research communications
The
of the triclinic polymorph of 1,4-bis([2,2′:6′,2′′-terpyridin]-4′-yl)benzeneaInstitute of Inorganic and Analytical Chemistry, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany, bInstitute of Inorganic Chemistry, Julius-Maximilians-University Wüzburg, Am Hubland, 97074 Würzburg, Germany, and cLehrstuhl für Chemische Technologie der Materialsynthese, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany
*Correspondence e-mail: kmbac@uni-giessen.de
The title triclinic polymorph (Form I) of 1,4-bis([2,2′:6′,2′′-terpyridin]-4′-yl)benzene, C36H24N6, was formed in the presence of the yttrium trichloride in an attempt to obtain a coordination compound. The of the orthorhombic polymorph (Form II), has been described previously [Fernandes et al. (2010). Acta Cryst. E66, o3241–o3242]. The of Form I consists of half a molecule, the whole molecule being generated by inversion symmetry with the central benzene ring being located about a crystallographic centre of symmetry. The side pyridine rings of the 2,2′:6′,2′′-terpyridine (terpy) unit are rotated slightly with respect to the central pyridine ring, with dihedral angles of 8.91 (8) and 10.41 (8)°. Opposite central pyridine rings are coplanar by symmetry, and the angle between them and the central benzene ring is 49.98 (8)°. The N atoms of the pyridine rings inside the terpy entities, N⋯N⋯N, lie in trans–trans positions. In the crystal, molecules are linked by C—H⋯π and offset π–π interactions [intercentroid distances are 3.6421 (16) and 3.7813 (16) Å], forming a three-dimensional structure.
CCDC reference: 1967605
1. Chemical context
1,4-Di([2,2′:6′,2′′-terpyridin]-4′-yl)benzene has been used as a ligand in the formation of mononuclear complexes (Santoni et al., 2013; Laramée-Milette & Hanan, 2017), binuclear complexes (Santoni et al., 2013; Schmittel et al.,2006; Maekawa et al., 2004), tetranuclear complexes (Schmittel et al., 2005), one-dimensional coordination polymers (Koo et al., 2003), two-dimensional coordination polymers (Bulut et al., 2015; Jones et al. (2010), and numerous metallo-supramolecular polymers (without reported crystal structures), see for example: Vaduvescu & Potvin, 2004; Nishimori et al., 2007; Han et al., 2008; Schwarz et al., 2010; Ding et al., 2012; Muronoi et al., 2013; Szczerba et al., 2014; Munzert et al., 2016; Meded et al., 2017; Bera et al., 2018.
A search of the Cambridge Structural Database (CSD, Version 5.40, update August 2019; Groom et al., 2016) for the title compound yielded only nine hits (see supporting information), which included the report on the structure of the orthorhombic polymorph, Form II, by Fernandes et al. (2010).
2. Structural commentary
The molecular structure of the title triclinic polymorph (Form I) is illustrated in Fig. 1. The molecule is located about a crystallographic centre of symmetry in the middle of the central benzene ring (C16–C18/C16′–C18′), hence the molecule has a higher symmetry (point group Ci) than that observed for the orthorhombic polymorph, Form II (Fernandes et al., 2010), which has C1. In Form I the side pyridine rings (N2/C6–C10 and N3/C11–C15) are rotated slightly with respect to the central pyridine ring (N1/C1–C5), with dihedral angles of 8.91 (8) and 10.41 (8)°, respectively. Opposite central pyridine rings (N1/C1–C5 and N1′/C1′–C5′) are coplanar by symmetry, and the angle between them and the central benzene ring (C16–C18/C16′–C18′) is 49.98 (8)° [symmetry code: (') −x, −y, −z]. The nitrogen atoms of the pyridine rings inside the 2,2′:6′,2′′-terpyridine (terpy) entities, N3⋯N1⋯N2, lie in trans–trans positions.
In the orthorhombic polymorph, Form II, all the angles between side and central pyridine rings of the terpy units are different (because of the lack of symmetry elements inside the molecule), viz. 24.86 (12) and 5.10 (12)° on one side and 6.30 (11) and 8.21 (12)° on the opposite side. The dihedral angles between the central pyridine rings of the terpy units and the central benzene ring are 34.95 (11) and 36.17 (11)°. A structural overlay of the molecules of the two polymorphs (r.m.s. deviation = 0.0705 Å), illustrating the differences in their conformation, is given in Fig. 2 (Mercury; Macrae et al., 2008).
3. Supramolecular features
In the crystal of the title polymorph, Form I, the molecules stack along the a-, b- and c-axis directions (Fig. 3). They are linked by C—H⋯π interactions (Table 1) and offset π–π interactions, which are summarized in Table 2 for both Form I and Form II. It is interesting to note that the centroid–centroid distances and the offset distances are significantly shorter for Form II. An additional difference between the two polymorphs is the character of stacking: in Form II molecules form several two-dimensional stacks, which are perpendicular to each another, while in Form I the stacking is three-dimensional.
|
4. Hirshfeld surfaces and two-dimensional fingerprint plots
The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17 (Turner et al., 2017). For an excellent explanation of the use of Hirshfeld surface analysis and other calculations to study molecular packing, see the recent article by Tiekink and collaborators (Tan et al., 2019).
The Hirshfeld surfaces are colour-mapped with the normalized contact distance, dnorm, from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii).
The Hirshfeld surface of Forms I and II, mapped over dnorm are given in Fig. 4a and 5a, respectively, where short interatomic contacts are indicated by the faint red spots. The π–π stacking is confirmed by the small blue regions surrounding bright-red spots in the various aromatic rings (Fig. 4b and 5b) on the Hirshfeld surface mapped over the shape-index, and by the flat regions around the aromatic regions in Fig. 4c and 5c, the Hirshfeld surface mapped over the curvedness.
The fingerprint plots for Forms I and II, are given in Figs. 6 and 7. They reveal that the principal intermolecular contacts in the crystal of Form I are H⋯H at 49.4% (Fig. 6b), C⋯H/H⋯C at 24.7% (Fig. 6c), C⋯C at 9.6% (Fig. 6d), N⋯H/H⋯N at 9.4% (Fig. 6e) and C⋯N at 6.2% (Fig. 6f).
The principal intermolecular contacts in the crystal of Form II are H⋯H at 43.3% (Fig. 7b), C⋯H/H⋯C at 30.6% (Fig. 7c), N⋯H/H⋯N at 13.3% (Fig. 7d), C⋯C at 8.3% (Fig. 7e) and C⋯N at 4.3% (Fig. 7f). Here, the C⋯H/H⋯C and N⋯H/H⋯N contacts at 30.6 and 13.3%, respectively, are more important than those in Form I at 24.7 and 9.4%, respectively.
5. Synthesis and crystallization
1,4-Bis([2,2′:6′,2′′-terpyridin]-4′-yl)benzene was synthesized according to the literature procedure (Winter et al., 2006). YCl3 (99.9%, Strem) was purchased and used as received. Solvents (DMF, toluene) were dried using standard techniques and stored with molecular sieves in flasks with a J. Young valve.
YCl3 (2 mg, 0.01 mmol), 1,4-bis([2,2′:6′,2′′-terpyridin]-4′-yl)benzene (0.5 mg, 0.001 mmol) and 1 ml DMF were filled together under inert conditions in a self-made Duran(R) glass ampoule (outer ø 10 mm, wall thickness 1 mm). The ampoule was sealed under vacuum and placed in a resistance heating oven with a thermal control (Eurotherm 2416). The heating program was as follows: heating up to 503 K in 30 min, holding temperature for 8 h, cooling down to RT uncontrollably. The ampoule was then taken out of the oven and a star-like net of needle-shaped single crystals was observed. The ampoule was heated again as previously but up to 523 K and then cooled down to RT uncontrollably. Now only a few plate-shaped single crystals were present. The ampoule was unsealed, the solution removed and the remaining single crystals were washed with toluene (1 ml).
6. Refinement
Crystal data, data collection and structure . The H atoms were included in calculated positions and refined as riding on the parent C atom: C—H = 0.95 Å with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 3
|
Supporting information
CCDC reference: 1967605
https://doi.org/10.1107/S2056989019015810/su5525sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019015810/su5525Isup2.hkl
CSD search. DOI: https://doi.org/10.1107/S2056989019015810/su5525sup3.pdf
Supporting information file. DOI: https://doi.org/10.1107/S2056989019015810/su5525Isup4.cml
Data collection: APEX3 (Bruker, 2017); cell
SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: shelXle (Hübschle et al., 2011) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).C36H24N6 | Z = 1 |
Mr = 540.61 | F(000) = 282 |
Triclinic, P1 | Dx = 1.368 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.312 (2) Å | Cell parameters from 3259 reflections |
b = 8.847 (3) Å | θ = 2.5–27.1° |
c = 11.039 (3) Å | µ = 0.08 mm−1 |
α = 100.050 (7)° | T = 100 K |
β = 102.247 (6)° | Plate, colourless |
γ = 104.314 (7)° | 0.53 × 0.30 × 0.23 mm |
V = 656.4 (3) Å3 |
Bruker X8 APEXII diffractometer | 2918 independent reflections |
Radiation source: rotating-anode (Nonius FR-591) | 1953 reflections with I > 2σ(I) |
Multi-layer mirror monochromator | Rint = 0.049 |
Detector resolution: 8.333 pixels mm-1 | θmax = 27.2°, θmin = 1.9° |
φ and ω scans | h = −9→5 |
Absorption correction: multi-scan (SADABS; Bruker, 2017) | k = −11→11 |
Tmin = 0.764, Tmax = 0.958 | l = −14→14 |
10437 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.133 | H-atom parameters constrained |
S = 1.09 | w = 1/[\s2(Fo2) + (0.0552P)2 + 0.1381P] where P = (Fo2 + 2Fc2)/3 |
2918 reflections | (Δ/σ)max < 0.001 |
190 parameters | Δρmax = 0.27 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.31314 (19) | 0.57168 (16) | 0.39738 (13) | 0.0184 (3) | |
N2 | 0.4458 (2) | 0.73483 (17) | 0.13929 (13) | 0.0213 (3) | |
N3 | 0.0878 (2) | 0.29403 (17) | 0.56336 (13) | 0.0227 (4) | |
C1 | 0.3286 (2) | 0.5741 (2) | 0.27836 (16) | 0.0180 (4) | |
C2 | 0.2523 (2) | 0.4377 (2) | 0.17767 (16) | 0.0183 (4) | |
H2 | 0.260141 | 0.444780 | 0.093931 | 0.022* | |
C3 | 0.1647 (2) | 0.2912 (2) | 0.20071 (15) | 0.0178 (4) | |
C4 | 0.1538 (2) | 0.2879 (2) | 0.32419 (16) | 0.0190 (4) | |
H4 | 0.098885 | 0.189236 | 0.344145 | 0.023* | |
C5 | 0.2242 (2) | 0.4309 (2) | 0.41872 (15) | 0.0170 (4) | |
C6 | 0.4396 (2) | 0.7297 (2) | 0.25945 (15) | 0.0177 (4) | |
C7 | 0.5401 (2) | 0.8601 (2) | 0.36334 (16) | 0.0223 (4) | |
H7 | 0.531212 | 0.853493 | 0.446984 | 0.027* | |
C8 | 0.6527 (2) | 0.9991 (2) | 0.34305 (18) | 0.0261 (4) | |
H8 | 0.722880 | 1.089152 | 0.412386 | 0.031* | |
C9 | 0.6610 (2) | 1.0042 (2) | 0.22011 (17) | 0.0245 (4) | |
H9 | 0.737656 | 1.097586 | 0.203028 | 0.029* | |
C10 | 0.5551 (2) | 0.8702 (2) | 0.12213 (17) | 0.0236 (4) | |
H10 | 0.560586 | 0.875011 | 0.037631 | 0.028* | |
C11 | 0.2008 (2) | 0.4309 (2) | 0.54952 (15) | 0.0187 (4) | |
C12 | 0.2926 (2) | 0.5660 (2) | 0.65033 (16) | 0.0220 (4) | |
H12 | 0.370162 | 0.661960 | 0.637260 | 0.026* | |
C13 | 0.2681 (3) | 0.5569 (2) | 0.77001 (17) | 0.0267 (4) | |
H13 | 0.330137 | 0.646686 | 0.840845 | 0.032* | |
C14 | 0.1533 (3) | 0.4169 (2) | 0.78556 (17) | 0.0270 (4) | |
H14 | 0.134352 | 0.408052 | 0.866839 | 0.032* | |
C15 | 0.0662 (3) | 0.2893 (2) | 0.67977 (17) | 0.0277 (4) | |
H15 | −0.013662 | 0.192846 | 0.690615 | 0.033* | |
C16 | 0.0823 (2) | 0.14143 (19) | 0.09699 (15) | 0.0178 (4) | |
C17 | 0.1252 (2) | 0.0007 (2) | 0.11349 (16) | 0.0197 (4) | |
H17 | 0.210899 | 0.000508 | 0.191289 | 0.024* | |
C18 | −0.0443 (2) | 0.1397 (2) | −0.01748 (15) | 0.0200 (4) | |
H18 | −0.075227 | 0.234999 | −0.029841 | 0.024* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0168 (7) | 0.0215 (8) | 0.0160 (8) | 0.0058 (6) | 0.0032 (6) | 0.0033 (6) |
N2 | 0.0215 (7) | 0.0226 (8) | 0.0191 (8) | 0.0060 (6) | 0.0045 (6) | 0.0053 (6) |
N3 | 0.0234 (8) | 0.0268 (8) | 0.0182 (8) | 0.0065 (6) | 0.0064 (6) | 0.0063 (6) |
C1 | 0.0136 (8) | 0.0223 (9) | 0.0174 (9) | 0.0066 (7) | 0.0024 (7) | 0.0035 (7) |
C2 | 0.0162 (8) | 0.0247 (9) | 0.0129 (9) | 0.0049 (7) | 0.0033 (7) | 0.0036 (7) |
C3 | 0.0136 (8) | 0.0216 (9) | 0.0162 (9) | 0.0054 (7) | 0.0021 (7) | 0.0013 (7) |
C4 | 0.0158 (8) | 0.0198 (9) | 0.0201 (9) | 0.0039 (7) | 0.0039 (7) | 0.0044 (7) |
C5 | 0.0129 (8) | 0.0217 (9) | 0.0144 (9) | 0.0048 (7) | 0.0017 (6) | 0.0018 (7) |
C6 | 0.0140 (8) | 0.0208 (9) | 0.0179 (9) | 0.0062 (7) | 0.0034 (7) | 0.0034 (7) |
C7 | 0.0216 (9) | 0.0241 (9) | 0.0187 (9) | 0.0049 (7) | 0.0047 (7) | 0.0017 (7) |
C8 | 0.0213 (9) | 0.0216 (10) | 0.0287 (11) | 0.0023 (7) | 0.0029 (8) | −0.0002 (8) |
C9 | 0.0191 (8) | 0.0220 (9) | 0.0308 (11) | 0.0029 (7) | 0.0066 (8) | 0.0072 (8) |
C10 | 0.0229 (9) | 0.0269 (10) | 0.0223 (10) | 0.0071 (8) | 0.0066 (7) | 0.0089 (8) |
C11 | 0.0156 (8) | 0.0234 (9) | 0.0171 (9) | 0.0081 (7) | 0.0021 (7) | 0.0040 (7) |
C12 | 0.0205 (9) | 0.0250 (10) | 0.0193 (9) | 0.0080 (7) | 0.0034 (7) | 0.0031 (8) |
C13 | 0.0263 (9) | 0.0344 (11) | 0.0188 (10) | 0.0144 (8) | 0.0022 (8) | 0.0018 (8) |
C14 | 0.0277 (9) | 0.0431 (12) | 0.0157 (9) | 0.0169 (9) | 0.0081 (8) | 0.0089 (8) |
C15 | 0.0285 (10) | 0.0344 (11) | 0.0238 (10) | 0.0096 (8) | 0.0097 (8) | 0.0123 (9) |
C16 | 0.0148 (8) | 0.0207 (9) | 0.0154 (9) | 0.0011 (7) | 0.0054 (7) | 0.0019 (7) |
C17 | 0.0172 (8) | 0.0264 (9) | 0.0132 (9) | 0.0052 (7) | 0.0020 (6) | 0.0030 (7) |
C18 | 0.0201 (8) | 0.0200 (9) | 0.0191 (9) | 0.0052 (7) | 0.0051 (7) | 0.0040 (7) |
N1—C5 | 1.340 (2) | C8—C9 | 1.379 (3) |
N1—C1 | 1.346 (2) | C8—H8 | 0.9500 |
N2—C10 | 1.334 (2) | C9—C10 | 1.385 (2) |
N2—C6 | 1.345 (2) | C9—H9 | 0.9500 |
N3—C15 | 1.334 (2) | C10—H10 | 0.9500 |
N3—C11 | 1.340 (2) | C11—C12 | 1.393 (2) |
C1—C2 | 1.393 (2) | C12—C13 | 1.384 (2) |
C1—C6 | 1.489 (2) | C12—H12 | 0.9500 |
C2—C3 | 1.389 (2) | C13—C14 | 1.374 (3) |
C2—H2 | 0.9500 | C13—H13 | 0.9500 |
C3—C4 | 1.387 (2) | C14—C15 | 1.383 (3) |
C3—C16 | 1.487 (2) | C14—H14 | 0.9500 |
C4—C5 | 1.395 (2) | C15—H15 | 0.9500 |
C4—H4 | 0.9500 | C16—C17 | 1.389 (2) |
C5—C11 | 1.490 (2) | C16—C18 | 1.394 (2) |
C6—C7 | 1.396 (2) | C17—C18i | 1.388 (2) |
C7—C8 | 1.383 (2) | C17—H17 | 0.9500 |
C7—H7 | 0.9500 | C18—H18 | 0.9500 |
C5—N1—C1 | 117.93 (14) | C10—C9—H9 | 120.7 |
C10—N2—C6 | 117.38 (14) | N2—C10—C9 | 123.93 (17) |
C15—N3—C11 | 117.47 (15) | N2—C10—H10 | 118.0 |
N1—C1—C2 | 122.49 (15) | C9—C10—H10 | 118.0 |
N1—C1—C6 | 116.71 (14) | N3—C11—C12 | 122.76 (16) |
C2—C1—C6 | 120.75 (15) | N3—C11—C5 | 115.99 (14) |
C3—C2—C1 | 119.43 (15) | C12—C11—C5 | 121.25 (15) |
C3—C2—H2 | 120.3 | C13—C12—C11 | 118.34 (17) |
C1—C2—H2 | 120.3 | C13—C12—H12 | 120.8 |
C4—C3—C2 | 118.00 (15) | C11—C12—H12 | 120.8 |
C4—C3—C16 | 120.29 (15) | C14—C13—C12 | 119.44 (17) |
C2—C3—C16 | 121.70 (15) | C14—C13—H13 | 120.3 |
C3—C4—C5 | 119.28 (16) | C12—C13—H13 | 120.3 |
C3—C4—H4 | 120.4 | C13—C14—C15 | 118.26 (17) |
C5—C4—H4 | 120.4 | C13—C14—H14 | 120.9 |
N1—C5—C4 | 122.72 (15) | C15—C14—H14 | 120.9 |
N1—C5—C11 | 117.46 (14) | N3—C15—C14 | 123.72 (18) |
C4—C5—C11 | 119.82 (15) | N3—C15—H15 | 118.1 |
N2—C6—C7 | 122.30 (16) | C14—C15—H15 | 118.1 |
N2—C6—C1 | 116.79 (14) | C17—C16—C18 | 119.01 (15) |
C7—C6—C1 | 120.83 (15) | C17—C16—C3 | 120.93 (15) |
C8—C7—C6 | 119.20 (16) | C18—C16—C3 | 120.04 (15) |
C8—C7—H7 | 120.4 | C18i—C17—C16 | 120.68 (16) |
C6—C7—H7 | 120.4 | C18i—C17—H17 | 119.7 |
C9—C8—C7 | 118.65 (16) | C16—C17—H17 | 119.7 |
C9—C8—H8 | 120.7 | C17i—C18—C16 | 120.31 (16) |
C7—C8—H8 | 120.7 | C17i—C18—H18 | 119.8 |
C8—C9—C10 | 118.53 (16) | C16—C18—H18 | 119.8 |
C8—C9—H9 | 120.7 |
Symmetry code: (i) −x, −y, −z. |
Cg2 is the centroid of the N2/C6–C10 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C17—H17···Cg2ii | 0.96 | 2.99 | 3.682 (2) | 131 |
Symmetry code: (ii) x, y−1, z. |
Form I: Cg1, Cg2 and Cg3 are the centroids of the N1/C1–C5, N2/C6–C10 and N3/C11–C15 rings, respectively. Form II: Cg1 and Cg2 are the centroids of the N1/C1–C5 and N2/C6–C10 rings, respectively (Fernandes et al., 2010). |
CgI | CgJ | CgI···CgJ | α | β | γ | CgI_Perp | CgJ_Perp | offset |
Form I | ||||||||
Cg1 | Cg3ii | 3.6421 (16) | 8.91 (8) | 18.6 | 17.9 | 3.4648 (6) | 3.4525 (8) | 1.160 |
Cg2 | Cg3iii | 3.7813 (16) | 4.43 (8) | 26.0 | 24.8 | 3.4312 (7) | 3.3990 (8) | 1.657 |
Form II | ||||||||
Cg1 | Cg2iv | 3.5138 (15) | 4.20 (12) | 10.9 | 14.9 | 3.3963 (12) | 3.4501 (9) | 0.666 |
Cg2 | Cg1v | 3.5140 (15) | 4.20 (12) | 14.9 | 10.9 | 3.4503 (9) | 3.3963 (12) | 0.902 |
Symmetry codes (ii) -x, -y + 1, -z + 1; (iii) -x + 1, -y + 1, -z + 1; (iv) x - 1/2, -y, z; (v) x + 1/2, -y, z. |
Funding information
Funding for this research was provided by: Studienstiftung des Deutschen Volkes (scholarship to Alexander E. Sedykh).
References
Bera, M. K., Chakraborty, C., Rana, U. & Higuchi, M. (2018). Macromol. Rapid Commun. 39, 2–7. CrossRef Google Scholar
Bruker (2017). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bulut, A., Zorlu, Y., Kirpi, E. E., Çetinkaya, A., Wörle, M., Beckmann, J. & Yücesan, G. (2015). Cryst. Growth Des. 15, 5665–5669. CSD CrossRef CAS Google Scholar
Ding, Y., Yang, Y., Yang, L., Yan, Y., Huang, J. & Cohen Stuart, M. A. (2012). ACS Nano, 6, 1004–1010. CrossRef CAS PubMed Google Scholar
Fernandes, J. A., Almeida Paz, F. A., Lima, P. P., Alves, S. Jr & Carlos, L. D. (2010). Acta Cryst. E66, o3241–o3242. CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Han, F. S., Higuchi, M. & Kurth, D. G. (2008). J. Am. Chem. Soc. 130, 2073–2081. Web of Science CSD CrossRef PubMed CAS Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Jones, S., Liu, H., Ouellette, W., Schmidtke, K., O'Connor, C. J. & Zubieta, J. (2010). Inorg. Chem. Commun. 13, 491–494. Web of Science CSD CrossRef CAS Google Scholar
Koo, B.-K., Bewley, L., Golub, V., Rarig, R. S., Burkholder, E., O'Connor, C. J. & Zubieta, J. (2003). Inorg. Chim. Acta, 351, 167–176. Web of Science CSD CrossRef CAS Google Scholar
Laramée-Milette, B. & Hanan, G. S. (2017). Chem. Commun. 53, 10496–10499. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Maekawa, M., Minematsu, T., Konaka, H., Sugimoto, K., Kuroda-Sowa, T., Suenaga, Y. & Munakata, M. (2004). Inorg. Chim. Acta, 357, 3456–3472. CSD CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Meded, V., Knorr, N., Neumann, T., Nelles, G., Wenzel, W. & von Wrochem, F. (2017). Phys. Chem. Chem. Phys. 19, 27952–27959. CrossRef CAS PubMed Google Scholar
Munzert, S. M., Schwarz, G. & Kurth, D. G. (2016). Inorg. Chem. 55, 2565–2573. CrossRef CAS PubMed Google Scholar
Muronoi, Y., Zhang, J., Higuchi, M. & Maki, H. (2013). Chem. Lett. 42, 761–763. CrossRef CAS Google Scholar
Nishimori, Y., Kanaizuka, K., Murata, M. & Nishihara, H. (2007). Chem. Asian J. 2, 367–376. CrossRef PubMed CAS Google Scholar
Santoni, M.-P., Nastasi, F., Campagna, S., Hanan, G. S., Hasenknopf, B. & Ciofini, I. (2013). Dalton Trans. 42, 5281–5291. CSD CrossRef CAS PubMed Google Scholar
Schmittel, M., Kalsani, V., Kishore, R. S. K., Cölfen, H. & Bats, J. W. (2005). J. Am. Chem. Soc. 127, 11544–11545. Web of Science CSD CrossRef PubMed CAS Google Scholar
Schmittel, M., Kalsani, V., Mal, P. & Bats, J. W. (2006). Inorg. Chem. 45, 6370–6377. Web of Science CSD CrossRef PubMed CAS Google Scholar
Schwarz, G., Bodenthin, Y., Geue, T., Koetz, J. & Kurth, D. G. (2010). Macromolecules, 43, 494–500. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Szczerba, W., Schott, M., Riesemeier, H., Thünemann, A. F. & Kurth, D. G. (2014). Phys. Chem. Chem. Phys. 16, 19694–19701. CrossRef CAS PubMed Google Scholar
Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net Google Scholar
Vaduvescu, S. & Potvin, P. G. (2004). Eur. J. Inorg. Chem. pp. 1763–1769. CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Winter, A., van den Berg, A., Hoogenboom, R., Kickelbick, G. & Schubert, U. S. (2006). Synthesis, pp. 2873–2878. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.