research communications
Hirshfeld surface analysis and DFT studies of 2-[5-(4-methylbenzyl)-6-oxo-3-phenyl-1,6-dihydropyridazin-1-yl]acetic acid
aLaboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, Mohamed I University, 60000 Oujda, Morocco, bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139-Samsun, Turkey, cMoroccan Foundation for Advanced Science, Innovation and Research (Mascir), Department of Nanotechnology, Rabat Design Center, Rue Mohamed Al Jazouli-Madinat Al Irfane, Rabat 10 100, Morocco, and dLaboratory of Plant Chemistry, Organic and Bioorganic Synthesis, URAC23, Faculty of Science, B.P. 1014, GEOPAC Research Center, Mohammed V University, Rabat, Morocco
*Correspondence e-mail: cemle28baydere@hotmail.com, fouadelkalai80@gmail.com
The title pyridazinone derivative, C20H18N2O3, is not planar. The phenyl ring and the pyridazine ring are inclined to each other by 10.55 (12)°, whereas the 4-methylbenzyl ring is nearly orthogonal to the pyridazine ring, with a dihedral angle of 72.97 (10)°. In the crystal, molecules are linked by pairs of O—H⋯O hydrogen bonds, forming inversion dimers with an R22(14) ring motif. The dimers are linked by C—H⋯O hydrogen bonds, generating ribbons propagating along the c-axis direction. The intermolecular interactions were additionally investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots. They revealed that the most significant contributions to the crystal packing are from H⋯H (48.4%), H⋯O/O⋯H (21.8%) and H⋯C/C⋯H (20.4%) contacts. Molecular orbital calculations providing electron-density plots of HOMO and LUMO molecular orbitals and molecular electrostatic potentials (MEP) were also computed, both with the DFT/B3LYP/6–311 G++(d,p) basis set.
Keywords: crystal structure; hydrogen bonding; DFT; Hirshfeld surface analysis; HOMO–LUMO calculations.
CCDC reference: 1965448
1. Chemical context
Pyridazinone derivatives are important biologically active et al., 2015; Akhtar et al., 2016), which have been the subject of many studies because of their widespread biological activities, such as inflammatory (Barberot et al., 2018), antibacterial (El-Hashash et al., 2014), antidepressant (Boukharsa et al., 2016), antihypertensive (Demirayak et al., 2004), anti-HIV (Li et al., 2013), anticonvulsant (Partap et al., 2018), and their use as herbicidal agents (Asif, 2013). In addition, it has been shown that pyridazinones are good corrosion inhibitors (Chetouani et al., 2003) and that they can be used as organic extractants of certain metal ions in the aqueous phase (El Kalai et al., 2019b).
(DubeyIn a continuation of our investigations of the molecular structures and Hirshfeld surfaces of new pyridazinone derivatives (Daoui et al., 2019a,b), we report herein on the synthesis and crystal and molecular structures of the title compound, 2-[5-(4-methylbenzyl)-6-oxo-3-phenyl-1,6-dihydropyridazin-1-yl]acetic acid, as well as the analysis of the Hirshfeld surfaces.
2. Structural commentary
The molecule structure of the title compound is shown in Fig. 1. The phenyl (C1–C6) and pyridazine (C7–C10/N1/N2) rings are twisted relative to each other, making a dihedral angle of 10.55 (12)°. The 4-methylbenzl ring (C14–C19) is inclined to the pyridazine ring by 72.97 (10)°. Atoms C9 and C10 of the pyridazine ring show the largest deviations from planarity (r.m.s. deviation = 0.0075 Å) in positive and negative directions [C10 = 0.0127 (11) Å and C9 = −0.0090 (11) Å]. The O3=C10 bond length of the pyridazinone carbonyl function is 1.2433 (19) Å and the N1—N2 bond length in the pyridazine ring is 1.3516 (19) Å, both in accordance with values reported for related pyridazinones (El Kalai et al., 2019a; Xu et al., 2005).
