research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structure of the triclinic polymorph of 1,4-bis­­([2,2′:6′,2′′-terpyridin]-4′-yl)benzene

CROSSMARK_Color_square_no_text.svg

aInstitute of Inorganic and Analytical Chemistry, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany, bInstitute of Inorganic Chemistry, Julius-Maximilians-University Wüzburg, Am Hubland, 97074 Würzburg, Germany, and cLehrstuhl für Chemische Technologie der Materialsynthese, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany
*Correspondence e-mail: kmbac@uni-giessen.de

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 28 October 2019; accepted 22 November 2019; online 29 November 2019)

The title triclinic polymorph (Form I) of 1,4-bis­([2,2′:6′,2′′-terpyridin]-4′-yl)benzene, C36H24N6, was formed in the presence of the Lewis acid yttrium trichloride in an attempt to obtain a coordination compound. The crystal structure of the ortho­rhom­bic polymorph (Form II), has been described previously [Fernandes et al. (2010[Fernandes, J. A., Almeida Paz, F. A., Lima, P. P., Alves, S. Jr & Carlos, L. D. (2010). Acta Cryst. E66, o3241-o3242.]). Acta Cryst. E66, o3241–o3242]. The asymmetric unit of Form I consists of half a mol­ecule, the whole mol­ecule being generated by inversion symmetry with the central benzene ring being located about a crystallographic centre of symmetry. The side pyridine rings of the 2,2′:6′,2′′-terpyridine (terpy) unit are rotated slightly with respect to the central pyridine ring, with dihedral angles of 8.91 (8) and 10.41 (8)°. Opposite central pyridine rings are coplanar by symmetry, and the angle between them and the central benzene ring is 49.98 (8)°. The N atoms of the pyridine rings inside the terpy entities, N⋯N⋯N, lie in trans–trans positions. In the crystal, mol­ecules are linked by C—H⋯π and offset ππ inter­actions [inter­centroid distances are 3.6421 (16) and 3.7813 (16) Å], forming a three-dimensional structure.

1. Chemical context

1,4-Di([2,2′:6′,2′′-terpyridin]-4′-yl)benzene has been used as a ligand in the formation of mononuclear complexes (Santoni et al., 2013[Santoni, M.-P., Nastasi, F., Campagna, S., Hanan, G. S., Hasenknopf, B. & Ciofini, I. (2013). Dalton Trans. 42, 5281-5291.]; Laramée-Milette & Hanan, 2017[Laramée-Milette, B. & Hanan, G. S. (2017). Chem. Commun. 53, 10496-10499.]), binuclear complexes (Santoni et al., 2013[Santoni, M.-P., Nastasi, F., Campagna, S., Hanan, G. S., Hasenknopf, B. & Ciofini, I. (2013). Dalton Trans. 42, 5281-5291.]; Schmittel et al.,2006[Schmittel, M., Kalsani, V., Mal, P. & Bats, J. W. (2006). Inorg. Chem. 45, 6370-6377.]; Maekawa et al., 2004[Maekawa, M., Minematsu, T., Konaka, H., Sugimoto, K., Kuroda-Sowa, T., Suenaga, Y. & Munakata, M. (2004). Inorg. Chim. Acta, 357, 3456-3472.]), tetra­nuclear complexes (Schmittel et al., 2005[Schmittel, M., Kalsani, V., Kishore, R. S. K., Cölfen, H. & Bats, J. W. (2005). J. Am. Chem. Soc. 127, 11544-11545.]), one-dimensional coordination polymers (Koo et al., 2003[Koo, B.-K., Bewley, L., Golub, V., Rarig, R. S., Burkholder, E., O'Connor, C. J. & Zubieta, J. (2003). Inorg. Chim. Acta, 351, 167-176.]), two-dimensional coordination polymers (Bulut et al., 2015[Bulut, A., Zorlu, Y., Kirpi, E. E., Çetinkaya, A., Wörle, M., Beckmann, J. & Yücesan, G. (2015). Cryst. Growth Des. 15, 5665-5669.]; Jones et al. (2010[Jones, S., Liu, H., Ouellette, W., Schmidtke, K., O'Connor, C. J. & Zubieta, J. (2010). Inorg. Chem. Commun. 13, 491-494.]), and numerous metallo-supra­molecular polymers (without reported crystal structures), see for example: Vaduvescu & Potvin, 2004[Vaduvescu, S. & Potvin, P. G. (2004). Eur. J. Inorg. Chem. pp. 1763-1769.]; Nishimori et al., 2007[Nishimori, Y., Kanaizuka, K., Murata, M. & Nishihara, H. (2007). Chem. Asian J. 2, 367-376.]; Han et al., 2008[Han, F. S., Higuchi, M. & Kurth, D. G. (2008). J. Am. Chem. Soc. 130, 2073-2081.]; Schwarz et al., 2010[Schwarz, G., Bodenthin, Y., Geue, T., Koetz, J. & Kurth, D. G. (2010). Macromolecules, 43, 494-500.]; Ding et al., 2012[Ding, Y., Yang, Y., Yang, L., Yan, Y., Huang, J. & Cohen Stuart, M. A. (2012). ACS Nano, 6, 1004-1010.]; Muronoi et al., 2013[Muronoi, Y., Zhang, J., Higuchi, M. & Maki, H. (2013). Chem. Lett. 42, 761-763.]; Szczerba et al., 2014[Szczerba, W., Schott, M., Riesemeier, H., Thünemann, A. F. & Kurth, D. G. (2014). Phys. Chem. Chem. Phys. 16, 19694-19701.]; Munzert et al., 2016[Munzert, S. M., Schwarz, G. & Kurth, D. G. (2016). Inorg. Chem. 55, 2565-2573.]; Meded et al., 2017[Meded, V., Knorr, N., Neumann, T., Nelles, G., Wenzel, W. & von Wrochem, F. (2017). Phys. Chem. Chem. Phys. 19, 27952-27959.]; Bera et al., 2018[Bera, M. K., Chakraborty, C., Rana, U. & Higuchi, M. (2018). Macromol. Rapid Commun. 39, 2-7.].

[Scheme 1]

A search of the Cambridge Structural Database (CSD, Version 5.40, update August 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the title compound yielded only nine hits (see supporting information), which included the report on the structure of the ortho­rhom­bic polymorph, Form II, by Fernandes et al. (2010[Fernandes, J. A., Almeida Paz, F. A., Lima, P. P., Alves, S. Jr & Carlos, L. D. (2010). Acta Cryst. E66, o3241-o3242.]).

2. Structural commentary

The mol­ecular structure of the title triclinic polymorph (Form I) is illustrated in Fig. 1[link]. The mol­ecule is located about a crystallographic centre of symmetry in the middle of the central benzene ring (C16–C18/C16′–C18′), hence the mol­ecule has a higher symmetry (point group Ci) than that observed for the ortho­rhom­bic polymorph, Form II (Fernandes et al., 2010[Fernandes, J. A., Almeida Paz, F. A., Lima, P. P., Alves, S. Jr & Carlos, L. D. (2010). Acta Cryst. E66, o3241-o3242.]), which has point group C1. In Form I the side pyridine rings (N2/C6–C10 and N3/C11–C15) are rotated slightly with respect to the central pyridine ring (N1/C1–C5), with dihedral angles of 8.91 (8) and 10.41 (8)°, respectively. Opposite central pyridine rings (N1/C1–C5 and N1′/C1′–C5′) are coplanar by symmetry, and the angle between them and the central benzene ring (C16–C18/C16′–C18′) is 49.98 (8)° [symmetry code: (') −x, −y, −z]. The nitro­gen atoms of the pyridine rings inside the 2,2′:6′,2′′-terpyridine (terpy) entities, N3⋯N1⋯N2, lie in trans–trans positions.

[Figure 1]
Figure 1
The mol­ecular structure of the title triclinic polymorph (Form I), with atom labelling [symmetry code ('): −x, −y, −z]. Displacement ellipsoids are drawn at the 50% probability level.

In the ortho­rhom­bic polymorph, Form II, all the angles between side and central pyridine rings of the terpy units are different (because of the lack of symmetry elements inside the mol­ecule), viz. 24.86 (12) and 5.10 (12)° on one side and 6.30 (11) and 8.21 (12)° on the opposite side. The dihedral angles between the central pyridine rings of the terpy units and the central benzene ring are 34.95 (11) and 36.17 (11)°. A structural overlay of the mol­ecules of the two polymorphs (r.m.s. deviation = 0.0705 Å), illustrating the differences in their conformation, is given in Fig. 2[link] (Mercury; Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

[Figure 2]
Figure 2
A structural overlay of the title triclinic polymorph (Form I; blue) and the ortho­rhom­bic polymorph (Form II; red), drawn using Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

3. Supra­molecular features

In the crystal of the title polymorph, Form I, the mol­ecules stack along the a-, b- and c-axis directions (Fig. 3[link]). They are linked by C—H⋯π inter­actions (Table 1[link]) and offset ππ inter­actions, which are summarized in Table 2[link] for both Form I and Form II. It is inter­esting to note that the centroid–centroid distances and the offset distances are significantly shorter for Form II. An additional difference between the two polymorphs is the character of stacking: in Form II mol­ecules form several two-dimensional stacks, which are perpendicular to each another, while in Form I the stacking is three-dimensional.

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the N2/C6–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯Cg2i 0.96 2.99 3.682 (2) 131
Symmetry code: (i) x, y-1, z.

Table 2
π–π stacking inter­actions (Å, °) for Form I and Form II

Form I: Cg1, Cg2 and Cg3 are the centroids of the N1/C1–C5, N2/C6–C10 and N3/C11–C15 rings, respectively. Form II: Cg1 and Cg2 are the centroids of the N1/C1–C5 and N2/C6–C10 rings, respectively (Fernandes et al., 2010[Fernandes, J. A., Almeida Paz, F. A., Lima, P. P., Alves, S. Jr & Carlos, L. D. (2010). Acta Cryst. E66, o3241-o3242.]).

CgI CgJ CgICgJ α β γ CgI_Perp CgJ_Perp offset
Form I                
Cg1 Cg3ii 3.6421 (16) 8.91 (8) 18.6 17.9 3.4648 (6) 3.4525 (8) 1.160
Cg2 Cg3iii 3.7813 (16) 4.43 (8) 26.0 24.8 3.4312 (7) 3.3990 (8) 1.657
                 
Form II                
Cg1 Cg2iv 3.5138 (15) 4.20 (12) 10.9 14.9 3.3963 (12) 3.4501 (9) 0.666
Cg2 Cg1v 3.5140 (15) 4.20 (12) 14.9 10.9 3.4503 (9) 3.3963 (12) 0.902
Symmetry codes (ii) −x, −y + 1, −z + 1; (iii) −x + 1, −y + 1, −z + 1; (iv) x − [{1\over 2}], −y, z; (v) x + [{1\over 2}], −y, z.
[Figure 3]
Figure 3
The crystal packing of the title triclinic polymorph (Form I) viewed along the a (top), b (middle) and c (bottom) axes.

4. Hirshfeld surfaces and two-dimensional fingerprint plots

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]). For an excellent explanation of the use of Hirshfeld surface analysis and other calculations to study mol­ecular packing, see the recent article by Tiekink and collaborators (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]).

The Hirshfeld surfaces are colour-mapped with the normalized contact distance, dnorm, from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii).

The Hirshfeld surface of Forms I and II, mapped over dnorm are given in Fig. 4[link]a and 5[link]a, respectively, where short inter­atomic contacts are indicated by the faint red spots. The ππ stacking is confirmed by the small blue regions surrounding bright-red spots in the various aromatic rings (Fig. 4[link]b and 5b) on the Hirshfeld surface mapped over the shape-index, and by the flat regions around the aromatic regions in Fig. 4[link]c and 5c, the Hirshfeld surface mapped over the curvedness.

[Figure 4]
Figure 4
(a) The Hirshfeld surface of Form I, mapped over dnorm, plotted in the range −0.0541 to 1.3209 a.u., (b) the Hirshfeld surface of Form I, mapped over the shape-index and (c) the Hirshfeld surface of Form I, mapped over the curvedness.
[Figure 5]
Figure 5
(a) The Hirshfeld surface of Form II, mapped over dnorm, plotted in the range −0.1446 to 1.2077 a.u., (b) the Hirshfeld surface of Form II, mapped over the shape-index and (c) the Hirshfeld surface of Form II, mapped over the curvedness.

The fingerprint plots for Forms I and II, are given in Figs. 6[link] and 7[link]. They reveal that the principal inter­molecular contacts in the crystal of Form I are H⋯H at 49.4% (Fig. 6[link]b), C⋯H/H⋯C at 24.7% (Fig. 6[link]c), C⋯C at 9.6% (Fig. 6[link]d), N⋯H/H⋯N at 9.4% (Fig. 6[link]e) and C⋯N at 6.2% (Fig. 6[link]f).

[Figure 6]
Figure 6
The full two-dimensional fingerprint plot for Form I, and fingerprint plots delineated into H⋯H, C⋯H/H⋯C, C⋯C, N⋯H/H⋯N and C⋯N contacts.
[Figure 7]
Figure 7
The full two-dimensional fingerprint plot for Form II, and fingerprint plots delineated into H⋯H, C⋯H/H⋯C, N⋯H/H⋯N, C⋯C and C⋯N contacts.

The principal inter­molecular contacts in the crystal of Form II are H⋯H at 43.3% (Fig. 7[link]b), C⋯H/H⋯C at 30.6% (Fig. 7[link]c), N⋯H/H⋯N at 13.3% (Fig. 7[link]d), C⋯C at 8.3% (Fig. 7[link]e) and C⋯N at 4.3% (Fig. 7[link]f). Here, the C⋯H/H⋯C and N⋯H/H⋯N contacts at 30.6 and 13.3%, respectively, are more important than those in Form I at 24.7 and 9.4%, respectively.

5. Synthesis and crystallization

1,4-Bis([2,2′:6′,2′′-terpyridin]-4′-yl)benzene was synthesized according to the literature procedure (Winter et al., 2006[Winter, A., van den Berg, A., Hoogenboom, R., Kickelbick, G. & Schubert, U. S. (2006). Synthesis, pp. 2873-2878.]). YCl3 (99.9%, Strem) was purchased and used as received. Solvents (DMF, toluene) were dried using standard techniques and stored with mol­ecular sieves in flasks with a J. Young valve.

YCl3 (2 mg, 0.01 mmol), 1,4-bis­([2,2′:6′,2′′-terpyridin]-4′-yl)benzene (0.5 mg, 0.001 mmol) and 1 ml DMF were filled together under inert conditions in a self-made Duran(R) glass ampoule (outer ø 10 mm, wall thickness 1 mm). The ampoule was sealed under vacuum and placed in a resistance heating oven with a thermal control (Eurotherm 2416). The heating program was as follows: heating up to 503 K in 30 min, holding temperature for 8 h, cooling down to RT uncontrollably. The ampoule was then taken out of the oven and a star-like net of needle-shaped single crystals was observed. The ampoule was heated again as previously but up to 523 K and then cooled down to RT uncontrollably. Now only a few plate-shaped single crystals were present. The ampoule was unsealed, the solution removed and the remaining single crystals were washed with toluene (1 ml).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atoms were included in calculated positions and refined as riding on the parent C atom: C—H = 0.95 Å with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C36H24N6
Mr 540.61
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 7.312 (2), 8.847 (3), 11.039 (3)
α, β, γ (°) 100.050 (7), 102.247 (6), 104.314 (7)
V3) 656.4 (3)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.53 × 0.30 × 0.23
 
Data collection
Diffractometer Bruker X8 APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2017[Bruker (2017). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.764, 0.958
No. of measured, independent and observed [I > 2σ(I)] reflections 10437, 2918, 1953
Rint 0.049
(sin θ/λ)max−1) 0.643
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.133, 1.09
No. of reflections 2918
No. of parameters 190
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.22
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: shelXle (Hübschle et al., 2011) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

1,4-Bis([2,2':6',2''-terpyridin]-4'-yl)benzene top
Crystal data top
C36H24N6Z = 1
Mr = 540.61F(000) = 282
Triclinic, P1Dx = 1.368 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.312 (2) ÅCell parameters from 3259 reflections
b = 8.847 (3) Åθ = 2.5–27.1°
c = 11.039 (3) ŵ = 0.08 mm1
α = 100.050 (7)°T = 100 K
β = 102.247 (6)°Plate, colourless
γ = 104.314 (7)°0.53 × 0.30 × 0.23 mm
V = 656.4 (3) Å3
Data collection top
Bruker X8 APEXII
diffractometer
2918 independent reflections
Radiation source: rotating-anode (Nonius FR-591)1953 reflections with I > 2σ(I)
Multi-layer mirror monochromatorRint = 0.049
Detector resolution: 8.333 pixels mm-1θmax = 27.2°, θmin = 1.9°
φ and ω scansh = 95
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
k = 1111
Tmin = 0.764, Tmax = 0.958l = 1414
10437 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.09 w = 1/[\s2(Fo2) + (0.0552P)2 + 0.1381P]
where P = (Fo2 + 2Fc2)/3
2918 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.31314 (19)0.57168 (16)0.39738 (13)0.0184 (3)
N20.4458 (2)0.73483 (17)0.13929 (13)0.0213 (3)
N30.0878 (2)0.29403 (17)0.56336 (13)0.0227 (4)
C10.3286 (2)0.5741 (2)0.27836 (16)0.0180 (4)
C20.2523 (2)0.4377 (2)0.17767 (16)0.0183 (4)
H20.2601410.4447800.0939310.022*
C30.1647 (2)0.2912 (2)0.20071 (15)0.0178 (4)
C40.1538 (2)0.2879 (2)0.32419 (16)0.0190 (4)
H40.0988850.1892360.3441450.023*
C50.2242 (2)0.4309 (2)0.41872 (15)0.0170 (4)
C60.4396 (2)0.7297 (2)0.25945 (15)0.0177 (4)
C70.5401 (2)0.8601 (2)0.36334 (16)0.0223 (4)
H70.5312120.8534930.4469840.027*
C80.6527 (2)0.9991 (2)0.34305 (18)0.0261 (4)
H80.7228801.0891520.4123860.031*
C90.6610 (2)1.0042 (2)0.22011 (17)0.0245 (4)
H90.7376561.0975860.2030280.029*
C100.5551 (2)0.8702 (2)0.12213 (17)0.0236 (4)
H100.5605860.8750110.0376310.028*
C110.2008 (2)0.4309 (2)0.54952 (15)0.0187 (4)
C120.2926 (2)0.5660 (2)0.65033 (16)0.0220 (4)
H120.3701620.6619600.6372600.026*
C130.2681 (3)0.5569 (2)0.77001 (17)0.0267 (4)
H130.3301370.6466860.8408450.032*
C140.1533 (3)0.4169 (2)0.78556 (17)0.0270 (4)
H140.1343520.4080520.8668390.032*
C150.0662 (3)0.2893 (2)0.67977 (17)0.0277 (4)
H150.0136620.1928460.6906150.033*
C160.0823 (2)0.14143 (19)0.09699 (15)0.0178 (4)
C170.1252 (2)0.0007 (2)0.11349 (16)0.0197 (4)
H170.2108990.0005080.1912890.024*
C180.0443 (2)0.1397 (2)0.01748 (15)0.0200 (4)
H180.0752270.2349990.0298410.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0168 (7)0.0215 (8)0.0160 (8)0.0058 (6)0.0032 (6)0.0033 (6)
N20.0215 (7)0.0226 (8)0.0191 (8)0.0060 (6)0.0045 (6)0.0053 (6)
N30.0234 (8)0.0268 (8)0.0182 (8)0.0065 (6)0.0064 (6)0.0063 (6)
C10.0136 (8)0.0223 (9)0.0174 (9)0.0066 (7)0.0024 (7)0.0035 (7)
C20.0162 (8)0.0247 (9)0.0129 (9)0.0049 (7)0.0033 (7)0.0036 (7)
C30.0136 (8)0.0216 (9)0.0162 (9)0.0054 (7)0.0021 (7)0.0013 (7)
C40.0158 (8)0.0198 (9)0.0201 (9)0.0039 (7)0.0039 (7)0.0044 (7)
C50.0129 (8)0.0217 (9)0.0144 (9)0.0048 (7)0.0017 (6)0.0018 (7)
C60.0140 (8)0.0208 (9)0.0179 (9)0.0062 (7)0.0034 (7)0.0034 (7)
C70.0216 (9)0.0241 (9)0.0187 (9)0.0049 (7)0.0047 (7)0.0017 (7)
C80.0213 (9)0.0216 (10)0.0287 (11)0.0023 (7)0.0029 (8)0.0002 (8)
C90.0191 (8)0.0220 (9)0.0308 (11)0.0029 (7)0.0066 (8)0.0072 (8)
C100.0229 (9)0.0269 (10)0.0223 (10)0.0071 (8)0.0066 (7)0.0089 (8)
C110.0156 (8)0.0234 (9)0.0171 (9)0.0081 (7)0.0021 (7)0.0040 (7)
C120.0205 (9)0.0250 (10)0.0193 (9)0.0080 (7)0.0034 (7)0.0031 (8)
C130.0263 (9)0.0344 (11)0.0188 (10)0.0144 (8)0.0022 (8)0.0018 (8)
C140.0277 (9)0.0431 (12)0.0157 (9)0.0169 (9)0.0081 (8)0.0089 (8)
C150.0285 (10)0.0344 (11)0.0238 (10)0.0096 (8)0.0097 (8)0.0123 (9)
C160.0148 (8)0.0207 (9)0.0154 (9)0.0011 (7)0.0054 (7)0.0019 (7)
C170.0172 (8)0.0264 (9)0.0132 (9)0.0052 (7)0.0020 (6)0.0030 (7)
C180.0201 (8)0.0200 (9)0.0191 (9)0.0052 (7)0.0051 (7)0.0040 (7)
Geometric parameters (Å, º) top
N1—C51.340 (2)C8—C91.379 (3)
N1—C11.346 (2)C8—H80.9500
N2—C101.334 (2)C9—C101.385 (2)
N2—C61.345 (2)C9—H90.9500
N3—C151.334 (2)C10—H100.9500
N3—C111.340 (2)C11—C121.393 (2)
C1—C21.393 (2)C12—C131.384 (2)
C1—C61.489 (2)C12—H120.9500
C2—C31.389 (2)C13—C141.374 (3)
C2—H20.9500C13—H130.9500
C3—C41.387 (2)C14—C151.383 (3)
C3—C161.487 (2)C14—H140.9500
C4—C51.395 (2)C15—H150.9500
C4—H40.9500C16—C171.389 (2)
C5—C111.490 (2)C16—C181.394 (2)
C6—C71.396 (2)C17—C18i1.388 (2)
C7—C81.383 (2)C17—H170.9500
C7—H70.9500C18—H180.9500
C5—N1—C1117.93 (14)C10—C9—H9120.7
C10—N2—C6117.38 (14)N2—C10—C9123.93 (17)
C15—N3—C11117.47 (15)N2—C10—H10118.0
N1—C1—C2122.49 (15)C9—C10—H10118.0
N1—C1—C6116.71 (14)N3—C11—C12122.76 (16)
C2—C1—C6120.75 (15)N3—C11—C5115.99 (14)
C3—C2—C1119.43 (15)C12—C11—C5121.25 (15)
C3—C2—H2120.3C13—C12—C11118.34 (17)
C1—C2—H2120.3C13—C12—H12120.8
C4—C3—C2118.00 (15)C11—C12—H12120.8
C4—C3—C16120.29 (15)C14—C13—C12119.44 (17)
C2—C3—C16121.70 (15)C14—C13—H13120.3
C3—C4—C5119.28 (16)C12—C13—H13120.3
C3—C4—H4120.4C13—C14—C15118.26 (17)
C5—C4—H4120.4C13—C14—H14120.9
N1—C5—C4122.72 (15)C15—C14—H14120.9
N1—C5—C11117.46 (14)N3—C15—C14123.72 (18)
C4—C5—C11119.82 (15)N3—C15—H15118.1
N2—C6—C7122.30 (16)C14—C15—H15118.1
N2—C6—C1116.79 (14)C17—C16—C18119.01 (15)
C7—C6—C1120.83 (15)C17—C16—C3120.93 (15)
C8—C7—C6119.20 (16)C18—C16—C3120.04 (15)
C8—C7—H7120.4C18i—C17—C16120.68 (16)
C6—C7—H7120.4C18i—C17—H17119.7
C9—C8—C7118.65 (16)C16—C17—H17119.7
C9—C8—H8120.7C17i—C18—C16120.31 (16)
C7—C8—H8120.7C17i—C18—H18119.8
C8—C9—C10118.53 (16)C16—C18—H18119.8
C8—C9—H9120.7
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the N2/C6–C10 ring.
D—H···AD—HH···AD···AD—H···A
C17—H17···Cg2ii0.962.993.682 (2)131
Symmetry code: (ii) x, y1, z.
ππ stacking interactions (Å,°) for Form I and Form II top
Form I: Cg1, Cg2 and Cg3 are the centroids of the N1/C1–C5, N2/C6–C10 and N3/C11–C15 rings, respectively. Form II: Cg1 and Cg2 are the centroids of the N1/C1–C5 and N2/C6–C10 rings, respectively (Fernandes et al., 2010).
CgICgJCgI···CgJαβγCgI_PerpCgJ_Perpoffset
Form I
Cg1Cg3ii3.6421 (16)8.91 (8)18.617.93.4648 (6)3.4525 (8)1.160
Cg2Cg3iii3.7813 (16)4.43 (8)26.024.83.4312 (7)3.3990 (8)1.657
Form II
Cg1Cg2iv3.5138 (15)4.20 (12)10.914.93.3963 (12)3.4501 (9)0.666
Cg2Cg1v3.5140 (15)4.20 (12)14.910.93.4503 (9)3.3963 (12)0.902
Symmetry codes (ii) -x, -y + 1, -z + 1; (iii) -x + 1, -y + 1, -z + 1; (iv) x - 1/2, -y, z; (v) x + 1/2, -y, z.
 

Funding information

Funding for this research was provided by: Studienstiftung des Deutschen Volkes (scholarship to Alexander E. Sedykh).

References

First citationBera, M. K., Chakraborty, C., Rana, U. & Higuchi, M. (2018). Macromol. Rapid Commun. 39, 2–7.  CrossRef Google Scholar
First citationBruker (2017). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBulut, A., Zorlu, Y., Kirpi, E. E., Çetinkaya, A., Wörle, M., Beckmann, J. & Yücesan, G. (2015). Cryst. Growth Des. 15, 5665–5669.  CSD CrossRef CAS Google Scholar
First citationDing, Y., Yang, Y., Yang, L., Yan, Y., Huang, J. & Cohen Stuart, M. A. (2012). ACS Nano, 6, 1004–1010.  CrossRef CAS PubMed Google Scholar
First citationFernandes, J. A., Almeida Paz, F. A., Lima, P. P., Alves, S. Jr & Carlos, L. D. (2010). Acta Cryst. E66, o3241–o3242.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHan, F. S., Higuchi, M. & Kurth, D. G. (2008). J. Am. Chem. Soc. 130, 2073–2081.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJones, S., Liu, H., Ouellette, W., Schmidtke, K., O'Connor, C. J. & Zubieta, J. (2010). Inorg. Chem. Commun. 13, 491–494.  Web of Science CSD CrossRef CAS Google Scholar
First citationKoo, B.-K., Bewley, L., Golub, V., Rarig, R. S., Burkholder, E., O'Connor, C. J. & Zubieta, J. (2003). Inorg. Chim. Acta, 351, 167–176.  Web of Science CSD CrossRef CAS Google Scholar
First citationLaramée-Milette, B. & Hanan, G. S. (2017). Chem. Commun. 53, 10496–10499.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMaekawa, M., Minematsu, T., Konaka, H., Sugimoto, K., Kuroda-Sowa, T., Suenaga, Y. & Munakata, M. (2004). Inorg. Chim. Acta, 357, 3456–3472.  CSD CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMeded, V., Knorr, N., Neumann, T., Nelles, G., Wenzel, W. & von Wrochem, F. (2017). Phys. Chem. Chem. Phys. 19, 27952–27959.  CrossRef CAS PubMed Google Scholar
First citationMunzert, S. M., Schwarz, G. & Kurth, D. G. (2016). Inorg. Chem. 55, 2565–2573.  CrossRef CAS PubMed Google Scholar
First citationMuronoi, Y., Zhang, J., Higuchi, M. & Maki, H. (2013). Chem. Lett. 42, 761–763.  CrossRef CAS Google Scholar
First citationNishimori, Y., Kanaizuka, K., Murata, M. & Nishihara, H. (2007). Chem. Asian J. 2, 367–376.  CrossRef PubMed CAS Google Scholar
First citationSantoni, M.-P., Nastasi, F., Campagna, S., Hanan, G. S., Hasenknopf, B. & Ciofini, I. (2013). Dalton Trans. 42, 5281–5291.  CSD CrossRef CAS PubMed Google Scholar
First citationSchmittel, M., Kalsani, V., Kishore, R. S. K., Cölfen, H. & Bats, J. W. (2005). J. Am. Chem. Soc. 127, 11544–11545.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSchmittel, M., Kalsani, V., Mal, P. & Bats, J. W. (2006). Inorg. Chem. 45, 6370–6377.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSchwarz, G., Bodenthin, Y., Geue, T., Koetz, J. & Kurth, D. G. (2010). Macromolecules, 43, 494–500.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzczerba, W., Schott, M., Riesemeier, H., Thünemann, A. F. & Kurth, D. G. (2014). Phys. Chem. Chem. Phys. 16, 19694–19701.  CrossRef CAS PubMed Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationVaduvescu, S. & Potvin, P. G. (2004). Eur. J. Inorg. Chem. pp. 1763–1769.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWinter, A., van den Berg, A., Hoogenboom, R., Kickelbick, G. & Schubert, U. S. (2006). Synthesis, pp. 2873–2878.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds