research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and DFT studies of 2-[5-(4-methyl­benz­yl)-6-oxo-3-phenyl-1,6-di­hydro­pyridazin-1-yl]acetic acid

CROSSMARK_Color_square_no_text.svg

aLaboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, Mohamed I University, 60000 Oujda, Morocco, bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139-Samsun, Turkey, cMoroccan Foundation for Advanced Science, Innovation and Research (Mascir), Department of Nanotechnology, Rabat Design Center, Rue Mohamed Al Jazouli-Madinat Al Irfane, Rabat 10 100, Morocco, and dLaboratory of Plant Chemistry, Organic and Bioorganic Synthesis, URAC23, Faculty of Science, B.P. 1014, GEOPAC Research Center, Mohammed V University, Rabat, Morocco
*Correspondence e-mail: cemle28baydere@hotmail.com, fouadelkalai80@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 6 November 2019; accepted 13 November 2019; online 26 November 2019)

The title pyridazinone derivative, C20H18N2O3, is not planar. The phenyl ring and the pyridazine ring are inclined to each other by 10.55 (12)°, whereas the 4-methyl­benzyl ring is nearly orthogonal to the pyridazine ring, with a dihedral angle of 72.97 (10)°. In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming inversion dimers with an R22(14) ring motif. The dimers are linked by C—H⋯O hydrogen bonds, generating ribbons propagating along the c-axis direction. The inter­molecular inter­actions were additionally investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots. They revealed that the most significant contributions to the crystal packing are from H⋯H (48.4%), H⋯O/O⋯H (21.8%) and H⋯C/C⋯H (20.4%) contacts. Mol­ecular orbital calculations providing electron-density plots of HOMO and LUMO mol­ecular orbitals and mol­ecular electrostatic potentials (MEP) were also computed, both with the DFT/B3LYP/6–311 G++(d,p) basis set.

1. Chemical context

Pyridazinone derivatives are important biologically active heterocyclic compounds (Dubey et al., 2015[Dubey, S. & Bhosle, P. A. (2015). Med. Chem. Res. 24, 3579-3598.]; Akhtar et al., 2016[Akhtar, W., Shaquiquzzaman, M., Akhter, M., Verma, G., Khan, M. F. & Alam, M. M. (2016). Eur. J. Med. Chem. 123, 256-281.]), which have been the subject of many studies because of their widespread biological activities, such as inflammatory (Barberot et al., 2018[Barberot, C., Moniot, A., Allart-Simon, I., Malleret, L., Yegorova, T., Laronze-Cochard, M., Bentaher, A., Médebielle, M., Bouillon, J. P., Hénon, E., Sapi, J., Velard, F. & Gérard, S. (2018). Eur. J. Med. Chem. 146, 139-146.]), anti­bacterial (El-Hashash et al., 2014[El-Hashash, M. A., Guirguis, D. B., AbdEl-Wahed, N. A. M. & Kadhim, M. A. (2014). J. Chem. Eng. Process Technol, 5, 1000191-1000196.]), anti­depressant (Boukharsa et al., 2016[Boukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494-500.]), anti­hypertensive (Demirayak et al., 2004[Demirayak, S., Karaburun, A. C. & Beis, R. (2004). Eur. J. Med. Chem. 39, 1089-1095.]), anti-HIV (Li et al., 2013[Li, D., Zhan, P., Liu, H., Pannecouque, C., Balzarini, J., De Clercq, E. & Liu, X. (2013). Bioorg. Med. Chem. 21, 2128-2134.]), anti­convulsant (Partap et al., 2018[Partap, S., Akhtar, M. J., Yar, M. S., Hassan, M. Z. & Siddiqui, A. A. (2018). Bioorg. Chem. 77, 74-83.]), and their use as herbicidal agents (Asif, 2013[Asif, M. (2013). Mini-Rev. Org. Chem. 10, 113-122.]). In addition, it has been shown that pyridazinones are good corrosion inhibitors (Chetouani et al., 2003[Chetouani, A., Aouniti, A., Hammouti, B., Benchat, N., Benhadda, T. & Kertit, S. (2003). Corros. Sci. 45, 1675-1684.]) and that they can be used as organic extractants of certain metal ions in the aqueous phase (El Kalai et al., 2019b[El Kalai, F., Chelfi, T., Benchat, N., Hacht, B., Bouklah, M., Elaatiaoui, A., Daoui, S., Allali, M., Ben Hadda, T. & Almalki, F. (2019b). J. Mol. Struct. 1191, 24-31.]).

[Scheme 1]

In a continuation of our investigations of the mol­ecular structures and Hirshfeld surfaces of new pyridazinone deriv­atives (Daoui et al., 2019a[Daoui, S., Baydere, C., El Kalai, F., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019a). Acta Cryst. E75, 1734-1737.],b[Daoui, S., Cinar, E. B., El Kalai, F., Saddik, R., Karrouchi, K., Benchat, N., Baydere, C. & Dege, N. (2019b). Acta Cryst. E75, 1352-1356.]), we report herein on the synthesis and crystal and mol­ecular structures of the title compound, 2-[5-(4-methyl­benz­yl)-6-oxo-3-phenyl-1,6-di­hydro­pyridazin-1-yl]acetic acid, as well as the analysis of the Hirshfeld surfaces.

2. Structural commentary

The mol­ecule structure of the title compound is shown in Fig. 1[link]. The phenyl (C1–C6) and pyridazine (C7–C10/N1/N2) rings are twisted relative to each other, making a dihedral angle of 10.55 (12)°. The 4-methyl­benzl ring (C14–C19) is inclined to the pyridazine ring by 72.97 (10)°. Atoms C9 and C10 of the pyridazine ring show the largest deviations from planarity (r.m.s. deviation = 0.0075 Å) in positive and negative directions [C10 = 0.0127 (11) Å and C9 = −0.0090 (11) Å]. The O3=C10 bond length of the pyridaz­in­one carbonyl function is 1.2433 (19) Å and the N1—N2 bond length in the pyridazine ring is 1.3516 (19) Å, both in accordance with values reported for related pyridazinones (El Kalai et al., 2019a[El Kalai, F., Baydere, C., Daoui, S., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019a). Acta Cryst. E75, 892-895.]; Xu et al., 2005[Xu, H., Song, H.-B., Yao, C.-S., Zhu, Y.-Q., Hu, F.-Z., Zou, X.-M. & Yang, H.-Z. (2005). Acta Cryst. E61, o1561-o1563.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming inversion dimers with an R22(14) ring motif (Table 1[link] and Fig. 2[link]). The dimers are linked by C—H⋯O hydrogen bonds, forming ribbons that extend along the c-axis direction (Table 1[link] and Fig. 2[link]). There are no other significant inter­molecular inter­actions present.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3i 0.82 1.83 2.6358 (16) 167
C3—H3⋯O1ii 0.93 2.51 3.430 (3) 172
Symmetry codes: (i) -x+1, -y+2, -z; (ii) x, y, z+1.
[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound. The O—H⋯O and C—H⋯O hydrogen bonds (see Table 1[link]) are shown as dashed lines. For clarity, only H atoms H2 and H3 (grey balls) have been included.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.40, update August 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using 2-[6-oxopyridazin-1(6H)-yl]acetic acid as the main skeleton revealed the presence of six structures similar to the title compound, but with different substituents on the pyridazine ring. Two of these structures are similar to the title compound, viz. ethyl {5-[(3-chloro­phen­yl)meth­yl]-6-oxo-3-phenyl­pyrid­azin-1(6H)-yl}acetate (FODQUN; El Kalai et al., 2019a[El Kalai, F., Baydere, C., Daoui, S., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019a). Acta Cryst. E75, 892-895.]) and ethyl 3-methyl-6-oxo-5-[3-(tri­fluoro­meth­yl)phen­yl]-1,6-di­hydro-1-pyridazine­acetate (QANVOR; Xu et al., 2005[Xu, H., Song, H.-B., Yao, C.-S., Zhu, Y.-Q., Hu, F.-Z., Zou, X.-M. & Yang, H.-Z. (2005). Acta Cryst. E61, o1561-o1563.]).

In FODQUN, the phenyl ring and the pyridazine ring are inclined to each other by 17.41 (13)°, whereas the 3-chloro­phenyl ring is nearly orthogonal to the pyridazine ring with a dihedral angle of 88.19 (13)°. In the crystal, C—H⋯O hydrogen bonds generate inversion dimers with an R22(10) ring motif. The dimers are linked by further C—H⋯O hydrogen bonds, enclosing R2 2(20) ring motifs, forming ribbons, similar to the situation in the crystal of the title compound. Weak inter­molecular C—H⋯π inter­actions and ππ inter­actions are also observed in the crystal structure.

In QANVOR, the phenyl and pyridazinone rings are approximately coplanar with a dihedral angle of 4.84 (14)°. In the crystal, inversion-related mol­ecules form dimers through non-classical C—H⋯O hydrogen bonds. The dimers are linked by a number of C–H⋯F hydrogen bonds, forming a three-dimensional structure.

5. Hirshfeld surface analysis

Hirshfeld surface analysis was used to qu­antify the inter­molecular contacts of the title compounds, using the software CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.]). The Hirshfeld surfaces were calculated using a standard (high) surface resolution with the three-dimensional dnorm surfaces plotted over a fixed colour scale of −0.7290 (red) to 1.4764 (blue) a.u.. The Hirshfeld surfaces of the title compound were mapped over dnorm, shape index and curvedness, and are shown in Fig. 3[link]ac.

[Figure 3]
Figure 3
(a) The Hirshfeld surface of the title compound mapped over dnorm, and plotted in the range −0.7290 to 1.4764 a.u.. (b) the Hirshfeld surface mapped over shape-index, (c) the Hirshfeld surface mapped over curvedness.

The overall two-dimensional fingerprint plot and those delineated into H⋯H, H⋯C/ C⋯H, H⋯O/O⋯H, H⋯N/N⋯H and C⋯C contacts are illustrated in Fig. 4[link]af, respectively. The H⋯H inter­action makes the largest contribution (48.4%) to the overall crystal packing. The pair of wings in the fingerprint plot delineated into H⋯C/C⋯H contacts, which contribute 20.4% to the Hirshfeld surface, have a nearly symmetrical distribution of points with the tips at de + di ∼2.70 Å. H⋯O/O⋯H contacts make a 21.8% contribution to the Hirshfeld surface. The contacts are represented by a pair of sharp spikes in the region de + di ∼1.64 Å in the fingerprint plot, Fig. 4[link]d. The H⋯O/O⋯H contacts arise from inter­molecular O—H⋯O and C—H⋯O hydrogen bonding (Table 2[link]). The contributions of the other contacts to the Hirshfeld surface are negligible, i.e. H⋯N/N⋯H of 4.1% and C⋯C of 4.0%.

Table 2
Calculated frontier mol­ecular orbital energies (eV)

FMO Energy
E(HOMO) –6.4396
E(LUMO) –2.0811
ΔE(HOMO–LUMO) 4.3585
Hardness, η 2.1792
Softness, σ 0.4589
Electronegativity, χ 4.2603
[Figure 4]
Figure 4
(a) The full two-dimensional fingerprint plot for the title compound, and delineated into (b) H⋯H (48.4%), (c) H⋯C/C⋯H (20.4%), (d) H⋯O/O⋯H (21.8%), (e) H⋯N/N⋯H (4.1%) and (f) C⋯C (4.0%) contacts.

6. Frontier mol­ecular orbital analysis

The energy levels for the title compound were computed theoretically via density functional theory (DFT) using the standard B3LYP functional and 6–311 G++ (d,p) basis-set calculations (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) as implemented in GAUSSIAN 09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]). The HOMO (highest occupied mol­ecular orbital) acts as an electron donor and the LUMO (lowest occupied mol­ecular orbital) as an electron acceptor. When the energy gap is small, the mol­ecule is highly polarizable and has high chemical reactivity. The energy levels, energy gaps, hardness (η), softness (σ) and electronegativity (χ) are given in Table 2[link]. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 5[link]. The chemical hardness and softness of a mol­ecule is a sign of its chemical stability. From the HOMO–LUMO energy gap, we can see whether or not the mol­ecule is hard or soft. If the energy gap is large, the mol­ecule is hard and if small the mol­ecule is soft. Soft mol­ecules are more polarizable than hard ones because they need less energy for excitation. Therefore, from Table 2[link] we conclude that the title compound can be classified as a hard material with a HOMO–LUMO energy gap of 4.3585 eV.

[Figure 5]
Figure 5
Mol­ecular orbital energy levels of the title compound.

7. Mol­ecular electrostatic potentials

Mol­ecular electrostatic potential (MEP) displays mol­ecular size and shape as well as positive, negative and neutral electrostatic potential regions in terms of colour grading and is useful in investigating relationships between mol­ecular structure and physicochemical properties (Murray & Sen, 1996[Murray, J. S. & Sen, K. (1996). Molecular Electrostatic Potentials: Concepts and Applications. Amsterdam: Elsevier.]; Scrocco & Tomasi, 1978[Scrocco, E. & Tomasi, J. (1978). Advances in Quantum Chemistry. New York: Academic Press.]). The MEP map (Fig. 6[link]) was calculated at the B3LYP/6-311 G++ (d,p) level of theory. The red and blue-coloured regions indicate nucleophiles (electron rich) and electrophile regions (electron poor), respectively. The white regions indicate neutral atoms. In the title mol­ecule, the red regions are concentrated at the carbonyl group. It possesses the most negative potential and is thus the strongest repulsion site (electrophilic attack). The blue regions indicate the strongest attraction regions, which are occupied mostly by hydrogen atoms.

[Figure 6]
Figure 6
Theoretical mol­ecular electrostatic potential surface for the title compound, calculated using the DFT/B3LYP/6–311 G++ (d,p) basis set.

8. Synthesis and crystallization

A suspension of ethyl 2-[5-(4-methyl­benz­yl)-6-oxo-3-phenyl­pyridazin-1(6H)-yl]acetate (3.6 mmol), and 6 N NaOH (14.4 mmol) in ethanol (50 ml) was stirred at 353 K for 4 h. The mixture was then concentrated in vacuo, diluted with cold water, and acidified with 6 N HCl. The final product was filtered off with suction and recrystallized from ethanol. Yellow prismatic crystals were obtained by slow evaporation of the solvent at room temperature.

9. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hydrogen atoms were fixed geometrically (O—H = 0.82 Å, C—H = 0.93–0.96 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.5Ueq(O, C-meth­yl) and 1.2Ueq(C) for other H atoms. For atoms C17–C20, SIMU, DELU and ISOR commands were used (SHELXL; Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Table 3
Experimental details

Crystal data
Chemical formula C20H18N2O3
Mr 334.36
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 8.4213 (7), 9.0739 (9), 12.2238 (12)
α, β, γ (°) 106.501 (8), 92.390 (8), 100.750 (8)
V3) 875.43 (15)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.75 × 0.62 × 0.34
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.945, 0.959
No. of measured, independent and observed [I > 2σ(I)] reflections 7687, 3387, 2159
Rint 0.029
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.130, 1.01
No. of reflections 3387
No. of parameters 228
No. of restraints 33
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.12, −0.14
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2017 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2017 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012), SHELXL2018 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

2-[5-(4-Methylbenzyl)-6-oxo-3-phenyl-1,6-dihydropyridazin-1-yl]acetic acid top
Crystal data top
C20H18N2O3Z = 2
Mr = 334.36F(000) = 352
Triclinic, P1Dx = 1.268 Mg m3
a = 8.4213 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.0739 (9) ÅCell parameters from 9277 reflections
c = 12.2238 (12) Åθ = 2.4–30.5°
α = 106.501 (8)°µ = 0.09 mm1
β = 92.390 (8)°T = 296 K
γ = 100.750 (8)°Prism, yellow
V = 875.43 (15) Å30.75 × 0.62 × 0.34 mm
Data collection top
Stoe IPDS 2
diffractometer
3387 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2159 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.029
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.5°
rotation method scansh = 1010
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1011
Tmin = 0.945, Tmax = 0.959l = 1515
7687 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0706P)2]
where P = (Fo2 + 2Fc2)/3
3387 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.12 e Å3
33 restraintsΔρmin = 0.14 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.63260 (15)1.10394 (16)0.10937 (10)0.0735 (4)
H20.5974501.1621000.0783530.110*
O30.52647 (15)0.73205 (16)0.01452 (10)0.0764 (4)
O10.80943 (17)1.09371 (19)0.02162 (12)0.0945 (5)
N20.68471 (16)0.84641 (18)0.15268 (12)0.0669 (4)
N10.72008 (16)0.88379 (18)0.26737 (12)0.0668 (4)
C80.46392 (19)0.7210 (2)0.26864 (14)0.0620 (4)
H80.3895980.6794050.3118010.074*
C90.4288 (2)0.6836 (2)0.15452 (14)0.0620 (4)
C70.61225 (19)0.8228 (2)0.32473 (14)0.0613 (4)
C140.1506 (2)0.5207 (2)0.15768 (15)0.0664 (4)
C60.6544 (2)0.8672 (2)0.45037 (15)0.0680 (5)
C100.5447 (2)0.7524 (2)0.09055 (14)0.0634 (4)
C120.7494 (2)1.0492 (2)0.05303 (14)0.0670 (5)
C130.2753 (2)0.5779 (2)0.08692 (16)0.0734 (5)
H13A0.2269300.6342410.0424170.088*
H13B0.3038270.4874850.0333340.088*
C110.8048 (2)0.9243 (3)0.09364 (17)0.0773 (5)
H11A0.8306900.8461720.0281800.093*
H11B0.9035140.9712920.1451330.093*
C150.1700 (3)0.4072 (2)0.20852 (19)0.0832 (6)
H150.2589560.3597410.1947280.100*
C190.0148 (3)0.5824 (2)0.1768 (2)0.0885 (6)
H190.0038860.6572560.1420580.106*
C170.0729 (3)0.4267 (3)0.3010 (2)0.1019 (7)
C180.0948 (3)0.5352 (3)0.2469 (2)0.1060 (7)
H180.1866870.5786720.2578010.127*
C160.0607 (3)0.3626 (3)0.2792 (2)0.0992 (7)
H160.0783550.2865730.3130980.119*
C30.7361 (4)0.9592 (4)0.6852 (2)0.1101 (9)
H30.7639720.9892040.7639990.132*
C10.7831 (3)0.9861 (3)0.5033 (2)0.1070 (8)
H10.8449941.0388270.4593060.128*
C50.5672 (3)0.7970 (4)0.51898 (19)0.1116 (9)
H50.4784020.7155580.4867630.134*
C40.6081 (3)0.8448 (5)0.6369 (2)0.1338 (11)
H40.5452360.7960700.6825510.161*
C20.8236 (4)1.0299 (4)0.6197 (2)0.1281 (10)
H2A0.9131851.1100170.6530010.154*
C200.1911 (4)0.3793 (4)0.3811 (3)0.1591 (13)
H20A0.2712210.4433280.3913570.239*
H20B0.1332540.3935040.4539290.239*
H20C0.2435770.2708620.3487010.239*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0725 (8)0.0961 (10)0.0601 (7)0.0214 (7)0.0150 (6)0.0325 (6)
O30.0785 (8)0.1010 (10)0.0580 (7)0.0288 (7)0.0140 (6)0.0293 (7)
O10.0939 (10)0.1310 (12)0.0796 (9)0.0267 (9)0.0331 (8)0.0589 (9)
N20.0532 (8)0.0909 (10)0.0664 (9)0.0154 (7)0.0119 (7)0.0379 (8)
N10.0535 (8)0.0864 (10)0.0657 (9)0.0138 (7)0.0053 (7)0.0312 (8)
C80.0572 (9)0.0719 (11)0.0606 (10)0.0117 (8)0.0105 (8)0.0260 (8)
C90.0593 (9)0.0686 (10)0.0612 (10)0.0155 (8)0.0085 (8)0.0226 (8)
C70.0534 (9)0.0744 (11)0.0620 (10)0.0180 (8)0.0085 (8)0.0263 (8)
C140.0630 (10)0.0584 (10)0.0684 (10)0.0029 (8)0.0007 (8)0.0111 (8)
C60.0595 (10)0.0875 (12)0.0599 (10)0.0225 (9)0.0044 (8)0.0219 (9)
C100.0600 (10)0.0788 (11)0.0586 (10)0.0231 (8)0.0098 (8)0.0257 (8)
C120.0584 (10)0.0908 (13)0.0515 (9)0.0060 (9)0.0068 (8)0.0267 (9)
C130.0737 (11)0.0748 (11)0.0642 (10)0.0050 (9)0.0002 (9)0.0165 (9)
C110.0556 (9)0.1085 (15)0.0800 (12)0.0164 (10)0.0190 (9)0.0462 (11)
C150.0817 (13)0.0735 (12)0.0977 (14)0.0177 (10)0.0199 (11)0.0284 (11)
C190.0741 (13)0.0770 (13)0.1100 (17)0.0140 (10)0.0034 (12)0.0228 (12)
C170.0866 (14)0.0909 (14)0.1061 (16)0.0089 (12)0.0287 (11)0.0092 (10)
C180.0733 (12)0.1004 (16)0.1320 (19)0.0157 (12)0.0256 (13)0.0142 (12)
C160.1108 (18)0.0792 (14)0.1074 (17)0.0029 (13)0.0224 (14)0.0366 (13)
C30.1037 (19)0.164 (3)0.0617 (13)0.0585 (19)0.0004 (14)0.0139 (16)
C10.1183 (19)0.1081 (17)0.0751 (14)0.0077 (15)0.0081 (13)0.0191 (12)
C50.0720 (13)0.189 (3)0.0717 (13)0.0062 (14)0.0022 (11)0.0583 (15)
C40.0910 (17)0.243 (4)0.0762 (15)0.023 (2)0.0094 (14)0.068 (2)
C20.143 (2)0.133 (2)0.0775 (17)0.0047 (19)0.0182 (17)0.0019 (16)
C200.138 (2)0.158 (3)0.145 (3)0.033 (2)0.064 (2)0.022 (2)
Geometric parameters (Å, º) top
O2—C121.317 (2)C11—H11B0.9700
O2—H20.8200C15—C161.372 (3)
O3—C101.2433 (19)C15—H150.9300
O1—C121.193 (2)C19—C181.377 (3)
N2—N11.3516 (19)C19—H190.9300
N2—C101.370 (2)C17—C161.363 (3)
N2—C111.459 (2)C17—C181.367 (4)
N1—C71.307 (2)C17—C201.515 (4)
C8—C91.344 (2)C18—H180.9300
C8—C71.422 (2)C16—H160.9300
C8—H80.9300C3—C21.327 (4)
C9—C101.438 (2)C3—C41.330 (4)
C9—C131.507 (2)C3—H30.9300
C7—C61.482 (2)C1—C21.374 (3)
C14—C191.365 (3)C1—H10.9300
C14—C151.375 (3)C5—C41.390 (3)
C14—C131.499 (3)C5—H50.9300
C6—C51.352 (3)C4—H40.9300
C6—C11.366 (3)C2—H2A0.9300
C12—C111.498 (3)C20—H20A0.9600
C13—H13A0.9700C20—H20B0.9600
C13—H13B0.9700C20—H20C0.9600
C11—H11A0.9700
C12—O2—H2109.5H11A—C11—H11B107.7
N1—N2—C10126.14 (14)C16—C15—C14121.4 (2)
N1—N2—C11115.10 (15)C16—C15—H15119.3
C10—N2—C11118.61 (14)C14—C15—H15119.3
C7—N1—N2117.30 (14)C14—C19—C18120.8 (2)
C9—C8—C7121.38 (16)C14—C19—H19119.6
C9—C8—H8119.3C18—C19—H19119.6
C7—C8—H8119.3C16—C17—C18116.7 (2)
C8—C9—C10117.95 (16)C16—C17—C20121.4 (3)
C8—C9—C13125.62 (16)C18—C17—C20121.9 (3)
C10—C9—C13116.42 (15)C17—C18—C19122.2 (2)
N1—C7—C8121.32 (15)C17—C18—H18118.9
N1—C7—C6115.86 (15)C19—C18—H18118.9
C8—C7—C6122.82 (16)C17—C16—C15121.7 (2)
C19—C14—C15117.17 (19)C17—C16—H16119.1
C19—C14—C13121.17 (18)C15—C16—H16119.1
C15—C14—C13121.63 (17)C2—C3—C4119.2 (2)
C5—C6—C1116.45 (19)C2—C3—H3120.4
C5—C6—C7122.76 (18)C4—C3—H3120.4
C1—C6—C7120.77 (19)C6—C1—C2121.7 (3)
O3—C10—N2119.17 (16)C6—C1—H1119.2
O3—C10—C9124.97 (17)C2—C1—H1119.2
N2—C10—C9115.86 (14)C6—C5—C4121.1 (3)
O1—C12—O2124.94 (17)C6—C5—H5119.5
O1—C12—C11121.98 (17)C4—C5—H5119.5
O2—C12—C11113.06 (14)C3—C4—C5120.8 (3)
C14—C13—C9114.91 (15)C3—C4—H4119.6
C14—C13—H13A108.5C5—C4—H4119.6
C9—C13—H13A108.5C3—C2—C1120.7 (3)
C14—C13—H13B108.5C3—C2—H2A119.7
C9—C13—H13B108.5C1—C2—H2A119.7
H13A—C13—H13B107.5C17—C20—H20A109.5
N2—C11—C12113.59 (14)C17—C20—H20B109.5
N2—C11—H11A108.8H20A—C20—H20B109.5
C12—C11—H11A108.8C17—C20—H20C109.5
N2—C11—H11B108.8H20A—C20—H20C109.5
C12—C11—H11B108.8H20B—C20—H20C109.5
C10—N2—N1—C71.2 (2)C10—C9—C13—C14174.43 (15)
C11—N2—N1—C7176.75 (15)N1—N2—C11—C12107.68 (17)
C7—C8—C9—C101.3 (2)C10—N2—C11—C1268.2 (2)
C7—C8—C9—C13179.66 (16)O1—C12—C11—N2159.10 (18)
N2—N1—C7—C80.1 (2)O2—C12—C11—N222.1 (2)
N2—N1—C7—C6179.55 (14)C19—C14—C15—C162.6 (3)
C9—C8—C7—N10.0 (3)C13—C14—C15—C16175.73 (19)
C9—C8—C7—C6179.63 (15)C15—C14—C19—C181.8 (3)
N1—C7—C6—C5170.3 (2)C13—C14—C19—C18176.5 (2)
C8—C7—C6—C510.0 (3)C16—C17—C18—C192.2 (4)
N1—C7—C6—C111.5 (3)C20—C17—C18—C19178.0 (2)
C8—C7—C6—C1168.13 (19)C14—C19—C18—C170.6 (4)
N1—N2—C10—O3177.73 (15)C18—C17—C16—C151.4 (4)
C11—N2—C10—O32.3 (2)C20—C17—C16—C15178.7 (3)
N1—N2—C10—C92.4 (2)C14—C15—C16—C170.9 (4)
C11—N2—C10—C9177.82 (15)C5—C6—C1—C21.2 (4)
C8—C9—C10—O3177.84 (16)C7—C6—C1—C2179.5 (2)
C13—C9—C10—O30.7 (3)C1—C6—C5—C40.1 (4)
C8—C9—C10—N22.3 (2)C7—C6—C5—C4178.3 (2)
C13—C9—C10—N2179.12 (15)C2—C3—C4—C51.2 (5)
C19—C14—C13—C9104.4 (2)C6—C5—C4—C31.2 (5)
C15—C14—C13—C973.8 (2)C4—C3—C2—C10.0 (5)
C8—C9—C13—C144.0 (3)C6—C1—C2—C31.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.821.832.6358 (16)167
C3—H3···O1ii0.932.513.430 (3)172
Symmetry codes: (i) x+1, y+2, z; (ii) x, y, z+1.
Calculated frontier molecular orbital energies (eV) top
FMOEnergy
E(HOMO)–6.4396
E(LUMO)–2.0811
ΔE(HOMO–LUMO)4.3585
Hardness, η2.1792
Softness, σ0.4589
Electronegativity, χ4.2603
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAkhtar, W., Shaquiquzzaman, M., Akhter, M., Verma, G., Khan, M. F. & Alam, M. M. (2016). Eur. J. Med. Chem. 123, 256–281.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAsif, M. (2013). Mini-Rev. Org. Chem. 10, 113–122.  Web of Science CrossRef CAS Google Scholar
First citationBarberot, C., Moniot, A., Allart-Simon, I., Malleret, L., Yegorova, T., Laronze-Cochard, M., Bentaher, A., Médebielle, M., Bouillon, J. P., Hénon, E., Sapi, J., Velard, F. & Gérard, S. (2018). Eur. J. Med. Chem. 146, 139–146.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBoukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494–500.  Web of Science CrossRef CAS Google Scholar
First citationChetouani, A., Aouniti, A., Hammouti, B., Benchat, N., Benhadda, T. & Kertit, S. (2003). Corros. Sci. 45, 1675–1684.  CrossRef CAS Google Scholar
First citationDaoui, S., Baydere, C., El Kalai, F., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019a). Acta Cryst. E75, 1734–1737.  CSD CrossRef IUCr Journals Google Scholar
First citationDaoui, S., Cinar, E. B., El Kalai, F., Saddik, R., Karrouchi, K., Benchat, N., Baydere, C. & Dege, N. (2019b). Acta Cryst. E75, 1352–1356.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDemirayak, S., Karaburun, A. C. & Beis, R. (2004). Eur. J. Med. Chem. 39, 1089–1095.  CrossRef PubMed CAS Google Scholar
First citationDubey, S. & Bhosle, P. A. (2015). Med. Chem. Res. 24, 3579–3598.  Web of Science CrossRef CAS Google Scholar
First citationEl-Hashash, M. A., Guirguis, D. B., AbdEl-Wahed, N. A. M. & Kadhim, M. A. (2014). J. Chem. Eng. Process Technol, 5, 1000191–1000196.  Google Scholar
First citationEl Kalai, F., Baydere, C., Daoui, S., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019a). Acta Cryst. E75, 892–895.  CSD CrossRef IUCr Journals Google Scholar
First citationEl Kalai, F., Chelfi, T., Benchat, N., Hacht, B., Bouklah, M., Elaatiaoui, A., Daoui, S., Allali, M., Ben Hadda, T. & Almalki, F. (2019b). J. Mol. Struct. 1191, 24–31.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLi, D., Zhan, P., Liu, H., Pannecouque, C., Balzarini, J., De Clercq, E. & Liu, X. (2013). Bioorg. Med. Chem. 21, 2128–2134.  CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMurray, J. S. & Sen, K. (1996). Molecular Electrostatic Potentials: Concepts and Applications. Amsterdam: Elsevier.  Google Scholar
First citationPartap, S., Akhtar, M. J., Yar, M. S., Hassan, M. Z. & Siddiqui, A. A. (2018). Bioorg. Chem. 77, 74–83.  Web of Science CrossRef CAS PubMed Google Scholar
First citationScrocco, E. & Tomasi, J. (1978). Advances in Quantum Chemistry. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, H., Song, H.-B., Yao, C.-S., Zhu, Y.-Q., Hu, F.-Z., Zou, X.-M. & Yang, H.-Z. (2005). Acta Cryst. E61, o1561–o1563.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds