio
H···H0.94
C···H1.23
O···H1.24
N···H1.30
S···H1.11
S···C0.96
S···O0.82
 

Funding information

This research was funded by the Vietnam Ministry of Education and Training under grant No. B2019-SPH.562–05. LVM thanks the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/0035.

References

First citationBagley, M. C. & Lubinu, M. C. (2006). Synthesis, pp. 1283–1288.  Web of Science CrossRef Google Scholar
First citationBoecker, R. H. & Guengerich, F. P. (1986). J. Med. Chem. 29, 1596–1603.  CrossRef CAS PubMed Google Scholar
First citationBossert, F., Meyer, H. & Wehinger, H. (1981). Angew. Chem. Int. Ed. Engl. 20, 762–769.  CrossRef Web of Science Google Scholar
First citationBossert, F. & Vater, W. (1989). Med. Res. Rev. 9, 291–324.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCaignan, G. A., Metcalf, S. K. & Holt, E. M. (2000). J. Chem. Cryst. 30, 415–422.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGodfraind, T., Miller, R. & Wibo, M. (1986). Pharmacol. Rev. 38, 321–416.  CAS PubMed Web of Science Google Scholar
First citationGordeev, M. F., Patel, D. V. & Gordon, E. M. (1996). J. Org. Chem. 61, 924–928.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHeravi, M. M., Behbahani, F. K., Oskooie, H. A. & Shoar, R. H. (2005). Tetrahedron Lett. 46, 2775–2777.  Web of Science CrossRef CAS Google Scholar
First citationHuang, X. & Cui, C. (2016). Private Communication (refcode QIWWEY). CCDC, Cambridge, England.  Google Scholar
First citationJelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119–128.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMauzerall, D. & Westheimer, F. H. (1955). J. Am. Chem. Soc. 77, 2261–2264.  CrossRef CAS Web of Science Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814.  Google Scholar
First citationNakayama, H. & Kanaoka, Y. (1996). Heterocycles, 42, 901–909.  CrossRef CAS Web of Science Google Scholar
First citationNguyen, N. L., Tran, T. D., Nguyen, T. C., Duong, K. L., Pfleger, J. & Vu, Q. T. (2016). Vietnam. J. Chem. 54, 259–263.  Google Scholar
First citationNguyen Ngoc, L., Vu Quoc, T., Duong Quoc, H., Vu Quoc, M., Truong Minh, L., Thang Pham, C. & Van Meervelt, L. (2017). Acta Cryst. E73, 1647–1651.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSausins, A. & Duburs, G. (1988). Heterocycles, 27, 269–272.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationStout, D. M. & Meyers, A. I. (1982). Chem. Rev. 82, 223–243.  CrossRef CAS Web of Science Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationVu, Q. T., Nguyen, N. L., Duong, K. L. & Pfleger, J. (2016). Vietnam. J. Chem. 54, 730–735.  Google Scholar
First citationVu Quoc, T., Nguyen Ngoc, L., Do Ba, D., Pham Chien, T., Nguyen Huy, H. & Van Meervelt, L. (2018). Acta Cryst. E74, 812–815.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVu Quoc, T., Nguyen Ngoc, L., Nguyen Tien, C., Thang Pham, C. & Van Meervelt, L. (2017). Acta Cryst. E73, 901–904.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVu Quoc, T., Tran Thi Thuy, D., Dang Thanh, T., Phung Ngoc, T., Nguyen Thien, V., Nguyen Thuy, C. & Van Meervelt, L. (2019). Acta Cryst. E75, 957–963.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, X. Y., Rutledge, A. & Triggle, D. J. (1989). Mol. Pharmacol. 35, 541–552.  CAS PubMed Web of Science Google Scholar
First citationXia, J. J. & Wang, G. W. (2005). Synthesis, pp. 2379–2383.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds