research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tris­­[bis­­(2,6-diiso­propyl­phen­yl) phosphato-κO]penta­kis­(methanol-κO)europium methanol monosolvate

CROSSMARK_Color_square_no_text.svg

aA.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, Moscow, 119991, Russian Federation, bMoscow Institute of Physics and Technology, Department of Biological and Medical Physics, 9 Institutskiy Per., Dolgoprudny, Moscow Region, 141701, Russian Federation, cG.V. Plekhanov Russian University of Economics, 36, Stremyanny Per., Moscow, 117997, Russian Federation, dChemistry Department, M.V. Lomonosov Moscow State University, 1 Leninskie Gory, Building 3, Moscow, 119991, Russian Federation, eN.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow, 119991, Russian Federation, fV.A. Kotel'nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, 11-7 Mokhovaya Str., Moscow, 125009, Russian Federation, and gP.N. Lebedev Physical Institute, Russian Academy of Sciences, 53 Leninsky Prospect, Moscow 119991, Russian Federation
*Correspondence e-mail: mminyaev@mail.ru

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 6 November 2019; accepted 14 November 2019; online 19 November 2019)

The mononuclear title complex, [Eu(C24H34O4P)3(CH4O)5]·CH4O, (1), has been obtained as a minor product in the reaction between EuCl3(H2O)6 and lithium bis­(2,6-diiso­propyl­phen­yl) phosphate in a 1:3 molar ratio in a methanol medium. Its structure exhibits monoclinic (P21/c) symmetry at 120 K and is isostructural with the La, Ce and Nd analogs reported previously [Minyaev et al. (2018a[Minyaev, M. E., Tavtorkin, A. N., Korchagina, S. A., Bondarenko, G. N., Churakov, A. V. & Nifant'ev, I. E. (2018a). Acta Cryst. C74, 590-598.]). Acta Cryst. C74, 590–598]. In (1), all three bis­(2,6-diiso­propyl­phen­yl) phosphate ligands display the terminal κ1O-coordination mode. All of the hy­droxy H atoms are involved in O—H⋯O hydrogen bonding, exhibiting four intra­molecular and two inter­molecular hydrogen bonds. Photophysical studies have demonstrated luminescence of (1) with a low quantum yield.

1. Chemical context

Rare-earth complexes with organic ligands are widely used as reagents, catalysts or precatalysts in organic synthesis or in various polymerization reactions and even in technological processes. For example, complexes with organophosphate ligands are used in the polymerization of 1,3-dienes (Anwander, 2002[Anwander, R. (2002). Applied Homogeneous Catalysis with Organometallic Compounds, edited by B. Cornils & W. A. Herrmann, pp. 974-1013. Weinheim: Wiley-VCH.]; Friebe et al., 2006[Friebe, L., Nuyken, O. & Obrecht, W. (2006). Adv. Polym. Sci. 204, 1-154.]; Kobayashi & Anwander, 2001[Kobayashi, S. & Anwander, R. (2001). Lanthanides: Chemistry and Use in Organic Synthesis. Topics in Organometallic Chemistry, Vol. 2, pp. 1-307. Berlin, Heidelberg: Springer-Verlag.]; Minyaev et al., 2018a[Minyaev, M. E., Tavtorkin, A. N., Korchagina, S. A., Bondarenko, G. N., Churakov, A. V. & Nifant'ev, I. E. (2018a). Acta Cryst. C74, 590-598.],b[Minyaev, M. E., Korchagina, S. A., Tavtorkin, A. N., Churakov, A. V. & Nifant'ev, I. E. (2018b). Acta Cryst. C74, 673-682.],c[Minyaev, M. E., Korchagina, S. A., Tavtorkin, A. N., Kostitsyna, N. N., Churakov, A. V. & Nifant'ev, I. E. (2018c). Struct. Chem. 29, 1475-1487.]; Nifant'ev et al., 2013[Nifant'ev, I. E., Tavtorkin, A. N., Shlyahtin, A. V., Korchagina, S. A., Gavrilenko, I. F., Glebova, N. N. & Churakov, A. V. (2013). Dalton Trans. 42, 1223-1230.], 2014[Nifant'ev, I. E., Tavtorkin, A. N., Korchagina, S. A., Gavrilenko, I. F., Glebova, N. N., Kostitsyna, N. N., Yakovlev, V. A., Bondarenko, G. N. & Filatova, M. P. (2014). Appl. Catal. Gen. 478, 219-227.]; Zhang et al., 2010[Zhang, Z., Cui, D., Wang, B., Liu, B. & Yang, Y. (2010). Struct. Bond. 137, 49-108.]). Rare-earth organophosphates are also formed during the isolation and separation of lanthanides in industry (Atwood, 2016[Atwood, D. A. (2016). Sustainable Inorganic Chemistry. New York: Wiley.]; Chen, 2016[Chen, J. (2016). Application of Ionic Liquids on Rare Earth Green Separation and Utilization. Berlin, Heidelberg: Springer-Verlag.]).

The luminescence of coordination compounds of certain lanthanide cations (Eu3+, Tb3+, Dy3+, Nd3+ etc.) is well-known (Bünzli, 2017[Bünzli, J. G. (2017). Eur. J. Inorg. Chem. pp. 5058-5063.]); however, the photophysical properties of rare-earth organophosphates have not been reported so far. Meanwhile, a so-called `antenna' ligand possessing a conjugated π-electron system may increase the quantum yield of lanthanide complexes dramatically (Bünzli & Piguet, 2005[Bünzli, J. G. & Piguet, C. (2005). Chem. Soc. Rev. 34, 1048-1077.]; Guillou et al., 2016[Guillou, O., Daiguebonne, C., Calvez, G. & Bernot, K. (2016). Acc. Chem. Res. 49, 844-856.]). In order to examine the possibility of applying a disubstituted organophosphate anion as an `antenna' ligand for luminescence sensitization, we have chosen the bis­(2,6-diiso­propyl­phen­yl) phosphate anion, which allows single crystals of mono- and binuclear rare-earth complexes to be obtained (Minyaev et al., 2017[Minyaev, M. E., Nifant'ev, I. E., Tavtorkin, A. N., Korchagina, S. A., Zeynalova, S. S., Ananyev, I. V. & Churakov, A. V. (2017). Acta Cryst. C73, 820-827.], 2018a[Minyaev, M. E., Tavtorkin, A. N., Korchagina, S. A., Bondarenko, G. N., Churakov, A. V. & Nifant'ev, I. E. (2018a). Acta Cryst. C74, 590-598.],b[Minyaev, M. E., Korchagina, S. A., Tavtorkin, A. N., Churakov, A. V. & Nifant'ev, I. E. (2018b). Acta Cryst. C74, 673-682.]), unlike most other di(alk­yl/ar­yl) phosphate ligands that do not provide crystallizable lanthanide compounds. Mononuclear rare-earth com­plexes with this ligand form two isotructural series of bis- and tris­(phosphate) complexes: {Ln[O2P(O-2,6-iPr2C6H3)2]2Cl(CH3OH)4}·2CH3OH (Ln = Nd, Y, Lu; Minyaev et al., 2017[Minyaev, M. E., Nifant'ev, I. E., Tavtorkin, A. N., Korchagina, S. A., Zeynalova, S. S., Ananyev, I. V. & Churakov, A. V. (2017). Acta Cryst. C73, 820-827.]) and {Ln[O2P(O-2,6-iPr2C6H3)2]3(CH3OH)5}·CH3OH (Ln = La, Ce, Nd; Minyaev et al., 2018a[Minyaev, M. E., Tavtorkin, A. N., Korchagina, S. A., Bondarenko, G. N., Churakov, A. V. & Nifant'ev, I. E. (2018a). Acta Cryst. C74, 590-598.]). It was found that the bis­(phosphate) monochloride complex of Nd is thermally unstable in a solution and can be easily converted into the corresponding tris­(phosphate) complex upon mild heating (>310 K) in methanol. Moreover, bis(phosphate) monochloride complexes of lighter lanthanides cannot be obtained. However, the heaviest lanthanide for obtaining the tris(phosphate) complex has not been determined. Herein, we report on the crystal structure and luminescent properties of the complex {Eu[O2P(O-2,6-iPr2C6H3)2]3(CH3OH)5}·CH3OH (1), which bears the heaviest lanthanide within the tris­(phosphate) series (Minyaev et al., 2018a[Minyaev, M. E., Tavtorkin, A. N., Korchagina, S. A., Bondarenko, G. N., Churakov, A. V. & Nifant'ev, I. E. (2018a). Acta Cryst. C74, 590-598.])

[Scheme 1]
.

2. Structural commentary

The asymmetric unit of (1) contains the complex [Eu{O2P(O-2,6-iPr2C6H3)2}2(CH3OH)5] and one non-coordinating methanol mol­ecule (Fig. 1[link]). Selected bond distances in complex (1) are given in Table 1[link]. The Eu3+ cation is coordinated by five methanol mol­ecules and three di­aryl­phosphate ligands displaying the terminal κ1O-coordination mode, which leads to the Eu3+ coordination number of eight. Two phosphate ligands are located close to each other (atoms P1, P2), but the third phosphate ligand (atom P3) is separated from them by the methanol mol­ecules. The complex itself does not have any symmetry element (the C1 point group), but in a rough approximation, the EuO8 core might be thought of as belonging to the Cs point group with a mirror plane passing through atoms Eu1, O9 and O16. This supports the conclusions drawn from photophysical studies about the Eu3+ environment (see §4).

Table 1
Selected bond lengths (Å)

Eu1—O1 2.3915 (14) P2—O7 1.5978 (16)
Eu1—O5 2.3166 (15) P2—O8 1.4923 (17)
Eu1—O9 2.3525 (15) P3—O9 1.5010 (16)
Eu1—O13 2.4374 (16) P3—O10 1.6007 (16)
Eu1—O14 2.4933 (16) P3—O11 1.5970 (16)
Eu1—O15 2.4312 (17) P3—O12 1.4855 (17)
Eu1—O16 2.4664 (17) O2—C1 1.413 (2)
Eu1—O17 2.4665 (16) O3—C13 1.413 (2)
P1—O1 1.4963 (16) O6—C25 1.410 (3)
P1—O2 1.5991 (15) O7—C37 1.402 (3)
P1—O3 1.5935 (16) O10—C49 1.411 (3)
P1—O4 1.4922 (16) O11—C61 1.406 (3)
P2—O5 1.4972 (16) O13—C73 1.420 (3)
P2—O6 1.5938 (16)    
[Figure 1]
Figure 1
Mol­ecular structure of complex (1), with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. For clarity, the solvent methanol mol­ecule and the C-bound H atoms have been omitted. Minor components of the disordered isopropyl group are shown with open solid lines.