3. Supramolecular features
In the crystal, molecules are linked by pairs of O—H⋯O hydrogen bonds, forming inversion dimers with an R22(14) ring motif (Table 1 and Fig. 2). The dimers are linked by C—H⋯O hydrogen bonds, forming ribbons that extend along the c-axis direction (Table 1 and Fig. 2). There are no other significant intermolecular interactions present.
4. Database survey
A search of the Cambridge Structural Database (CSD, version 5.40, update August 2019; Groom et al., 2016) using 2-[6-oxopyridazin-1(6H)-yl]acetic acid as the main skeleton revealed the presence of six structures similar to the title compound, but with different substituents on the pyridazine ring. Two of these structures are similar to the title compound, viz. ethyl {5-[(3-chlorophenyl)methyl]-6-oxo-3-phenylpyridazin-1(6H)-yl}acetate (FODQUN; El Kalai et al., 2019a) and ethyl 3-methyl-6-oxo-5-[3-(trifluoromethyl)phenyl]-1,6-dihydro-1-pyridazineacetate (QANVOR; Xu et al., 2005).
In FODQUN, the phenyl ring and the pyridazine ring are inclined to each other by 17.41 (13)°, whereas the 3-chlorophenyl ring is nearly orthogonal to the pyridazine ring with a dihedral angle of 88.19 (13)°. In the crystal, C—H⋯O hydrogen bonds generate inversion dimers with an R22(10) ring motif. The dimers are linked by further C—H⋯O hydrogen bonds, enclosing R2 2(20) ring motifs, forming ribbons, similar to the situation in the crystal of the title compound. Weak intermolecular C—H⋯π interactions and π–π interactions are also observed in the crystal structure.
In QANVOR, the phenyl and pyridazinone rings are approximately coplanar with a dihedral angle of 4.84 (14)°. In the crystal, inversion-related molecules form dimers through non-classical C—H⋯O hydrogen bonds. The dimers are linked by a number of C–H⋯F hydrogen bonds, forming a three-dimensional structure.
5. Hirshfeld surface analysis
Hirshfeld surface analysis was used to quantify the intermolecular contacts of the title compounds, using the software CrystalExplorer17.5 (Turner et al., 2017). The Hirshfeld surfaces were calculated using a standard (high) surface resolution with the three-dimensional dnorm surfaces plotted over a fixed colour scale of −0.7290 (red) to 1.4764 (blue) a.u.. The Hirshfeld surfaces of the title compound were mapped over dnorm, shape index and curvedness, and are shown in Fig. 3a–c.
The overall two-dimensional fingerprint plot and those delineated into H⋯H, H⋯C/ C⋯H, H⋯O/O⋯H, H⋯N/N⋯H and C⋯C contacts are illustrated in Fig. 4a–f, respectively. The H⋯H interaction makes the largest contribution (48.4%) to the overall crystal packing. The pair of wings in the fingerprint plot delineated into H⋯C/C⋯H contacts, which contribute 20.4% to the Hirshfeld surface, have a nearly symmetrical distribution of points with the tips at de + di ∼2.70 Å. H⋯O/O⋯H contacts make a 21.8% contribution to the Hirshfeld surface. The contacts are represented by a pair of sharp spikes in the region de + di ∼1.64 Å in the fingerprint plot, Fig. 4d. The H⋯O/O⋯H contacts arise from intermolecular O—H⋯O and C—H⋯O hydrogen bonding (Table 2). The contributions of the other contacts to the Hirshfeld surface are negligible, i.e. H⋯N/N⋯H of 4.1% and C⋯C of 4.0%.
|
6. Frontier molecular orbital analysis
The energy levels for the title compound were computed theoretically via density functional theory (DFT) using the standard B3LYP functional and 6–311 G++ (d,p) basis-set calculations (Becke, 1993) as implemented in GAUSSIAN 09 (Frisch et al., 2009). The HOMO (highest occupied molecular orbital) acts as an and the LUMO (lowest occupied molecular orbital) as an When the energy gap is small, the molecule is highly polarizable and has high chemical reactivity. The energy levels, energy gaps, hardness (η), softness (σ) and (χ) are given in Table 2. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 5. The chemical hardness and softness of a molecule is a sign of its chemical stability. From the HOMO–LUMO energy gap, we can see whether or not the molecule is hard or soft. If the energy gap is large, the molecule is hard and if small the molecule is soft. Soft molecules are more polarizable than hard ones because they need less energy for excitation. Therefore, from Table 2 we conclude that the title compound can be classified as a hard material with a HOMO–LUMO energy gap of 4.3585 eV.
7. Molecular electrostatic potentials
Molecular electrostatic potential (MEP) displays molecular size and shape as well as positive, negative and neutral electrostatic potential regions in terms of colour grading and is useful in investigating relationships between molecular structure and physicochemical properties (Murray & Sen, 1996; Scrocco & Tomasi, 1978). The MEP map (Fig. 6) was calculated at the B3LYP/6-311 G++ (d,p) level of theory. The red and blue-coloured regions indicate nucleophiles (electron rich) and regions (electron poor), respectively. The white regions indicate neutral atoms. In the title molecule, the red regions are concentrated at the carbonyl group. It possesses the most negative potential and is thus the strongest repulsion site (electrophilic attack). The blue regions indicate the strongest attraction regions, which are occupied mostly by hydrogen atoms.
8. Synthesis and crystallization
A suspension of ethyl 2-[5-(4-methylbenzyl)-6-oxo-3-phenylpyridazin-1(6H)-yl]acetate (3.6 mmol), and 6 N NaOH (14.4 mmol) in ethanol (50 ml) was stirred at 353 K for 4 h. The mixture was then concentrated in vacuo, diluted with cold water, and acidified with 6 N HCl. The final product was filtered off with suction and recrystallized from ethanol. Yellow prismatic crystals were obtained by slow evaporation of the solvent at room temperature.
9. Refinement
Crystal data, data collection and structure . The hydrogen atoms were fixed geometrically (O—H = 0.82 Å, C—H = 0.93–0.96 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.5Ueq(O, C-methyl) and 1.2Ueq(C) for other H atoms. For atoms C17–C20, SIMU, DELU and ISOR commands were used (SHELXL; Sheldrick, 2015b).
details are summarized in Table 3Supporting information
CCDC reference: 1965448
https://doi.org/10.1107/S2056989019015317/su5527sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019015317/su5527Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019015317/su5527Isup3.cml
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2017 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012), SHELXL2018 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).C20H18N2O3 | Z = 2 |
Mr = 334.36 | F(000) = 352 |
Triclinic, P1 | Dx = 1.268 Mg m−3 |
a = 8.4213 (7) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.0739 (9) Å | Cell parameters from 9277 reflections |
c = 12.2238 (12) Å | θ = 2.4–30.5° |
α = 106.501 (8)° | µ = 0.09 mm−1 |
β = 92.390 (8)° | T = 296 K |
γ = 100.750 (8)° | Prism, yellow |
V = 875.43 (15) Å3 | 0.75 × 0.62 × 0.34 mm |
Stoe IPDS 2 diffractometer | 3387 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 2159 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.029 |
Detector resolution: 6.67 pixels mm-1 | θmax = 26.0°, θmin = 2.5° |
rotation method scans | h = −10→10 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −10→11 |
Tmin = 0.945, Tmax = 0.959 | l = −15→15 |
7687 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.130 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0706P)2] where P = (Fo2 + 2Fc2)/3 |
3387 reflections | (Δ/σ)max < 0.001 |
228 parameters | Δρmax = 0.12 e Å−3 |
33 restraints | Δρmin = −0.14 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O2 | 0.63260 (15) | 1.10394 (16) | 0.10937 (10) | 0.0735 (4) | |
H2 | 0.597450 | 1.162100 | 0.078353 | 0.110* | |
O3 | 0.52647 (15) | 0.73205 (16) | −0.01452 (10) | 0.0764 (4) | |
O1 | 0.80943 (17) | 1.09371 (19) | −0.02162 (12) | 0.0945 (5) | |
N2 | 0.68471 (16) | 0.84641 (18) | 0.15268 (12) | 0.0669 (4) | |
N1 | 0.72008 (16) | 0.88379 (18) | 0.26737 (12) | 0.0668 (4) | |
C8 | 0.46392 (19) | 0.7210 (2) | 0.26864 (14) | 0.0620 (4) | |
H8 | 0.389598 | 0.679405 | 0.311801 | 0.074* | |
C9 | 0.4288 (2) | 0.6836 (2) | 0.15452 (14) | 0.0620 (4) | |
C7 | 0.61225 (19) | 0.8228 (2) | 0.32473 (14) | 0.0613 (4) | |
C14 | 0.1506 (2) | 0.5207 (2) | 0.15768 (15) | 0.0664 (4) | |
C6 | 0.6544 (2) | 0.8672 (2) | 0.45037 (15) | 0.0680 (5) | |
C10 | 0.5447 (2) | 0.7524 (2) | 0.09055 (14) | 0.0634 (4) | |
C12 | 0.7494 (2) | 1.0492 (2) | 0.05303 (14) | 0.0670 (5) | |
C13 | 0.2753 (2) | 0.5779 (2) | 0.08692 (16) | 0.0734 (5) | |
H13A | 0.226930 | 0.634241 | 0.042417 | 0.088* | |
H13B | 0.303827 | 0.487485 | 0.033334 | 0.088* | |
C11 | 0.8048 (2) | 0.9243 (3) | 0.09364 (17) | 0.0773 (5) | |
H11A | 0.830690 | 0.846172 | 0.028180 | 0.093* | |
H11B | 0.903514 | 0.971292 | 0.145133 | 0.093* | |
C15 | 0.1700 (3) | 0.4072 (2) | 0.20852 (19) | 0.0832 (6) | |
H15 | 0.258956 | 0.359741 | 0.194728 | 0.100* | |
C19 | 0.0148 (3) | 0.5824 (2) | 0.1768 (2) | 0.0885 (6) | |
H19 | −0.003886 | 0.657256 | 0.142058 | 0.106* | |
C17 | −0.0729 (3) | 0.4267 (3) | 0.3010 (2) | 0.1019 (7) | |
C18 | −0.0948 (3) | 0.5352 (3) | 0.2469 (2) | 0.1060 (7) | |
H18 | −0.186687 | 0.578672 | 0.257801 | 0.127* | |
C16 | 0.0607 (3) | 0.3626 (3) | 0.2792 (2) | 0.0992 (7) | |
H16 | 0.078355 | 0.286573 | 0.313098 | 0.119* | |
C3 | 0.7361 (4) | 0.9592 (4) | 0.6852 (2) | 0.1101 (9) | |
H3 | 0.763972 | 0.989204 | 0.763999 | 0.132* | |
C1 | 0.7831 (3) | 0.9861 (3) | 0.5033 (2) | 0.1070 (8) | |
H1 | 0.844994 | 1.038827 | 0.459306 | 0.128* | |
C5 | 0.5672 (3) | 0.7970 (4) | 0.51898 (19) | 0.1116 (9) | |
H5 | 0.478402 | 0.715558 | 0.486763 | 0.134* | |
C4 | 0.6081 (3) | 0.8448 (5) | 0.6369 (2) | 0.1338 (11) | |
H4 | 0.545236 | 0.796070 | 0.682551 | 0.161* | |
C2 | 0.8236 (4) | 1.0299 (4) | 0.6197 (2) | 0.1281 (10) | |
H2A | 0.913185 | 1.110017 | 0.653001 | 0.154* | |
C20 | −0.1911 (4) | 0.3793 (4) | 0.3811 (3) | 0.1591 (13) | |
H20A | −0.271221 | 0.443328 | 0.391357 | 0.239* | |
H20B | −0.133254 | 0.393504 | 0.453929 | 0.239* | |
H20C | −0.243577 | 0.270862 | 0.348701 | 0.239* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O2 | 0.0725 (8) | 0.0961 (10) | 0.0601 (7) | 0.0214 (7) | 0.0150 (6) | 0.0325 (6) |
O3 | 0.0785 (8) | 0.1010 (10) | 0.0580 (7) | 0.0288 (7) | 0.0140 (6) | 0.0293 (7) |
O1 | 0.0939 (10) | 0.1310 (12) | 0.0796 (9) | 0.0267 (9) | 0.0331 (8) | 0.0589 (9) |
N2 | 0.0532 (8) | 0.0909 (10) | 0.0664 (9) | 0.0154 (7) | 0.0119 (7) | 0.0379 (8) |
N1 | 0.0535 (8) | 0.0864 (10) | 0.0657 (9) | 0.0138 (7) | 0.0053 (7) | 0.0312 (8) |
C8 | 0.0572 (9) | 0.0719 (11) | 0.0606 (10) | 0.0117 (8) | 0.0105 (8) | 0.0260 (8) |
C9 | 0.0593 (9) | 0.0686 (10) | 0.0612 (10) | 0.0155 (8) | 0.0085 (8) | 0.0226 (8) |
C7 | 0.0534 (9) | 0.0744 (11) | 0.0620 (10) | 0.0180 (8) | 0.0085 (8) | 0.0263 (8) |
C14 | 0.0630 (10) | 0.0584 (10) | 0.0684 (10) | 0.0029 (8) | 0.0007 (8) | 0.0111 (8) |
C6 | 0.0595 (10) | 0.0875 (12) | 0.0599 (10) | 0.0225 (9) | 0.0044 (8) | 0.0219 (9) |
C10 | 0.0600 (10) | 0.0788 (11) | 0.0586 (10) | 0.0231 (8) | 0.0098 (8) | 0.0257 (8) |
C12 | 0.0584 (10) | 0.0908 (13) | 0.0515 (9) | 0.0060 (9) | 0.0068 (8) | 0.0267 (9) |
C13 | 0.0737 (11) | 0.0748 (11) | 0.0642 (10) | 0.0050 (9) | −0.0002 (9) | 0.0165 (9) |
C11 | 0.0556 (9) | 0.1085 (15) | 0.0800 (12) | 0.0164 (10) | 0.0190 (9) | 0.0462 (11) |
C15 | 0.0817 (13) | 0.0735 (12) | 0.0977 (14) | 0.0177 (10) | 0.0199 (11) | 0.0284 (11) |
C19 | 0.0741 (13) | 0.0770 (13) | 0.1100 (17) | 0.0140 (10) | 0.0034 (12) | 0.0228 (12) |
C17 | 0.0866 (14) | 0.0909 (14) | 0.1061 (16) | −0.0089 (12) | 0.0287 (11) | 0.0092 (10) |
C18 | 0.0733 (12) | 0.1004 (16) | 0.1320 (19) | 0.0157 (12) | 0.0256 (13) | 0.0142 (12) |
C16 | 0.1108 (18) | 0.0792 (14) | 0.1074 (17) | 0.0029 (13) | 0.0224 (14) | 0.0366 (13) |
C3 | 0.1037 (19) | 0.164 (3) | 0.0617 (13) | 0.0585 (19) | 0.0004 (14) | 0.0139 (16) |
C1 | 0.1183 (19) | 0.1081 (17) | 0.0751 (14) | −0.0077 (15) | −0.0081 (13) | 0.0191 (12) |
C5 | 0.0720 (13) | 0.189 (3) | 0.0717 (13) | −0.0062 (14) | −0.0022 (11) | 0.0583 (15) |
C4 | 0.0910 (17) | 0.243 (4) | 0.0762 (15) | 0.023 (2) | 0.0094 (14) | 0.068 (2) |
C2 | 0.143 (2) | 0.133 (2) | 0.0775 (17) | 0.0047 (19) | −0.0182 (17) | 0.0019 (16) |
C20 | 0.138 (2) | 0.158 (3) | 0.145 (3) | −0.033 (2) | 0.064 (2) | 0.022 (2) |
O2—C12 | 1.317 (2) | C11—H11B | 0.9700 |
O2—H2 | 0.8200 | C15—C16 | 1.372 (3) |
O3—C10 | 1.2433 (19) | C15—H15 | 0.9300 |
O1—C12 | 1.193 (2) | C19—C18 | 1.377 (3) |
N2—N1 | 1.3516 (19) | C19—H19 | 0.9300 |
N2—C10 | 1.370 (2) | C17—C16 | 1.363 (3) |
N2—C11 | 1.459 (2) | C17—C18 | 1.367 (4) |
N1—C7 | 1.307 (2) | C17—C20 | 1.515 (4) |
C8—C9 | 1.344 (2) | C18—H18 | 0.9300 |
C8—C7 | 1.422 (2) | C16—H16 | 0.9300 |
C8—H8 | 0.9300 | C3—C2 | 1.327 (4) |
C9—C10 | 1.438 (2) | C3—C4 | 1.330 (4) |
C9—C13 | 1.507 (2) | C3—H3 | 0.9300 |
C7—C6 | 1.482 (2) | C1—C2 | 1.374 (3) |
C14—C19 | 1.365 (3) | C1—H1 | 0.9300 |
C14—C15 | 1.375 (3) | C5—C4 | 1.390 (3) |
C14—C13 | 1.499 (3) | C5—H5 | 0.9300 |
C6—C5 | 1.352 (3) | C4—H4 | 0.9300 |
C6—C1 | 1.366 (3) | C2—H2A | 0.9300 |
C12—C11 | 1.498 (3) | C20—H20A | 0.9600 |
C13—H13A | 0.9700 | C20—H20B | 0.9600 |
C13—H13B | 0.9700 | C20—H20C | 0.9600 |
C11—H11A | 0.9700 | ||
C12—O2—H2 | 109.5 | H11A—C11—H11B | 107.7 |
N1—N2—C10 | 126.14 (14) | C16—C15—C14 | 121.4 (2) |
N1—N2—C11 | 115.10 (15) | C16—C15—H15 | 119.3 |
C10—N2—C11 | 118.61 (14) | C14—C15—H15 | 119.3 |
C7—N1—N2 | 117.30 (14) | C14—C19—C18 | 120.8 (2) |
C9—C8—C7 | 121.38 (16) | C14—C19—H19 | 119.6 |
C9—C8—H8 | 119.3 | C18—C19—H19 | 119.6 |
C7—C8—H8 | 119.3 | C16—C17—C18 | 116.7 (2) |
C8—C9—C10 | 117.95 (16) | C16—C17—C20 | 121.4 (3) |
C8—C9—C13 | 125.62 (16) | C18—C17—C20 | 121.9 (3) |
C10—C9—C13 | 116.42 (15) | C17—C18—C19 | 122.2 (2) |
N1—C7—C8 | 121.32 (15) | C17—C18—H18 | 118.9 |
N1—C7—C6 | 115.86 (15) | C19—C18—H18 | 118.9 |
C8—C7—C6 | 122.82 (16) | C17—C16—C15 | 121.7 (2) |
C19—C14—C15 | 117.17 (19) | C17—C16—H16 | 119.1 |
C19—C14—C13 | 121.17 (18) | C15—C16—H16 | 119.1 |
C15—C14—C13 | 121.63 (17) | C2—C3—C4 | 119.2 (2) |
C5—C6—C1 | 116.45 (19) | C2—C3—H3 | 120.4 |
C5—C6—C7 | 122.76 (18) | C4—C3—H3 | 120.4 |
C1—C6—C7 | 120.77 (19) | C6—C1—C2 | 121.7 (3) |
O3—C10—N2 | 119.17 (16) | C6—C1—H1 | 119.2 |
O3—C10—C9 | 124.97 (17) | C2—C1—H1 | 119.2 |
N2—C10—C9 | 115.86 (14) | C6—C5—C4 | 121.1 (3) |
O1—C12—O2 | 124.94 (17) | C6—C5—H5 | 119.5 |
O1—C12—C11 | 121.98 (17) | C4—C5—H5 | 119.5 |
O2—C12—C11 | 113.06 (14) | C3—C4—C5 | 120.8 (3) |
C14—C13—C9 | 114.91 (15) | C3—C4—H4 | 119.6 |
C14—C13—H13A | 108.5 | C5—C4—H4 | 119.6 |
C9—C13—H13A | 108.5 | C3—C2—C1 | 120.7 (3) |
C14—C13—H13B | 108.5 | C3—C2—H2A | 119.7 |
C9—C13—H13B | 108.5 | C1—C2—H2A | 119.7 |
H13A—C13—H13B | 107.5 | C17—C20—H20A | 109.5 |
N2—C11—C12 | 113.59 (14) | C17—C20—H20B | 109.5 |
N2—C11—H11A | 108.8 | H20A—C20—H20B | 109.5 |
C12—C11—H11A | 108.8 | C17—C20—H20C | 109.5 |
N2—C11—H11B | 108.8 | H20A—C20—H20C | 109.5 |
C12—C11—H11B | 108.8 | H20B—C20—H20C | 109.5 |
C10—N2—N1—C7 | 1.2 (2) | C10—C9—C13—C14 | −174.43 (15) |
C11—N2—N1—C7 | 176.75 (15) | N1—N2—C11—C12 | −107.68 (17) |
C7—C8—C9—C10 | −1.3 (2) | C10—N2—C11—C12 | 68.2 (2) |
C7—C8—C9—C13 | −179.66 (16) | O1—C12—C11—N2 | −159.10 (18) |
N2—N1—C7—C8 | 0.1 (2) | O2—C12—C11—N2 | 22.1 (2) |
N2—N1—C7—C6 | −179.55 (14) | C19—C14—C15—C16 | −2.6 (3) |
C9—C8—C7—N1 | 0.0 (3) | C13—C14—C15—C16 | 175.73 (19) |
C9—C8—C7—C6 | 179.63 (15) | C15—C14—C19—C18 | 1.8 (3) |
N1—C7—C6—C5 | −170.3 (2) | C13—C14—C19—C18 | −176.5 (2) |
C8—C7—C6—C5 | 10.0 (3) | C16—C17—C18—C19 | −2.2 (4) |
N1—C7—C6—C1 | 11.5 (3) | C20—C17—C18—C19 | 178.0 (2) |
C8—C7—C6—C1 | −168.13 (19) | C14—C19—C18—C17 | 0.6 (4) |
N1—N2—C10—O3 | 177.73 (15) | C18—C17—C16—C15 | 1.4 (4) |
C11—N2—C10—O3 | 2.3 (2) | C20—C17—C16—C15 | −178.7 (3) |
N1—N2—C10—C9 | −2.4 (2) | C14—C15—C16—C17 | 0.9 (4) |
C11—N2—C10—C9 | −177.82 (15) | C5—C6—C1—C2 | 1.2 (4) |
C8—C9—C10—O3 | −177.84 (16) | C7—C6—C1—C2 | 179.5 (2) |
C13—C9—C10—O3 | 0.7 (3) | C1—C6—C5—C4 | −0.1 (4) |
C8—C9—C10—N2 | 2.3 (2) | C7—C6—C5—C4 | −178.3 (2) |
C13—C9—C10—N2 | −179.12 (15) | C2—C3—C4—C5 | 1.2 (5) |
C19—C14—C13—C9 | 104.4 (2) | C6—C5—C4—C3 | −1.2 (5) |
C15—C14—C13—C9 | −73.8 (2) | C4—C3—C2—C1 | 0.0 (5) |
C8—C9—C13—C14 | 4.0 (3) | C6—C1—C2—C3 | −1.2 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O3i | 0.82 | 1.83 | 2.6358 (16) | 167 |
C3—H3···O1ii | 0.93 | 2.51 | 3.430 (3) | 172 |
Symmetry codes: (i) −x+1, −y+2, −z; (ii) x, y, z+1. |
FMO | Energy |
E(HOMO) | –6.4396 |
E(LUMO) | –2.0811 |
ΔE(HOMO–LUMO) | 4.3585 |
Hardness, η | 2.1792 |
Softness, σ | 0.4589 |
Electronegativity, χ | 4.2603 |
Acknowledgements
The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).
References
Akhtar, W., Shaquiquzzaman, M., Akhter, M., Verma, G., Khan, M. F. & Alam, M. M. (2016). Eur. J. Med. Chem. 123, 256–281. Web of Science CrossRef CAS PubMed Google Scholar
Asif, M. (2013). Mini-Rev. Org. Chem. 10, 113–122. Web of Science CrossRef CAS Google Scholar
Barberot, C., Moniot, A., Allart-Simon, I., Malleret, L., Yegorova, T., Laronze-Cochard, M., Bentaher, A., Médebielle, M., Bouillon, J. P., Hénon, E., Sapi, J., Velard, F. & Gérard, S. (2018). Eur. J. Med. Chem. 146, 139–146. Web of Science CrossRef CAS PubMed Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Boukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494–500. Web of Science CrossRef CAS Google Scholar
Chetouani, A., Aouniti, A., Hammouti, B., Benchat, N., Benhadda, T. & Kertit, S. (2003). Corros. Sci. 45, 1675–1684. CrossRef CAS Google Scholar
Daoui, S., Baydere, C., El Kalai, F., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019a). Acta Cryst. E75, 1734–1737. CSD CrossRef IUCr Journals Google Scholar
Daoui, S., Cinar, E. B., El Kalai, F., Saddik, R., Karrouchi, K., Benchat, N., Baydere, C. & Dege, N. (2019b). Acta Cryst. E75, 1352–1356. Web of Science CSD CrossRef IUCr Journals Google Scholar
Demirayak, S., Karaburun, A. C. & Beis, R. (2004). Eur. J. Med. Chem. 39, 1089–1095. CrossRef PubMed CAS Google Scholar
Dubey, S. & Bhosle, P. A. (2015). Med. Chem. Res. 24, 3579–3598. Web of Science CrossRef CAS Google Scholar
El-Hashash, M. A., Guirguis, D. B., AbdEl-Wahed, N. A. M. & Kadhim, M. A. (2014). J. Chem. Eng. Process Technol, 5, 1000191–1000196. Google Scholar
El Kalai, F., Baydere, C., Daoui, S., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019a). Acta Cryst. E75, 892–895. CSD CrossRef IUCr Journals Google Scholar
El Kalai, F., Chelfi, T., Benchat, N., Hacht, B., Bouklah, M., Elaatiaoui, A., Daoui, S., Allali, M., Ben Hadda, T. & Almalki, F. (2019b). J. Mol. Struct. 1191, 24–31. CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Li, D., Zhan, P., Liu, H., Pannecouque, C., Balzarini, J., De Clercq, E. & Liu, X. (2013). Bioorg. Med. Chem. 21, 2128–2134. CrossRef CAS PubMed Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Murray, J. S. & Sen, K. (1996). Molecular Electrostatic Potentials: Concepts and Applications. Amsterdam: Elsevier. Google Scholar
Partap, S., Akhtar, M. J., Yar, M. S., Hassan, M. Z. & Siddiqui, A. A. (2018). Bioorg. Chem. 77, 74–83. Web of Science CrossRef CAS PubMed Google Scholar
Scrocco, E. & Tomasi, J. (1978). Advances in Quantum Chemistry. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, H., Song, H.-B., Yao, C.-S., Zhu, Y.-Q., Hu, F.-Z., Zou, X.-M. & Yang, H.-Z. (2005). Acta Cryst. E61, o1561–o1563. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.