The Eu—OP distances are on average 0.11 Å shorter than Eu—OMeOH (Table 1[link]), being in agreement with ion–ion and ion–dipole Ln–ligand inter­action types, accordingly. The phospho­rous atoms are in a distorted tetra­hedral environment. The smallest O—P—O bond angle in each ligand corresponds to the OC—P—OC angle between bulky aryl substituents [99.08 (8)° for O2—P1—O3; 100.80 (9)° for O6—P2—O7, 101.24 (8)° for O10—P3—O11], whereas the largest bond angles are for OLn—P=O [114.89 (9)° for O1—P1—O4, 116.23 (9)° for O5—P2—O8, 116.11 (9)° for O9—P3—O12]. The O—Cipso bond lengths [1.402 (3)–1.413 (2) Å; Table 1[link]] are only slightly shorter (by ∼0.02 Å) than a regular single O—C bond length. The P—OLn and P=O bond lengths are nearly identical and on average 0.10 Å shorter than the P—OC distances. The values of P—O bonds and O—P—O angles indicate a more pronounced double-bond character for the P—OLn and P=O bonds with nearly equal charge redistribution on the two corresponding oxygen atoms (Minyaev et al., 2017[Minyaev, M. E., Nifant'ev, I. E., Tavtorkin, A. N., Korchagina, S. A., Zeynalova, S. S., Ananyev, I. V. & Churakov, A. V. (2017). Acta Cryst. C73, 820-827.]). A roughly single-bond character for both the O—Cipso and P—OC bonds indicates no conjugation between the aryl fragments and the phosphorus atom and consequently prevents charge transfer from aryl groups to Eu3+. Therefore, the chosen organophosphate is inapplicable as an `antenna' ligand, which is in agreement with the rather low quantum yield of the complex (see §4).

3. Supra­molecular features

Complex (1) forms four intra­molecular O—H⋯O hydrogen bonds and two inter­molecular hydrogen bonds with one non-coordinating methanol mol­ecule, yielding a mol­ecular associate {[(O2P(OAr)2)3Eu(MeOH)5]·MeOH} (Fig. 2[link], Table 2[link]). The presence of the two-dimensional hydrogen-bonding network in bis­(diaryl phosphate) complexes [Ln(O2P(OAr)2)2Cl(CH3OH)4]·2CH3OH (Minyaev et al., 2017[Minyaev, M. E., Nifant'ev, I. E., Tavtorkin, A. N., Korchagina, S. A., Zeynalova, S. S., Ananyev, I. V. & Churakov, A. V. (2017). Acta Cryst. C73, 820-827.]) substanti­ally decreases their solubility compared to tris­(diaryl phosphate) complexes [Ln(O2P(OAr)2)3(CH3OH)5]·CH3OH, which do not have such a network, and which are soluble in aromatic and aliphatic hydro­carbons (Minyaev et al., 2018a[Minyaev, M. E., Tavtorkin, A. N., Korchagina, S. A., Bondarenko, G. N., Churakov, A. V. & Nifant'ev, I. E. (2018a). Acta Cryst. C74, 590-598.]). Likely due to both this fact and incomplete reaction, the precipitate contains complex (2) as a major product (see §5, Fig. 4[link]), which is isostructural to the bis­(diaryl phosphate) monochloride complexes.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H79⋯O12 0.81 (3) 1.83 (3) 2.632 (2) 171 (3)
O14—H80⋯O4 0.76 (3) 2.27 (3) 2.941 (2) 148 (3)
O15—H81⋯O4 0.82 (3) 1.79 (3) 2.583 (2) 160 (3)
O16—H82⋯O18 0.82 (3) 1.86 (3) 2.684 (3) 178 (4)
O17—H83⋯O8 0.82 (3) 1.99 (3) 2.783 (2) 165 (3)
O18—H84⋯O8 0.82 (4) 1.94 (4) 2.723 (3) 160 (4)
[Figure 2]
Figure 2
Intra- and inter­molecular O—H⋯O bonding in the crystal structure of complex (1). Only core atoms and hy­droxy H atoms are shown. Atomic displacement parameters are set to the 50% probability level.
[Figure 4]
Figure 4
Synthesis of {Eu[O2P(O-2,6-iPr2C6H3)2]3(CH3OH)5}·CH3OH, (1), and {Eu[O2P(O-2,6-iPr2C6H3)2]2Cl(CH3OH)4}·CH3OH (2).

4. Luminescence studies

The steady-state luminescence excitation spectrum of (1) (Fig. 3[link]a) was recorded in the spectroscopic range from 250 to 600 nm with emission monitored on the hypersensitive 5D07F2 transition at 612 nm. This spectrum consists of narrow bands assigned to the 4f–4f intra­configurational transitions and a broad band centered around 350 nm. The latter could be tentatively assigned to an inter­ligand charge-transfer (ILCT) band due to the presence of the anion-assisted strong hydrogen bonding between coordinated methanol mol­ecules and oxygen atoms at the O=P bonds of the organophosphate ligands (see §3 and Fig. 2[link]). A similar charge-transfer band was observed in the case of lanthanide triflates, where the charge redistribution caused by inter­molecular hydrogen bonds resulting in an additional CT state was found and confirmed by combined research of luminescence data and the experimental electron density distribution function analysis (Nelyubina et al., 2014[Nelyubina, Y. V., Puntus, L. N. & Lyssenko, K. A. (2014). Chem. Eur. J. 20, 2860-2865.]).

[Figure 3]
Figure 3
Luminescence excitation spectrum (a), and luminescence spectrum (b), of complex (1) at 300 K.

The emission spectrum of (1) (Fig. 3[link]b), recorded in the range from 400 to 720 nm under excitation at 394 nm (7F05L6 transition), exhibits intense narrow bands corres­ponding to the 5D07FJ transitions (J = 0–4). These electronic transitions display the maximum possible number of Stark components pointing to a low site symmetry for Eu3+, i.e. equal to or lower than C2v. Generally, the intensities and Stark splittings of the 5D07FJ transitions are influenced by the strength and symmetry of the ligand. A forbidden 5D07F0 transition (region 570–585 nm) of the Eu3+ cation is presented by a relatively intense symmetric line that indicates the presence of only one type of Eu environment. The integrated intensity of this transition is 0.13, which corresponds to a relatively strong deviation of the Eu3+ site symmetry from Ci. The electric dipole 5D07F2 transition (region 600–620 nm) is extremely sensitive to the symmetry of the europium surroundings and called hypersensitive, and so the ratio of integrated intensities of the 5D07F2 transition to 5D07F1 is a measure of the symmetry of the coordination sphere. In a centrosymmetric environment the magnetic dipole 5D07F1 transition is dominating and the above ratio is < 1, while the distortion of the symmetry around the ion causes an intensity enhancement of the 5D07F2 transition. In (1), this ratio equals 5, which points to a remarkable deviation from a centrosymmetric environment of the Eu3+ ion. These facts correlate with the found site symmetry for Eu3+ from the X-ray data (see Figs. 1[link] and 2[link]). The high intensity of the first Stark component of the 5D07F2 transition at 300 K can potentially be used for obtaining a relatively high colour purity (the line at 610 nm, ∼50% of the total integrated intensity). Furthermore, a weak broad band was observed in this spectrum in the region 400–550 nm, indicating the residual luminescence of the ligands. Consequently, the overall quantum yield is quite low for the complex (∼2.5%), which prevents the use of complex (1) in luminescent applications.

5. Synthesis

Complex (1) was obtained as a minor product in the reaction of lithium bis­(2,6-diiso­propyl­phen­yl) phosphate with EuCl3(H2O)6 in a 3:1 ratio in methanol at room temperature (Fig. 4[link]). Only a few single crystal samples were represented by analytically pure (1), whereas the precipitated bulk microcrystalline product was a mixture and mainly contained {Eu[O2P(O-2,6-iPr2C6H3)2]2Cl(CH3OH)4}·CH3OH (2), according to IR and C/H analysis. The structure and photophysical properties of (2) will be reported elsewhere. Attempts to isolate (1) as the only product in this reaction failed. Furthermore, attempts to synthesize and grow single crystals of the analogous Tb and Gd tris­(phosphate) complexes failed as well. Therefore, the isostructural complexes {Ln[O2P(O-2,6-iPr2C6H3)2]3(CH3OH)5}·CH3OH can only be obtained for lanthanides from La to Eu.

5.1. General experimental remarks

The synthesis of (1) was carried out under an argon atmosphere. Methanol was distilled over Ca/Mg alloy and stored over mol­ecular sieves (4 Å). The salt [{(2,6-iPr2C6H3-O)2POO}Li(MeOH)3]·MeOH was prepared according to the literature (Minyaev et al., 2015[Minyaev, M. E., Nifant'ev, I. E., Tavtorkin, A. N., Korchagina, S. A. & Zeynalova, S. S. (2015). Acta Cryst. E71, 443-446.]). C/H elemental analysis was performed with a PerkinElmer 2400 Series II elemental analyser. Steady-state luminescence and excitation measurements in the visible region were performed with a Fluoro­log FL 3-22 spectrometer from Horiba–Jobin–Yvon–Spex, which has a 450 W xenon lamp as the excitation source and an R-928 photomultiplier. The quantum yield measurements were carried out on solid samples with a Spectralone-covered G8 integration sphere (GMP SA, Switzerland) under ligand excitation, according to the absolute method by Wrighton (Wrighton et al., 1974[Wrighton, M. S., Ginley, D. S. & Morse, D. L. (1974). J. Phys. Chem. 78, 2229-2233.]; de Mello et al., 1997[Mello, J. C. de, Wittmann, H. F. & Friend, R. H. (1997). Adv. Mater. 9, 230-232.]; Greenham et al., 1995[Greenham, N. C., Samuel, I. D. W., Hayes, G. R., Phillips, R. T., Kessener, Y. A. R. R., Moratti, S. C., Holmes, A. B. & Friend, R. H. (1995). Chem. Phys. Lett. 241, 89-96.]).

5.2. Synthetic procedure

A solution of [{(2,6-iPr2C6H3-O)2POO}Li(MeOH)3]·MeOH (3.315 g, 6.00 mmol) in methanol (12 ml) was added to a stirred solution of EuCl3·6H2O (0.733 g, 2.00 mmol) in methanol (5 ml). Then, the reaction mixture was allowed to stand overnight at room temperature. Some single crystals (∼150 mg) that had formed on the walls of the flask were taken for X-ray studies and elemental analysis, which showed that their composition corresponds to (1). Analysis found (calculated for C78H126EuO18P3) (%): C 58.79 (58.67), H 8.02 (7.95).

The remaining reaction mixture was kept at room temperature for 2 days and for 1 day in a freezer (255 K). The formed precipitate was filtered off, washed with cold (268 K) methanol (3 × 5 ml), then dried under vacuum to provide 1.861 g of a microcrystalline product. The C/H elemental analysis and FT IR studies demonstrated that the formed product contains (2) with some impurities of (1) and possibly of the starting lithium salt.

Numerous attempts to obtain (1) as a single product by varying the reaction conditions failed.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The positions of all non-H and hy­droxy H atoms were found from difference electron-density maps. All other H atoms were also found from difference-Fourier maps (with the exception of the disordered fragments) but were positioned geometrically (C—H = 0.95 Å for aromatic, 0.98 Å for methyl, 1.00 Å for tertiary hydrogen atoms) and refined as riding atoms with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms. A rotating group model was applied for the methyl groups. Reflection 100 was affected by the beam stop, and omitted from the final refinement. Atoms C8, C9 and C47, C48 and corresponding H atoms were disordered over two positions in two isopropyl fragments. Since the residual electron density was not enough to properly position minor components of the disordered isopropyl groups, initial positions for corresponding carbon atoms were taken from isostructural compounds (Minyaev et al., 2018a[Minyaev, M. E., Tavtorkin, A. N., Korchagina, S. A., Bondarenko, G. N., Churakov, A. V. & Nifant'ev, I. E. (2018a). Acta Cryst. C74, 590-598.]). This allowed the disorder to be resolved successfully [the disorder ratios are 0.921 (5):0.079 (5) for atoms C8A, C9A / C8B, C9B and 0.879 (6):0.121 (6) for C47A, C48A / C47B, C48B] and to improve the crystallographic model slightly.

Table 3
Experimental details

Crystal data
Chemical formula [Eu(C24H34O4P)3(CH4O)5]·CH4O
Mr 1596.65
Crystal system, space group Monoclinic, P21/c
Temperature (K) 120
a, b, c (Å) 23.4010 (17), 10.6604 (8), 33.543 (2)
β (°) 91.964 (1)
V3) 8363.0 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.87
Crystal size (mm) 0.46 × 0.36 × 0.22
 
Data collection
Diffractometer Bruker APEXII CCD area-detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.644, 0.748
No. of measured, independent and observed [I > 2σ(I)] reflections 158417, 29661, 24028
Rint 0.061
(sin θ/λ)max−1) 0.752
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.091, 1.16
No. of reflections 29661
No. of parameters 973
No. of restraints 12
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.27, −1.33
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2013 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2013 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Tris[bis(2,6-diisopropylphenyl) phosphato-κO]pentakis(methanol-\ κO)europium methanol monosolvate top
Crystal data top
[Eu(C24H34O4P)3(CH4O)5]·CH4OF(000) = 3384
Mr = 1596.65Dx = 1.268 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 23.4010 (17) ÅCell parameters from 9998 reflections
b = 10.6604 (8) Åθ = 2.5–30.2°
c = 33.543 (2) ŵ = 0.87 mm1
β = 91.964 (1)°T = 120 K
V = 8363.0 (11) Å3Block, colorless
Z = 40.46 × 0.36 × 0.22 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
24028 reflections with I > 2σ(I)
Radiation source: X-Ray tubeRint = 0.061
ω scansθmax = 32.3°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 3535
Tmin = 0.644, Tmax = 0.748k = 1516
158417 measured reflectionsl = 5050
29661 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: mixed
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.024P)2 + 8.2744P]
where P = (Fo2 + 2Fc2)/3
29661 reflections(Δ/σ)max = 0.001
973 parametersΔρmax = 1.27 e Å3
12 restraintsΔρmin = 1.33 e Å3
Special details top

Experimental. moisture sensitive

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Eu10.21264 (2)0.01198 (2)0.12253 (2)0.01371 (3)
P10.30150 (2)0.10405 (5)0.04210 (2)0.01430 (10)
P20.28809 (2)0.07752 (5)0.21773 (2)0.01634 (10)
P30.09000 (2)0.19974 (5)0.12637 (2)0.01590 (10)
O10.29035 (6)0.09169 (14)0.08558 (4)0.0172 (3)
O20.32035 (6)0.24664 (13)0.03573 (4)0.0150 (3)
O30.35910 (6)0.03625 (13)0.03007 (5)0.0174 (3)
O40.25347 (7)0.06299 (15)0.01474 (5)0.0196 (3)
O50.27848 (7)0.05181 (14)0.17413 (5)0.0187 (3)
O60.34194 (7)0.16726 (14)0.22491 (5)0.0185 (3)
O70.31298 (7)0.05192 (14)0.23493 (5)0.0204 (3)
O80.23761 (7)0.12372 (15)0.23943 (5)0.0203 (3)
O90.12428 (6)0.09030 (14)0.11230 (5)0.0180 (3)
O100.04631 (6)0.24582 (14)0.09163 (5)0.0177 (3)
O110.04729 (7)0.13794 (15)0.15688 (5)0.0193 (3)
O120.12327 (7)0.30716 (15)0.14321 (5)0.0208 (3)
O130.22177 (7)0.19159 (15)0.15521 (5)0.0223 (3)
O140.23584 (8)0.14526 (16)0.07049 (5)0.0233 (4)
O150.16784 (7)0.08781 (17)0.06066 (5)0.0241 (4)
O160.19455 (8)0.23884 (16)0.12912 (6)0.0267 (4)
O170.15557 (7)0.05522 (16)0.18145 (5)0.0213 (3)
O180.19450 (10)0.33364 (19)0.20326 (7)0.0414 (5)
C10.34644 (9)0.29122 (18)0.00110 (6)0.0156 (4)
C20.31138 (10)0.3397 (2)0.02967 (7)0.0192 (4)
C30.33846 (12)0.3867 (2)0.06304 (7)0.0267 (5)
H3A0.3159910.4186770.0848670.032*
C40.39734 (12)0.3873 (2)0.06481 (7)0.0294 (6)
H4A0.4149620.4187160.0878720.035*
C50.43060 (11)0.3426 (2)0.03324 (7)0.0245 (5)
H5A0.4710460.3447300.0347730.029*
C60.40629 (10)0.29440 (19)0.00091 (7)0.0181 (4)
C70.24736 (10)0.3513 (2)0.02465 (6)0.0234 (5)
H7A0.2342950.2745980.0104050.028*0.921 (5)
H7B0.2366480.3163830.0017390.028*0.079 (5)
C8A0.21244 (15)0.3613 (4)0.06395 (10)0.0450 (9)0.921 (5)
H8A0.1715820.3618020.0584340.067*0.921 (5)
H8B0.2209550.2894010.0809550.067*0.921 (5)
H8C0.2224130.4391270.0776200.067*0.921 (5)
C9A0.23577 (12)0.4649 (3)0.00187 (9)0.0316 (7)0.921 (5)
H9A0.1948860.4689140.0071850.047*0.921 (5)
H9B0.2472450.5417630.0117500.047*0.921 (5)
H9C0.2577490.4567340.0271310.047*0.921 (5)
C8B0.2173 (17)0.278 (4)0.0586 (9)0.0450 (9)0.079 (5)
H8D0.2322230.1921910.0590810.067*0.079 (5)
H8E0.2244180.3192360.0840930.067*0.079 (5)
H8F0.1760990.2759510.0543950.067*0.079 (5)
C9B0.2356 (14)0.4926 (7)0.0262 (12)0.0316 (7)0.079 (5)
H9D0.2586710.5348680.0053440.047*0.079 (5)
H9E0.1949500.5079160.0220010.047*0.079 (5)
H9F0.2455970.5253430.0523890.047*0.079 (5)
C100.44439 (10)0.2534 (2)0.03586 (8)0.0216 (5)
H10A0.4194560.2206240.0571240.026*
C110.48529 (11)0.1481 (2)0.02417 (10)0.0350 (6)
H11A0.4631860.0776800.0129020.052*
H11B0.5073380.1198210.0478560.052*
H11C0.5114550.1795410.0042780.052*
C120.47853 (11)0.3653 (2)0.05312 (8)0.0298 (5)
H12A0.4520340.4311200.0611250.045*
H12B0.5036550.3982960.0328310.045*
H12C0.5016450.3377370.0764150.045*
C130.36357 (9)0.09326 (18)0.02182 (6)0.0146 (4)
C140.34882 (10)0.1371 (2)0.01624 (7)0.0201 (4)
C150.35576 (11)0.2660 (2)0.02265 (8)0.0257 (5)
H15A0.3455940.3000330.0481000.031*
C160.37686 (11)0.3449 (2)0.00683 (8)0.0265 (5)
H16A0.3806070.4321150.0017340.032*
C170.39259 (11)0.2967 (2)0.04389 (8)0.0247 (5)
H17A0.4075410.3514370.0640210.030*
C180.38688 (10)0.1687 (2)0.05227 (7)0.0200 (4)
C190.32908 (11)0.0507 (2)0.05019 (7)0.0254 (5)
H19A0.3211760.0335300.0384650.030*
C200.27450 (14)0.0958 (3)0.07127 (10)0.0480 (8)
H20A0.2446990.1068290.0517350.072*
H20B0.2816370.1761130.0844390.072*
H20C0.2618890.0337680.0912410.072*
C210.37619 (14)0.0344 (4)0.08014 (11)0.0576 (10)
H21A0.3623620.0195210.1020750.086*
H21B0.3867360.1166010.0907280.086*
H21C0.4097210.0042490.0668490.086*
C220.40669 (11)0.1158 (2)0.09240 (7)0.0275 (5)
H22A0.3992490.0234110.0918470.033*
C230.37436 (13)0.1700 (4)0.12613 (9)0.0441 (8)
H23A0.3332580.1578750.1209580.066*
H23B0.3860260.1277420.1510450.066*
H23C0.3826420.2598770.1284440.066*
C240.47118 (13)0.1346 (4)0.09959 (10)0.0496 (9)
H24A0.4915440.1024170.0766790.074*
H24B0.4793690.2242210.1029510.074*
H24C0.4838450.0892610.1237160.074*
C250.34322 (9)0.2981 (2)0.23117 (7)0.0181 (4)
C260.35429 (10)0.3743 (2)0.19848 (7)0.0199 (4)
C270.36167 (11)0.5027 (2)0.20599 (7)0.0259 (5)
H27A0.3695030.5574740.1845210.031*
C280.35777 (12)0.5514 (2)0.24417 (8)0.0295 (5)
H28A0.3630510.6386390.2486840.035*
C290.34625 (11)0.4730 (2)0.27547 (8)0.0273 (5)
H29A0.3431270.5074560.3014230.033*
C300.33900 (10)0.3437 (2)0.27000 (7)0.0212 (4)
C310.35890 (11)0.3194 (2)0.15686 (7)0.0231 (5)
H31A0.3260260.2605260.1523590.028*
C320.41402 (12)0.2435 (3)0.15305 (8)0.0344 (6)
H32A0.4163550.1796080.1740510.052*
H32B0.4470600.2996810.1557690.052*
H32C0.4139030.2025860.1268770.052*
C330.35514 (13)0.4191 (2)0.12401 (8)0.0314 (6)
H33A0.3214750.4719600.1277580.047*
H33B0.3518660.3780120.0978950.047*
H33C0.3896560.4712040.1253460.047*
C340.32933 (11)0.2598 (2)0.30559 (7)0.0270 (5)
H34A0.3213920.1731340.2954370.032*
C350.27772 (13)0.3025 (3)0.32878 (9)0.0392 (7)
H35A0.2435890.3027990.3110150.059*
H35B0.2845720.3873250.3391630.059*
H35C0.2719110.2448490.3510250.059*
C360.38329 (14)0.2545 (3)0.33275 (9)0.0412 (7)
H36A0.4151760.2216210.3176930.062*
H36B0.3765300.1994680.3555070.062*
H36C0.3926780.3390390.3424060.062*
C370.33968 (11)0.0723 (2)0.27244 (8)0.0242 (5)
C380.30635 (12)0.1100 (2)0.30395 (8)0.0290 (5)
C390.33523 (16)0.1341 (3)0.34042 (9)0.0471 (8)
H39A0.3140200.1578030.3628600.057*
C400.39399 (17)0.1242 (3)0.34430 (11)0.0591 (11)
H40A0.4127920.1396370.3693740.071*
C410.42525 (15)0.0920 (3)0.31199 (11)0.0507 (9)
H41A0.4656990.0872380.3150480.061*
C420.39955 (12)0.0660 (2)0.27489 (9)0.0343 (6)
C430.24237 (12)0.1318 (2)0.29975 (8)0.0302 (6)
H43A0.2299100.1091870.2718610.036*
C440.20934 (17)0.0495 (4)0.32799 (11)0.0567 (9)
H44A0.2188630.0387820.3234210.085*
H44B0.2196650.0719980.3556320.085*
H44C0.1682130.0621180.3231070.085*
C450.22876 (14)0.2708 (3)0.30595 (10)0.0425 (7)
H45A0.2490240.3212650.2865100.064*
H45B0.1874900.2842620.3022780.064*
H45C0.2410640.2958380.3330110.064*
C460.43517 (12)0.0380 (2)0.23901 (10)0.0384 (7)
H46A0.4078850.0186980.2162390.046*0.879 (6)
H46B0.4190150.0285040.2208610.046*0.121 (6)
C47A0.47333 (15)0.0771 (3)0.24513 (13)0.0456 (10)0.879 (6)
H47A0.4496110.1502980.2507960.068*0.879 (6)
H47B0.4945130.0924900.2209090.068*0.879 (6)
H47C0.5003460.0623320.2676080.068*0.879 (6)
C48A0.4709 (2)0.1503 (4)0.22652 (15)0.0563 (12)0.879 (6)
H48A0.4457440.2221250.2209900.084*0.879 (6)
H48B0.4984790.1717610.2480990.084*0.879 (6)
H48C0.4914520.1290250.2024590.084*0.879 (6)
C47B0.4921 (6)0.004 (3)0.2600 (8)0.0456 (10)0.121 (6)
H47D0.4853870.0563850.2814290.068*0.121 (6)
H47E0.5175730.0339750.2407040.068*0.121 (6)
H47F0.5099730.0795720.2712770.068*0.121 (6)
C48B0.4407 (15)0.1670 (16)0.2197 (10)0.0563 (12)0.121 (6)
H48D0.4041010.1904050.2067170.084*0.121 (6)
H48E0.4510780.2290540.2402830.084*0.121 (6)
H48F0.4703880.1642330.1998730.084*0.121 (6)
C490.05436 (9)0.3542 (2)0.06837 (7)0.0173 (4)
C500.07807 (9)0.3385 (2)0.03096 (7)0.0188 (4)
C510.08245 (10)0.4440 (2)0.00685 (7)0.0221 (5)
H51A0.0986320.4362870.0186250.027*
C520.06351 (10)0.5603 (2)0.01950 (7)0.0247 (5)
H52A0.0667560.6315410.0027180.030*
C530.03996 (10)0.5723 (2)0.05648 (7)0.0241 (5)
H53A0.0270240.6523200.0648150.029*
C540.03473 (9)0.4696 (2)0.08188 (7)0.0197 (4)
C550.09369 (10)0.2085 (2)0.01617 (7)0.0212 (4)
H55A0.1097030.1596380.0394170.025*
C560.13787 (11)0.2079 (3)0.01627 (8)0.0313 (6)
H56A0.1709770.2584460.0075780.047*
H56B0.1501600.1214890.0211510.047*
H56C0.1208540.2431980.0408920.047*
C570.03877 (11)0.1430 (2)0.00102 (8)0.0294 (5)
H57A0.0113040.1403670.0224100.044*
H57B0.0221730.1894660.0217740.044*
H57C0.0477450.0572670.0072660.044*
C580.00699 (11)0.4858 (2)0.12172 (7)0.0260 (5)
H58A0.0100710.4039900.1362180.031*
C590.05638 (13)0.5171 (3)0.11623 (10)0.0445 (7)
H59A0.0756310.4506220.1007000.067*
H59B0.0735160.5237160.1423960.067*
H59C0.0607280.5971040.1020490.067*
C600.03792 (15)0.5845 (3)0.14730 (9)0.0459 (8)
H60A0.0785580.5628920.1501450.069*
H60B0.0338020.6667610.1344900.069*
H60C0.0212720.5872190.1736970.069*
C610.00403 (9)0.1868 (2)0.17102 (7)0.0190 (4)
C620.00188 (10)0.2613 (2)0.20546 (7)0.0244 (5)
C630.05394 (12)0.3024 (3)0.21908 (8)0.0324 (6)
H63A0.0542650.3552010.2418950.039*
C640.10539 (12)0.2691 (3)0.20049 (8)0.0355 (6)
H64A0.1403820.2986640.2105540.043*
C650.10568 (11)0.1927 (3)0.16726 (8)0.0304 (6)
H65A0.1411500.1692030.1548140.036*
C660.05483 (10)0.1494 (2)0.15159 (7)0.0224 (5)
C670.05420 (11)0.2904 (3)0.22732 (8)0.0302 (6)
H67A0.0822750.3129030.2066760.036*
C680.07755 (17)0.1752 (4)0.24915 (11)0.0607 (10)
H68A0.0797830.1050430.2304020.091*
H68B0.1158020.1936210.2604710.091*
H68C0.0521190.1528530.2706470.091*
C690.05114 (15)0.4018 (3)0.25585 (10)0.0514 (9)
H69A0.0370310.4757150.2412050.077*
H69B0.0250900.3818680.2772140.077*
H69C0.0893450.4191700.2674120.077*
C700.05634 (11)0.0629 (2)0.11569 (7)0.0257 (5)
H70A0.0161470.0527380.1070130.031*
C710.09102 (14)0.1184 (3)0.08078 (8)0.0409 (7)
H71A0.0755030.2008650.0740780.061*
H71B0.0889170.0626550.0576530.061*
H71C0.1309830.1275150.0881280.061*
C720.07845 (17)0.0672 (3)0.12657 (10)0.0525 (9)
H72A0.0534610.1036690.1475510.079*
H72B0.1173830.0599100.1362020.079*
H72C0.0786860.1212670.1029520.079*
C730.25778 (11)0.2619 (2)0.18182 (8)0.0272 (5)
H73A0.2635110.3459800.1708770.041*
H73B0.2398790.2685700.2077210.041*
H73C0.2947930.2195040.1852200.041*
C740.23787 (11)0.2793 (2)0.06745 (8)0.0276 (5)
H74A0.2594970.3030130.0441020.041*
H74B0.1988810.3124470.0645850.041*
H74C0.2566150.3140880.0915700.041*
C750.11132 (11)0.1241 (2)0.04977 (8)0.0299 (6)
H75A0.1077200.1338130.0207440.045*
H75B0.1025120.2040440.0626290.045*
H75C0.0845570.0596780.0584040.045*
C760.20148 (13)0.3414 (2)0.10225 (8)0.0320 (6)
H76A0.2234930.4081730.1157460.048*
H76B0.1638210.3737480.0936910.048*
H76C0.2218720.3126910.0789090.048*
C770.10100 (11)0.1178 (3)0.17943 (8)0.0293 (5)
H77A0.0735450.0706030.1949680.044*
H77B0.0871510.1227540.1515730.044*
H77C0.1051630.2026730.1903880.044*
C780.19089 (16)0.4513 (3)0.22041 (11)0.0472 (8)
H78A0.1692560.4456890.2448520.057*
H78B0.1714030.5087640.2016360.057*
H78C0.2294500.4827160.2268920.057*
H790.1921 (14)0.231 (3)0.1539 (10)0.045 (10)*
H800.2377 (13)0.114 (3)0.0501 (9)0.036 (9)*
H810.1898 (13)0.088 (3)0.0420 (9)0.037 (9)*
H820.1952 (14)0.267 (3)0.1521 (10)0.044 (10)*
H830.1746 (13)0.075 (3)0.2013 (9)0.032 (8)*
H840.2103 (15)0.283 (3)0.2184 (11)0.052 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.01357 (5)0.01276 (4)0.01492 (5)0.00006 (4)0.00238 (3)0.00046 (4)
P10.0142 (2)0.0120 (2)0.0169 (3)0.00063 (18)0.0042 (2)0.00030 (19)
P20.0168 (3)0.0148 (2)0.0173 (3)0.00023 (19)0.0006 (2)0.0004 (2)
P30.0133 (2)0.0182 (2)0.0163 (3)0.00221 (19)0.0019 (2)0.0004 (2)
O10.0163 (7)0.0174 (7)0.0181 (7)0.0021 (6)0.0047 (6)0.0023 (6)
O20.0167 (7)0.0123 (6)0.0162 (7)0.0002 (5)0.0055 (6)0.0002 (5)
O30.0178 (7)0.0108 (6)0.0239 (8)0.0004 (5)0.0063 (6)0.0006 (6)
O40.0173 (7)0.0204 (7)0.0211 (8)0.0030 (6)0.0018 (6)0.0035 (6)
O50.0188 (8)0.0183 (7)0.0188 (8)0.0007 (6)0.0006 (6)0.0020 (6)
O60.0189 (8)0.0146 (7)0.0217 (8)0.0010 (6)0.0016 (6)0.0012 (6)
O70.0228 (8)0.0156 (7)0.0226 (8)0.0009 (6)0.0024 (6)0.0022 (6)
O80.0218 (8)0.0208 (7)0.0185 (8)0.0016 (6)0.0013 (6)0.0001 (6)
O90.0151 (7)0.0199 (7)0.0190 (8)0.0029 (6)0.0019 (6)0.0017 (6)
O100.0162 (7)0.0186 (7)0.0182 (7)0.0005 (6)0.0009 (6)0.0034 (6)
O110.0162 (7)0.0239 (8)0.0182 (8)0.0035 (6)0.0053 (6)0.0019 (6)
O120.0181 (8)0.0198 (7)0.0245 (8)0.0009 (6)0.0011 (6)0.0031 (6)
O130.0167 (8)0.0200 (8)0.0300 (9)0.0020 (6)0.0026 (7)0.0071 (7)
O140.0313 (10)0.0177 (8)0.0215 (9)0.0013 (7)0.0073 (7)0.0020 (7)
O150.0146 (8)0.0355 (10)0.0225 (9)0.0035 (7)0.0038 (7)0.0086 (7)
O160.0368 (10)0.0183 (8)0.0255 (9)0.0054 (7)0.0086 (8)0.0012 (7)
O170.0180 (8)0.0274 (8)0.0188 (8)0.0024 (6)0.0022 (6)0.0029 (7)
O180.0612 (15)0.0243 (10)0.0378 (12)0.0150 (10)0.0127 (10)0.0055 (9)
C10.0190 (10)0.0116 (8)0.0166 (10)0.0019 (7)0.0077 (8)0.0022 (7)
C20.0259 (11)0.0146 (9)0.0170 (10)0.0022 (8)0.0014 (8)0.0007 (8)
C30.0386 (14)0.0249 (12)0.0167 (11)0.0049 (10)0.0005 (10)0.0013 (9)
C40.0427 (15)0.0290 (12)0.0172 (11)0.0104 (11)0.0112 (10)0.0011 (9)
C50.0245 (12)0.0223 (11)0.0275 (12)0.0048 (9)0.0125 (10)0.0064 (9)
C60.0210 (11)0.0111 (9)0.0226 (11)0.0008 (7)0.0060 (8)0.0036 (8)
C70.0206 (11)0.0222 (11)0.0271 (12)0.0007 (9)0.0039 (9)0.0043 (9)
C8A0.0355 (18)0.062 (2)0.0366 (18)0.0048 (17)0.0148 (14)0.0057 (17)
C9A0.0241 (13)0.0284 (14)0.0421 (18)0.0078 (11)0.0002 (12)0.0011 (12)
C8B0.0355 (18)0.062 (2)0.0366 (18)0.0048 (17)0.0148 (14)0.0057 (17)
C9B0.0241 (13)0.0284 (14)0.0421 (18)0.0078 (11)0.0002 (12)0.0011 (12)
C100.0153 (10)0.0167 (10)0.0331 (13)0.0005 (8)0.0042 (9)0.0001 (9)
C110.0208 (12)0.0229 (12)0.062 (2)0.0043 (10)0.0076 (12)0.0010 (12)
C120.0246 (13)0.0245 (12)0.0400 (15)0.0058 (10)0.0034 (11)0.0026 (11)
C130.0138 (9)0.0113 (8)0.0191 (10)0.0002 (7)0.0066 (8)0.0008 (7)
C140.0206 (11)0.0187 (10)0.0216 (11)0.0004 (8)0.0076 (9)0.0029 (8)
C150.0270 (12)0.0211 (11)0.0294 (13)0.0020 (9)0.0076 (10)0.0089 (9)
C160.0284 (13)0.0136 (10)0.0382 (14)0.0008 (9)0.0123 (11)0.0049 (9)
C170.0278 (12)0.0155 (10)0.0313 (13)0.0039 (9)0.0090 (10)0.0046 (9)
C180.0186 (10)0.0171 (10)0.0245 (11)0.0019 (8)0.0055 (9)0.0007 (8)
C190.0294 (13)0.0273 (12)0.0197 (11)0.0047 (10)0.0048 (10)0.0007 (9)
C200.0398 (18)0.061 (2)0.0421 (18)0.0018 (16)0.0080 (14)0.0086 (16)
C210.0400 (18)0.082 (3)0.051 (2)0.0091 (17)0.0118 (15)0.0387 (19)
C220.0336 (14)0.0235 (11)0.0252 (12)0.0064 (10)0.0028 (10)0.0011 (9)
C230.0347 (16)0.070 (2)0.0283 (15)0.0040 (15)0.0048 (12)0.0046 (14)
C240.0317 (16)0.081 (3)0.0366 (17)0.0148 (16)0.0014 (13)0.0016 (17)
C250.0175 (10)0.0150 (9)0.0217 (11)0.0011 (8)0.0010 (8)0.0023 (8)
C260.0192 (11)0.0198 (10)0.0207 (11)0.0020 (8)0.0008 (8)0.0009 (8)
C270.0312 (12)0.0191 (11)0.0272 (12)0.0046 (9)0.0002 (9)0.0008 (9)
C280.0365 (14)0.0174 (10)0.0345 (14)0.0036 (10)0.0009 (11)0.0048 (10)
C290.0333 (13)0.0238 (11)0.0248 (12)0.0016 (10)0.0005 (10)0.0061 (9)
C300.0211 (11)0.0222 (11)0.0201 (11)0.0021 (8)0.0018 (9)0.0022 (8)
C310.0268 (12)0.0222 (11)0.0202 (11)0.0054 (9)0.0009 (9)0.0003 (9)
C320.0379 (15)0.0369 (15)0.0289 (14)0.0030 (12)0.0073 (12)0.0032 (11)
C330.0474 (16)0.0251 (12)0.0216 (12)0.0058 (11)0.0009 (11)0.0013 (10)
C340.0362 (14)0.0256 (12)0.0194 (11)0.0023 (10)0.0016 (10)0.0021 (9)
C350.0392 (16)0.0490 (17)0.0299 (15)0.0054 (13)0.0083 (12)0.0018 (13)
C360.0455 (18)0.0522 (18)0.0254 (14)0.0048 (14)0.0043 (13)0.0075 (13)
C370.0267 (12)0.0152 (10)0.0302 (13)0.0021 (9)0.0089 (10)0.0026 (9)
C380.0380 (15)0.0244 (12)0.0240 (12)0.0003 (10)0.0063 (11)0.0053 (10)
C390.065 (2)0.0445 (18)0.0308 (16)0.0084 (16)0.0151 (15)0.0119 (13)
C400.074 (3)0.049 (2)0.052 (2)0.0071 (18)0.039 (2)0.0150 (17)
C410.0404 (18)0.0379 (16)0.071 (2)0.0009 (14)0.0313 (17)0.0119 (16)
C420.0280 (13)0.0208 (12)0.0532 (18)0.0016 (10)0.0118 (12)0.0041 (12)
C430.0336 (14)0.0310 (13)0.0263 (13)0.0006 (11)0.0031 (11)0.0075 (10)
C440.059 (2)0.053 (2)0.059 (2)0.0018 (17)0.0218 (19)0.0072 (18)
C450.0432 (17)0.0364 (15)0.0474 (18)0.0063 (13)0.0043 (14)0.0105 (14)
C460.0205 (12)0.0287 (13)0.066 (2)0.0033 (10)0.0020 (13)0.0003 (13)
C47A0.0322 (18)0.042 (2)0.062 (3)0.0071 (15)0.0045 (17)0.0011 (18)
C48A0.047 (3)0.043 (2)0.078 (3)0.015 (2)0.001 (2)0.003 (2)
C47B0.0322 (18)0.042 (2)0.062 (3)0.0071 (15)0.0045 (17)0.0011 (18)
C48B0.047 (3)0.043 (2)0.078 (3)0.015 (2)0.001 (2)0.003 (2)
C490.0127 (9)0.0192 (10)0.0200 (10)0.0015 (7)0.0011 (8)0.0041 (8)
C500.0145 (10)0.0218 (10)0.0202 (11)0.0043 (8)0.0001 (8)0.0005 (8)
C510.0205 (11)0.0263 (11)0.0195 (11)0.0064 (9)0.0000 (9)0.0018 (9)
C520.0246 (12)0.0224 (11)0.0269 (12)0.0086 (9)0.0031 (10)0.0057 (9)
C530.0254 (12)0.0170 (10)0.0297 (13)0.0021 (9)0.0037 (10)0.0007 (9)
C540.0175 (10)0.0200 (10)0.0216 (11)0.0003 (8)0.0017 (8)0.0004 (8)
C550.0197 (11)0.0232 (11)0.0210 (11)0.0020 (8)0.0027 (9)0.0021 (9)
C560.0287 (13)0.0358 (14)0.0300 (14)0.0047 (11)0.0096 (11)0.0085 (11)
C570.0265 (13)0.0261 (12)0.0357 (14)0.0059 (10)0.0036 (11)0.0077 (10)
C580.0300 (12)0.0224 (11)0.0259 (11)0.0065 (10)0.0052 (9)0.0022 (9)
C590.0318 (15)0.0543 (19)0.0479 (18)0.0062 (14)0.0104 (13)0.0009 (15)
C600.055 (2)0.0515 (19)0.0315 (16)0.0076 (16)0.0041 (14)0.0156 (14)
C610.0187 (10)0.0224 (10)0.0163 (10)0.0023 (8)0.0042 (8)0.0009 (8)
C620.0238 (12)0.0322 (12)0.0177 (11)0.0007 (10)0.0052 (9)0.0026 (9)
C630.0327 (14)0.0415 (15)0.0236 (13)0.0003 (12)0.0082 (11)0.0095 (11)
C640.0244 (13)0.0507 (17)0.0322 (14)0.0052 (12)0.0111 (11)0.0090 (13)
C650.0173 (11)0.0441 (15)0.0300 (13)0.0013 (10)0.0041 (10)0.0055 (11)
C660.0198 (11)0.0271 (11)0.0205 (11)0.0013 (9)0.0029 (9)0.0015 (9)
C670.0251 (13)0.0446 (15)0.0210 (12)0.0052 (11)0.0033 (10)0.0089 (11)
C680.064 (2)0.066 (2)0.050 (2)0.006 (2)0.0306 (19)0.0015 (18)
C690.0466 (19)0.065 (2)0.0427 (18)0.0116 (17)0.0008 (15)0.0278 (17)
C700.0227 (12)0.0299 (12)0.0247 (12)0.0027 (9)0.0017 (9)0.0066 (10)
C710.0435 (17)0.0537 (19)0.0251 (14)0.0082 (14)0.0031 (12)0.0063 (13)
C720.082 (3)0.0376 (17)0.0381 (18)0.0191 (17)0.0035 (17)0.0054 (14)
C730.0319 (13)0.0217 (11)0.0276 (13)0.0001 (10)0.0065 (10)0.0041 (9)
C740.0300 (13)0.0193 (11)0.0336 (14)0.0018 (9)0.0017 (11)0.0076 (10)
C750.0218 (12)0.0299 (13)0.0377 (15)0.0060 (10)0.0025 (11)0.0085 (11)
C760.0421 (16)0.0195 (11)0.0345 (14)0.0027 (10)0.0041 (12)0.0058 (10)
C770.0224 (12)0.0364 (14)0.0293 (13)0.0051 (10)0.0053 (10)0.0097 (11)
C780.061 (2)0.0220 (13)0.058 (2)0.0061 (13)0.0013 (17)0.0063 (13)
Geometric parameters (Å, º) top
Eu1—O12.3915 (14)C33—H33C0.9800
Eu1—O52.3166 (15)C34—C351.528 (4)
Eu1—O92.3525 (15)C34—C361.533 (4)
Eu1—O132.4374 (16)C34—H34A1.0000
Eu1—O142.4933 (16)C35—H35A0.9800
Eu1—O152.4312 (17)C35—H35B0.9800
Eu1—O162.4664 (17)C35—H35C0.9800
Eu1—O172.4665 (16)C36—H36A0.9800
P1—O11.4963 (16)C36—H36B0.9800
P1—O21.5991 (15)C36—H36C0.9800
P1—O31.5935 (16)C37—C381.394 (4)
P1—O41.4922 (16)C37—C421.402 (4)
P2—O51.4972 (16)C38—C391.401 (4)
P2—O61.5938 (16)C38—C431.517 (4)
P2—O71.5978 (16)C39—C401.381 (5)
P2—O81.4923 (17)C39—H39A0.9500
P3—O91.5010 (16)C40—C411.372 (5)
P3—O101.6007 (16)C40—H40A0.9500
P3—O111.5970 (16)C41—C421.391 (4)
P3—O121.4855 (17)C41—H41A0.9500
O2—C11.413 (2)C42—C461.517 (4)
O3—C131.413 (2)C43—C441.522 (4)
O6—C251.410 (3)C43—C451.531 (4)
O7—C371.402 (3)C43—H43A1.0000
O10—C491.411 (3)C44—H44A0.9800
O11—C611.406 (3)C44—H44B0.9800
O13—C731.420 (3)C44—H44C0.9800
O13—H790.81 (3)C45—H45A0.9800
O14—C741.434 (3)C45—H45B0.9800
O14—H800.76 (3)C45—H45C0.9800
O15—C751.414 (3)C46—C48B1.527 (4)
O15—H810.82 (3)C46—C47A1.527 (3)
O16—C761.430 (3)C46—C48A1.527 (3)
O16—H820.82 (3)C46—C47B1.530 (4)
O17—C771.440 (3)C46—H46A1.0000
O17—H830.82 (3)C46—H46B1.0000
O18—C781.383 (3)C47A—H47A0.9800
O18—H840.82 (4)C47A—H47B0.9800
C1—C21.395 (3)C47A—H47C0.9800
C1—C61.401 (3)C48A—H48A0.9800
C2—C31.398 (3)C48A—H48B0.9800
C2—C71.518 (3)C48A—H48C0.9800
C3—C41.381 (4)C47B—H47D0.9800
C3—H3A0.9500C47B—H47E0.9800
C4—C51.377 (4)C47B—H47F0.9800
C4—H4A0.9500C48B—H48D0.9800
C5—C61.395 (3)C48B—H48E0.9800
C5—H5A0.9500C48B—H48F0.9800
C6—C101.513 (3)C49—C541.394 (3)
C7—C8A1.531 (3)C49—C501.399 (3)
C7—C8B1.532 (4)C50—C511.390 (3)
C7—C9B1.532 (4)C50—C551.521 (3)
C7—C9A1.533 (3)C51—C521.388 (3)
C7—H7A1.0000C51—H51A0.9500
C7—H7B1.0000C52—C531.381 (4)
C8A—H8A0.9800C52—H52A0.9500
C8A—H8B0.9800C53—C541.396 (3)
C8A—H8C0.9800C53—H53A0.9500
C9A—H9A0.9800C54—C581.516 (3)
C9A—H9B0.9800C55—C561.527 (3)
C9A—H9C0.9800C55—C571.534 (3)
C8B—H8D0.9800C55—H55A1.0000
C8B—H8E0.9800C56—H56A0.9800
C8B—H8F0.9800C56—H56B0.9800
C9B—H9D0.9800C56—H56C0.9800
C9B—H9E0.9800C57—H57A0.9800
C9B—H9F0.9800C57—H57B0.9800
C10—C111.535 (3)C57—H57C0.9800
C10—C121.537 (3)C58—C601.524 (4)
C10—H10A1.0000C58—C591.525 (4)
C11—H11A0.9800C58—H58A1.0000
C11—H11B0.9800C59—H59A0.9800
C11—H11C0.9800C59—H59B0.9800
C12—H12A0.9800C59—H59C0.9800
C12—H12B0.9800C60—H60A0.9800
C12—H12C0.9800C60—H60B0.9800
C13—C141.392 (3)C60—H60C0.9800
C13—C181.396 (3)C61—C661.394 (3)
C14—C151.402 (3)C61—C621.401 (3)
C14—C191.524 (3)C62—C631.387 (3)
C15—C161.376 (4)C62—C671.513 (4)
C15—H15A0.9500C63—C641.383 (4)
C16—C171.383 (4)C63—H63A0.9500
C16—H16A0.9500C64—C651.380 (4)
C17—C181.401 (3)C64—H64A0.9500
C17—H17A0.9500C65—C661.396 (3)
C18—C221.517 (3)C65—H65A0.9500
C19—C201.517 (4)C66—C701.516 (3)
C19—C211.527 (4)C67—C681.522 (5)
C19—H19A1.0000C67—C691.528 (4)
C20—H20A0.9800C67—H67A1.0000
C20—H20B0.9800C68—H68A0.9800
C20—H20C0.9800C68—H68B0.9800
C21—H21A0.9800C68—H68C0.9800
C21—H21B0.9800C69—H69A0.9800
C21—H21C0.9800C69—H69B0.9800
C22—C231.498 (4)C69—H69C0.9800
C22—C241.533 (4)C70—C711.521 (4)
C22—H22A1.0000C70—C721.529 (4)
C23—H23A0.9800C70—H70A1.0000
C23—H23B0.9800C71—H71A0.9800
C23—H23C0.9800C71—H71B0.9800
C24—H24A0.9800C71—H71C0.9800
C24—H24B0.9800C72—H72A0.9800
C24—H24C0.9800C72—H72B0.9800
C25—C261.397 (3)C72—H72C0.9800
C25—C301.397 (3)C73—H73A0.9800
C26—C271.401 (3)C73—H73B0.9800
C26—C311.521 (3)C73—H73C0.9800
C27—C281.388 (4)C74—H74A0.9800
C27—H27A0.9500C74—H74B0.9800
C28—C291.376 (4)C74—H74C0.9800
C28—H28A0.9500C75—H75A0.9800
C29—C301.400 (3)C75—H75B0.9800
C29—H29A0.9500C75—H75C0.9800
C30—C341.515 (3)C76—H76A0.9800
C31—C321.532 (4)C76—H76B0.9800
C31—C331.532 (3)C76—H76C0.9800
C31—H31A1.0000C77—H77A0.9800
C32—H32A0.9800C77—H77B0.9800
C32—H32B0.9800C77—H77C0.9800
C32—H32C0.9800C78—H78A0.9800
C33—H33A0.9800C78—H78B0.9800
C33—H33B0.9800C78—H78C0.9800
O5—Eu1—O9138.83 (5)C31—C33—H33C109.5
O5—Eu1—O179.87 (5)H33A—C33—H33C109.5
O9—Eu1—O1140.28 (5)H33B—C33—H33C109.5
O5—Eu1—O15146.42 (6)C30—C34—C35111.5 (2)
O9—Eu1—O1571.23 (6)C30—C34—C36110.4 (2)
O1—Eu1—O1575.69 (5)C35—C34—C36111.0 (2)
O5—Eu1—O1377.37 (6)C30—C34—H34A107.9
O9—Eu1—O1373.50 (5)C35—C34—H34A107.9
O1—Eu1—O13119.54 (5)C36—C34—H34A107.9
O15—Eu1—O13135.11 (6)C34—C35—H35A109.5
O5—Eu1—O1682.25 (6)C34—C35—H35B109.5
O9—Eu1—O16108.35 (6)H35A—C35—H35B109.5
O1—Eu1—O1680.44 (6)C34—C35—H35C109.5
O15—Eu1—O1671.35 (6)H35A—C35—H35C109.5
O13—Eu1—O16147.71 (6)H35B—C35—H35C109.5
O5—Eu1—O1774.43 (6)C34—C36—H36A109.5
O9—Eu1—O1772.91 (6)C34—C36—H36B109.5
O1—Eu1—O17142.29 (6)H36A—C36—H36B109.5
O15—Eu1—O17113.10 (6)C34—C36—H36C109.5
O13—Eu1—O1781.23 (6)H36A—C36—H36C109.5
O16—Eu1—O1769.24 (6)H36B—C36—H36C109.5
O5—Eu1—O14119.42 (6)C38—C37—C42123.6 (2)
O9—Eu1—O1478.32 (6)C38—C37—O7118.8 (2)
O1—Eu1—O1471.84 (5)C42—C37—O7117.3 (2)
O15—Eu1—O1473.96 (6)C37—C38—C39116.7 (3)
O13—Eu1—O1472.45 (6)C37—C38—C43123.4 (2)
O16—Eu1—O14139.83 (6)C39—C38—C43119.9 (3)
O17—Eu1—O14145.44 (6)C40—C39—C38121.2 (3)
O5—Eu1—P197.10 (4)C40—C39—H39A119.4
O9—Eu1—P1122.99 (4)C38—C39—H39A119.4
O1—Eu1—P117.33 (4)C41—C40—C39120.1 (3)
O15—Eu1—P160.84 (4)C41—C40—H40A120.0
O13—Eu1—P1122.42 (4)C39—C40—H40A120.0
O16—Eu1—P184.56 (4)C40—C41—C42122.1 (3)
O17—Eu1—P1153.18 (4)C40—C41—H41A119.0
O14—Eu1—P160.87 (4)C42—C41—H41A119.0
O4—P1—O1114.89 (9)C41—C42—C37116.3 (3)
O4—P1—O3109.70 (9)C41—C42—C46121.1 (3)
O1—P1—O3112.59 (9)C37—C42—C46122.5 (3)
O4—P1—O2113.71 (9)C38—C43—C44112.0 (3)
O1—P1—O2105.79 (8)C38—C43—C45110.2 (2)
O3—P1—O299.08 (8)C44—C43—C45111.2 (3)
O8—P2—O5116.23 (9)C38—C43—H43A107.8
O8—P2—O6111.29 (9)C44—C43—H43A107.8
O5—P2—O6110.43 (9)C45—C43—H43A107.8
O8—P2—O7113.19 (9)C43—C44—H44A109.5
O5—P2—O7103.61 (9)C43—C44—H44B109.5
O6—P2—O7100.80 (9)H44A—C44—H44B109.5
O12—P3—O9116.11 (9)C43—C44—H44C109.5
O12—P3—O11113.92 (9)H44A—C44—H44C109.5
O9—P3—O11103.52 (9)H44B—C44—H44C109.5
O12—P3—O10110.71 (9)C43—C45—H45A109.5
O9—P3—O10110.16 (9)C43—C45—H45B109.5
O11—P3—O10101.24 (8)H45A—C45—H45B109.5
P1—O1—Eu1134.23 (9)C43—C45—H45C109.5
C1—O2—P1123.95 (13)H45A—C45—H45C109.5
C13—O3—P1124.19 (13)H45B—C45—H45C109.5
P2—O5—Eu1146.84 (10)C42—C46—C48B102.4 (15)
C25—O6—P2128.96 (14)C42—C46—C47A112.7 (3)
C37—O7—P2127.11 (14)C42—C46—C48A112.6 (3)
P3—O9—Eu1142.27 (9)C47A—C46—C48A110.1 (3)
C49—O10—P3124.05 (14)C42—C46—C47B100.1 (11)
C61—O11—P3128.60 (14)C48B—C46—C47B108.9 (17)
C73—O13—Eu1142.50 (15)C42—C46—H46A107.0
C73—O13—H79104 (2)C47A—C46—H46A107.0
Eu1—O13—H79112 (2)C48A—C46—H46A107.0
C74—O14—Eu1136.77 (15)C42—C46—H46B114.6
C74—O14—H80112 (2)C48B—C46—H46B114.6
Eu1—O14—H80111 (2)C47B—C46—H46B114.6
C75—O15—Eu1133.14 (15)C46—C47A—H47A109.5
C75—O15—H81114 (2)C46—C47A—H47B109.5
Eu1—O15—H81113 (2)H47A—C47A—H47B109.5
C76—O16—Eu1132.06 (15)C46—C47A—H47C109.5
C76—O16—H82108 (2)H47A—C47A—H47C109.5
Eu1—O16—H82116 (2)H47B—C47A—H47C109.5
C77—O17—Eu1123.54 (14)C46—C48A—H48A109.5
C77—O17—H83112 (2)C46—C48A—H48B109.5
Eu1—O17—H83114 (2)H48A—C48A—H48B109.5
C78—O18—H84112 (3)C46—C48A—H48C109.5
C2—C1—C6123.4 (2)H48A—C48A—H48C109.5
C2—C1—O2118.23 (19)H48B—C48A—H48C109.5
C6—C1—O2118.16 (19)C46—C47B—H47D109.5
C1—C2—C3117.0 (2)C46—C47B—H47E109.5
C1—C2—C7120.36 (19)H47D—C47B—H47E109.5
C3—C2—C7122.4 (2)C46—C47B—H47F109.5
C4—C3—C2121.1 (2)H47D—C47B—H47F109.5
C4—C3—H3A119.5H47E—C47B—H47F109.5
C2—C3—H3A119.5C46—C48B—H48D109.5
C5—C4—C3120.2 (2)C46—C48B—H48E109.5
C5—C4—H4A119.9H48D—C48B—H48E109.5
C3—C4—H4A119.9C46—C48B—H48F109.5
C4—C5—C6121.6 (2)H48D—C48B—H48F109.5
C4—C5—H5A119.2H48E—C48B—H48F109.5
C6—C5—H5A119.2C54—C49—C50122.8 (2)
C5—C6—C1116.6 (2)C54—C49—O10119.42 (19)
C5—C6—C10119.8 (2)C50—C49—O10117.56 (19)
C1—C6—C10123.5 (2)C51—C50—C49117.7 (2)
C2—C7—C8A114.2 (2)C51—C50—C55121.6 (2)
C2—C7—C8B107.8 (17)C49—C50—C55120.6 (2)
C2—C7—C9B104.7 (13)C52—C51—C50120.9 (2)
C8B—C7—C9B113 (2)C52—C51—H51A119.5
C2—C7—C9A108.89 (19)C50—C51—H51A119.5
C8A—C7—C9A110.2 (2)C53—C52—C51120.0 (2)
C2—C7—H7A107.8C53—C52—H52A120.0
C8A—C7—H7A107.8C51—C52—H52A120.0
C9A—C7—H7A107.8C52—C53—C54121.4 (2)
C2—C7—H7B110.3C52—C53—H53A119.3
C8B—C7—H7B110.3C54—C53—H53A119.3
C9B—C7—H7B110.3C49—C54—C53117.2 (2)
C7—C8A—H8A109.5C49—C54—C58122.9 (2)
C7—C8A—H8B109.5C53—C54—C58119.9 (2)
H8A—C8A—H8B109.5C50—C55—C56114.4 (2)
C7—C8A—H8C109.5C50—C55—C57108.37 (19)
H8A—C8A—H8C109.5C56—C55—C57110.0 (2)
H8B—C8A—H8C109.5C50—C55—H55A108.0
C7—C9A—H9A109.5C56—C55—H55A108.0
C7—C9A—H9B109.5C57—C55—H55A108.0
H9A—C9A—H9B109.5C55—C56—H56A109.5
C7—C9A—H9C109.5C55—C56—H56B109.5
H9A—C9A—H9C109.5H56A—C56—H56B109.5
H9B—C9A—H9C109.5C55—C56—H56C109.5
C7—C8B—H8D109.5H56A—C56—H56C109.5
C7—C8B—H8E109.5H56B—C56—H56C109.5
H8D—C8B—H8E109.5C55—C57—H57A109.5
C7—C8B—H8F109.5C55—C57—H57B109.5
H8D—C8B—H8F109.5H57A—C57—H57B109.5
H8E—C8B—H8F109.5C55—C57—H57C109.5
C7—C9B—H9D109.5H57A—C57—H57C109.5
C7—C9B—H9E109.5H57B—C57—H57C109.5
H9D—C9B—H9E109.5C54—C58—C60111.4 (2)
C7—C9B—H9F109.5C54—C58—C59111.3 (2)
H9D—C9B—H9F109.5C60—C58—C59111.0 (2)
H9E—C9B—H9F109.5C54—C58—H58A107.7
C6—C10—C11111.7 (2)C60—C58—H58A107.7
C6—C10—C12110.65 (19)C59—C58—H58A107.7
C11—C10—C12110.1 (2)C58—C59—H59A109.5
C6—C10—H10A108.1C58—C59—H59B109.5
C11—C10—H10A108.1H59A—C59—H59B109.5
C12—C10—H10A108.1C58—C59—H59C109.5
C10—C11—H11A109.5H59A—C59—H59C109.5
C10—C11—H11B109.5H59B—C59—H59C109.5
H11A—C11—H11B109.5C58—C60—H60A109.5
C10—C11—H11C109.5C58—C60—H60B109.5
H11A—C11—H11C109.5H60A—C60—H60B109.5
H11B—C11—H11C109.5C58—C60—H60C109.5
C10—C12—H12A109.5H60A—C60—H60C109.5
C10—C12—H12B109.5H60B—C60—H60C109.5
H12A—C12—H12B109.5C66—C61—C62123.6 (2)
C10—C12—H12C109.5C66—C61—O11117.44 (19)
H12A—C12—H12C109.5C62—C61—O11118.8 (2)
H12B—C12—H12C109.5C63—C62—C61116.4 (2)
C14—C13—C18123.79 (19)C63—C62—C67122.2 (2)
C14—C13—O3119.33 (19)C61—C62—C67121.4 (2)
C18—C13—O3116.71 (19)C64—C63—C62122.1 (2)
C13—C14—C15116.3 (2)C64—C63—H63A119.0
C13—C14—C19122.8 (2)C62—C63—H63A119.0
C15—C14—C19120.8 (2)C65—C64—C63119.7 (2)
C16—C15—C14122.0 (2)C65—C64—H64A120.1
C16—C15—H15A119.0C63—C64—H64A120.1
C14—C15—H15A119.0C64—C65—C66121.3 (2)
C15—C16—C17119.8 (2)C64—C65—H65A119.4
C15—C16—H16A120.1C66—C65—H65A119.4
C17—C16—H16A120.1C61—C66—C65117.0 (2)
C16—C17—C18121.2 (2)C61—C66—C70122.8 (2)
C16—C17—H17A119.4C65—C66—C70120.2 (2)
C18—C17—H17A119.4C62—C67—C68111.0 (2)
C13—C18—C17116.9 (2)C62—C67—C69113.9 (2)
C13—C18—C22122.3 (2)C68—C67—C69110.4 (3)
C17—C18—C22120.8 (2)C62—C67—H67A107.0
C20—C19—C14112.7 (2)C68—C67—H67A107.0
C20—C19—C21110.2 (3)C69—C67—H67A107.0
C14—C19—C21110.7 (2)C67—C68—H68A109.5
C20—C19—H19A107.7C67—C68—H68B109.5
C14—C19—H19A107.7H68A—C68—H68B109.5
C21—C19—H19A107.7C67—C68—H68C109.5
C19—C20—H20A109.5H68A—C68—H68C109.5
C19—C20—H20B109.5H68B—C68—H68C109.5
H20A—C20—H20B109.5C67—C69—H69A109.5
C19—C20—H20C109.5C67—C69—H69B109.5
H20A—C20—H20C109.5H69A—C69—H69B109.5
H20B—C20—H20C109.5C67—C69—H69C109.5
C19—C21—H21A109.5H69A—C69—H69C109.5
C19—C21—H21B109.5H69B—C69—H69C109.5
H21A—C21—H21B109.5C66—C70—C71111.8 (2)
C19—C21—H21C109.5C66—C70—C72111.1 (2)
H21A—C21—H21C109.5C71—C70—C72111.1 (2)
H21B—C21—H21C109.5C66—C70—H70A107.5
C23—C22—C18112.3 (2)C71—C70—H70A107.5
C23—C22—C24110.5 (2)C72—C70—H70A107.5
C18—C22—C24111.1 (2)C70—C71—H71A109.5
C23—C22—H22A107.6C70—C71—H71B109.5
C18—C22—H22A107.6H71A—C71—H71B109.5
C24—C22—H22A107.6C70—C71—H71C109.5
C22—C23—H23A109.5H71A—C71—H71C109.5
C22—C23—H23B109.5H71B—C71—H71C109.5
H23A—C23—H23B109.5C70—C72—H72A109.5
C22—C23—H23C109.5C70—C72—H72B109.5
H23A—C23—H23C109.5H72A—C72—H72B109.5
H23B—C23—H23C109.5C70—C72—H72C109.5
C22—C24—H24A109.5H72A—C72—H72C109.5
C22—C24—H24B109.5H72B—C72—H72C109.5
H24A—C24—H24B109.5O13—C73—H73A109.5
C22—C24—H24C109.5O13—C73—H73B109.5
H24A—C24—H24C109.5H73A—C73—H73B109.5
H24B—C24—H24C109.5O13—C73—H73C109.5
C26—C25—C30123.4 (2)H73A—C73—H73C109.5
C26—C25—O6117.54 (19)H73B—C73—H73C109.5
C30—C25—O6118.8 (2)O14—C74—H74A109.5
C25—C26—C27116.9 (2)O14—C74—H74B109.5
C25—C26—C31121.1 (2)H74A—C74—H74B109.5
C27—C26—C31122.0 (2)O14—C74—H74C109.5
C28—C27—C26121.3 (2)H74A—C74—H74C109.5
C28—C27—H27A119.3H74B—C74—H74C109.5
C26—C27—H27A119.3O15—C75—H75A109.5
C29—C28—C27119.9 (2)O15—C75—H75B109.5
C29—C28—H28A120.1H75A—C75—H75B109.5
C27—C28—H28A120.1O15—C75—H75C109.5
C28—C29—C30121.6 (2)H75A—C75—H75C109.5
C28—C29—H29A119.2H75B—C75—H75C109.5
C30—C29—H29A119.2O16—C76—H76A109.5
C25—C30—C29116.9 (2)O16—C76—H76B109.5
C25—C30—C34123.1 (2)H76A—C76—H76B109.5
C29—C30—C34119.9 (2)O16—C76—H76C109.5
C26—C31—C32111.5 (2)H76A—C76—H76C109.5
C26—C31—C33112.9 (2)H76B—C76—H76C109.5
C32—C31—C33109.5 (2)O17—C77—H77A109.5
C26—C31—H31A107.6O17—C77—H77B109.5
C32—C31—H31A107.6H77A—C77—H77B109.5
C33—C31—H31A107.6O17—C77—H77C109.5
C31—C32—H32A109.5H77A—C77—H77C109.5
C31—C32—H32B109.5H77B—C77—H77C109.5
H32A—C32—H32B109.5O18—C78—H78A109.5
C31—C32—H32C109.5O18—C78—H78B109.5
H32A—C32—H32C109.5H78A—C78—H78B109.5
H32B—C32—H32C109.5O18—C78—H78C109.5
C31—C33—H33A109.5H78A—C78—H78C109.5
C31—C33—H33B109.5H78B—C78—H78C109.5
H33A—C33—H33B109.5
O4—P1—O1—Eu12.86 (16)C26—C25—C30—C290.2 (4)
O3—P1—O1—Eu1123.68 (11)O6—C25—C30—C29173.7 (2)
O2—P1—O1—Eu1129.15 (11)C26—C25—C30—C34177.5 (2)
O4—P1—O2—C167.23 (18)O6—C25—C30—C344.0 (3)
O1—P1—O2—C1165.77 (16)C28—C29—C30—C250.9 (4)
O3—P1—O2—C149.06 (17)C28—C29—C30—C34176.9 (2)
Eu1—P1—O2—C1168.45 (13)C25—C26—C31—C3271.5 (3)
O4—P1—O3—C1346.38 (18)C27—C26—C31—C32107.5 (3)
O1—P1—O3—C1382.90 (18)C25—C26—C31—C33164.7 (2)
O2—P1—O3—C13165.70 (16)C27—C26—C31—C3316.3 (3)
Eu1—P1—O3—C1353.75 (18)C25—C30—C34—C35126.2 (3)
O8—P2—O5—Eu119.6 (2)C29—C30—C34—C3556.2 (3)
O6—P2—O5—Eu1147.60 (15)C25—C30—C34—C36110.0 (3)
O7—P2—O5—Eu1105.20 (17)C29—C30—C34—C3667.7 (3)
O8—P2—O6—C2532.1 (2)P2—O7—C37—C3892.1 (2)
O5—P2—O6—C2598.58 (19)P2—O7—C37—C4294.4 (2)
O7—P2—O6—C25152.36 (18)C42—C37—C38—C394.4 (4)
O8—P2—O7—C3766.8 (2)O7—C37—C38—C39177.5 (2)
O5—P2—O7—C37166.42 (19)C42—C37—C38—C43172.3 (2)
O6—P2—O7—C3752.1 (2)O7—C37—C38—C430.8 (4)
O12—P3—O9—Eu126.26 (19)C37—C38—C39—C401.7 (5)
O11—P3—O9—Eu199.35 (15)C43—C38—C39—C40175.1 (3)
O10—P3—O9—Eu1153.09 (13)C38—C39—C40—C411.0 (5)
O12—P3—O10—C4925.88 (19)C39—C40—C41—C421.3 (5)
O9—P3—O10—C49103.91 (17)C40—C41—C42—C371.1 (5)
O11—P3—O10—C49147.02 (16)C40—C41—C42—C46176.4 (3)
O12—P3—O11—C6171.7 (2)C38—C37—C42—C414.1 (4)
O9—P3—O11—C61161.31 (18)O7—C37—C42—C41177.3 (2)
O10—P3—O11—C6147.2 (2)C38—C37—C42—C46173.4 (2)
P1—O2—C1—C292.3 (2)O7—C37—C42—C460.2 (3)
P1—O2—C1—C693.2 (2)C37—C38—C43—C44121.9 (3)
C6—C1—C2—C33.8 (3)C39—C38—C43—C4461.5 (4)
O2—C1—C2—C3178.07 (18)C37—C38—C43—C45113.8 (3)
C6—C1—C2—C7170.50 (19)C39—C38—C43—C4562.8 (3)
O2—C1—C2—C73.8 (3)C41—C42—C46—C48B93.3 (14)
C1—C2—C3—C41.5 (3)C37—C42—C46—C48B84.1 (14)
C7—C2—C3—C4172.7 (2)C41—C42—C46—C47A60.2 (4)
C2—C3—C4—C50.8 (4)C37—C42—C46—C47A122.4 (3)
C3—C4—C5—C60.8 (4)C41—C42—C46—C48A65.1 (4)
C4—C5—C6—C11.3 (3)C37—C42—C46—C48A112.3 (3)
C4—C5—C6—C10176.4 (2)C41—C42—C46—C47B18.9 (11)
C2—C1—C6—C53.7 (3)C37—C42—C46—C47B163.8 (11)
O2—C1—C6—C5178.02 (18)P3—O10—C49—C5487.5 (2)
C2—C1—C6—C10173.9 (2)P3—O10—C49—C5097.3 (2)
O2—C1—C6—C100.4 (3)C54—C49—C50—C510.7 (3)
C1—C2—C7—C8A159.8 (2)O10—C49—C50—C51175.72 (19)
C3—C2—C7—C8A26.2 (3)C54—C49—C50—C55174.3 (2)
C1—C2—C7—C8B123.2 (19)O10—C49—C50—C550.7 (3)
C3—C2—C7—C8B62.8 (19)C49—C50—C51—C520.5 (3)
C1—C2—C7—C9B115.7 (15)C55—C50—C51—C52174.5 (2)
C3—C2—C7—C9B58.3 (15)C50—C51—C52—C530.0 (4)
C1—C2—C7—C9A76.6 (3)C51—C52—C53—C540.2 (4)
C3—C2—C7—C9A97.4 (3)C50—C49—C54—C530.5 (3)
C5—C6—C10—C1160.3 (3)O10—C49—C54—C53175.44 (19)
C1—C6—C10—C11122.1 (2)C50—C49—C54—C58177.6 (2)
C5—C6—C10—C1262.6 (3)O10—C49—C54—C582.7 (3)
C1—C6—C10—C12114.9 (2)C52—C53—C54—C490.1 (3)
P1—O3—C13—C1483.9 (2)C52—C53—C54—C58178.1 (2)
P1—O3—C13—C18100.6 (2)C51—C50—C55—C5626.9 (3)
C18—C13—C14—C153.2 (3)C49—C50—C55—C56158.3 (2)
O3—C13—C14—C15178.32 (19)C51—C50—C55—C5796.2 (3)
C18—C13—C14—C19173.7 (2)C49—C50—C55—C5778.6 (3)
O3—C13—C14—C191.4 (3)C49—C54—C58—C60124.1 (3)
C13—C14—C15—C161.0 (3)C53—C54—C58—C6057.8 (3)
C19—C14—C15—C16175.9 (2)C49—C54—C58—C59111.5 (3)
C14—C15—C16—C170.9 (4)C53—C54—C58—C5966.6 (3)
C15—C16—C17—C180.7 (4)P3—O11—C61—C6696.0 (2)
C14—C13—C18—C173.4 (3)P3—O11—C61—C6289.1 (2)
O3—C13—C18—C17178.59 (19)C66—C61—C62—C632.7 (4)
C14—C13—C18—C22175.2 (2)O11—C61—C62—C63177.3 (2)
O3—C13—C18—C220.1 (3)C66—C61—C62—C67174.9 (2)
C16—C17—C18—C131.3 (3)O11—C61—C62—C670.4 (3)
C16—C17—C18—C22177.3 (2)C61—C62—C63—C641.8 (4)
C13—C14—C19—C20130.5 (3)C67—C62—C63—C64175.8 (3)
C15—C14—C19—C2052.8 (3)C62—C63—C64—C650.1 (5)
C13—C14—C19—C21105.6 (3)C63—C64—C65—C660.8 (5)
C15—C14—C19—C2171.1 (3)C62—C61—C66—C651.8 (4)
C13—C18—C22—C23118.8 (3)O11—C61—C66—C65176.5 (2)
C17—C18—C22—C2362.7 (3)C62—C61—C66—C70176.5 (2)
C13—C18—C22—C24116.8 (3)O11—C61—C66—C701.9 (3)
C17—C18—C22—C2461.7 (3)C64—C65—C66—C610.0 (4)
P2—O6—C25—C2698.9 (2)C64—C65—C66—C70178.4 (3)
P2—O6—C25—C3087.2 (2)C63—C62—C67—C68105.5 (3)
C30—C25—C26—C270.4 (3)C61—C62—C67—C6872.0 (3)
O6—C25—C26—C27173.2 (2)C63—C62—C67—C6919.9 (4)
C30—C25—C26—C31179.5 (2)C61—C62—C67—C69162.6 (3)
O6—C25—C26—C315.9 (3)C61—C66—C70—C71127.1 (3)
C25—C26—C27—C280.4 (4)C65—C66—C70—C7154.5 (3)
C31—C26—C27—C28179.5 (2)C61—C66—C70—C72108.0 (3)
C26—C27—C28—C290.2 (4)C65—C66—C70—C7270.3 (3)
C27—C28—C29—C300.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H79···O120.81 (3)1.83 (3)2.632 (2)171 (3)
O14—H80···O40.76 (3)2.27 (3)2.941 (2)148 (3)
O15—H81···O40.82 (3)1.79 (3)2.583 (2)160 (3)
O16—H82···O180.82 (3)1.86 (3)2.684 (3)178 (4)
O17—H83···O80.82 (3)1.99 (3)2.783 (2)165 (3)
O18—H84···O80.82 (4)1.94 (4)2.723 (3)160 (4)
 

Funding information

Funding for this research was provided by: Russian Science Foundation (grant No. 17-13-01357).

References

First citationAnwander, R. (2002). Applied Homogeneous Catalysis with Organometallic Compounds, edited by B. Cornils & W. A. Herrmann, pp. 974–1013. Weinheim: Wiley-VCH.  Google Scholar
First citationAtwood, D. A. (2016). Sustainable Inorganic Chemistry. New York: Wiley.  Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBünzli, J. G. (2017). Eur. J. Inorg. Chem. pp. 5058–5063.  Google Scholar
First citationBünzli, J. G. & Piguet, C. (2005). Chem. Soc. Rev. 34, 1048–1077.  Web of Science PubMed Google Scholar
First citationChen, J. (2016). Application of Ionic Liquids on Rare Earth Green Separation and Utilization. Berlin, Heidelberg: Springer-Verlag.  Google Scholar
First citationFriebe, L., Nuyken, O. & Obrecht, W. (2006). Adv. Polym. Sci. 204, 1–154.  Web of Science CrossRef CAS Google Scholar
First citationGreenham, N. C., Samuel, I. D. W., Hayes, G. R., Phillips, R. T., Kessener, Y. A. R. R., Moratti, S. C., Holmes, A. B. & Friend, R. H. (1995). Chem. Phys. Lett. 241, 89–96.  CrossRef CAS Google Scholar
First citationGuillou, O., Daiguebonne, C., Calvez, G. & Bernot, K. (2016). Acc. Chem. Res. 49, 844–856.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKobayashi, S. & Anwander, R. (2001). Lanthanides: Chemistry and Use in Organic Synthesis. Topics in Organometallic Chemistry, Vol. 2, pp. 1–307. Berlin, Heidelberg: Springer-Verlag.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMello, J. C. de, Wittmann, H. F. & Friend, R. H. (1997). Adv. Mater. 9, 230–232.  Google Scholar
First citationMinyaev, M. E., Korchagina, S. A., Tavtorkin, A. N., Churakov, A. V. & Nifant'ev, I. E. (2018b). Acta Cryst. C74, 673–682.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMinyaev, M. E., Korchagina, S. A., Tavtorkin, A. N., Kostitsyna, N. N., Churakov, A. V. & Nifant'ev, I. E. (2018c). Struct. Chem. 29, 1475–1487.  Web of Science CSD CrossRef CAS Google Scholar
First citationMinyaev, M. E., Nifant'ev, I. E., Tavtorkin, A. N., Korchagina, S. A., Zeynalova, S. S., Ananyev, I. V. & Churakov, A. V. (2017). Acta Cryst. C73, 820–827.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMinyaev, M. E., Nifant'ev, I. E., Tavtorkin, A. N., Korchagina, S. A. & Zeynalova, S. S. (2015). Acta Cryst. E71, 443–446.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMinyaev, M. E., Tavtorkin, A. N., Korchagina, S. A., Bondarenko, G. N., Churakov, A. V. & Nifant'ev, I. E. (2018a). Acta Cryst. C74, 590–598.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNelyubina, Y. V., Puntus, L. N. & Lyssenko, K. A. (2014). Chem. Eur. J. 20, 2860–2865.  CSD CrossRef CAS PubMed Google Scholar
First citationNifant'ev, I. E., Tavtorkin, A. N., Korchagina, S. A., Gavrilenko, I. F., Glebova, N. N., Kostitsyna, N. N., Yakovlev, V. A., Bondarenko, G. N. & Filatova, M. P. (2014). Appl. Catal. Gen. 478, 219–227.  CAS Google Scholar
First citationNifant'ev, I. E., Tavtorkin, A. N., Shlyahtin, A. V., Korchagina, S. A., Gavrilenko, I. F., Glebova, N. N. & Churakov, A. V. (2013). Dalton Trans. 42, 1223–1230.  Web of Science CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWrighton, M. S., Ginley, D. S. & Morse, D. L. (1974). J. Phys. Chem. 78, 2229–2233.  CrossRef CAS Web of Science Google Scholar
First citationZhang, Z., Cui, D., Wang, B., Liu, B. & Yang, Y. (2010). Struct. Bond. 137, 49–108.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds