research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of dicarbon­yl[μ2-methyl­enebis(di­phenyl­phosphane)-κ2P:P′][μ2-2-(2,4,5-tri­methyl­phen­yl)-3-oxoprop-1-ene-1,3-di­yl](tri­phenyl­phosphane-κP)ironplatinum(FePt)–di­chloro­methane–toluene (1/1/2), [(OC)2Fe(μ-dppm)(μ-C(=O)C(2,4,5-C6H2Me3)=CH)Pt(PPh3)]

CROSSMARK_Color_square_no_text.svg

aTechnical University Dortmund, Chemistry and Chemical Biology, Inorganic Chemistry, Otto-Hahn Str. 6, 44227 Dortmund, Germany, and bInstitut UTINAM UMR 6213 CNRS, Université Bourgogne Franche-Comté, 16, Route de Gray, 25030 Besançon Cedex, France
*Correspondence e-mail: michael.knorr@univ-fcomte.fr, carsten.strohmann@tu-dortmund.de

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 12 November 2019; accepted 18 November 2019; online 22 November 2019)

The title compound, [FePt(C12H12O)(C18H15P)(C25H22P2)(CO)2]·2C7H8·CH2Cl2 or [(OC)2Fe(μ-dppm)(μ-C(=O)C(2,4,5-C6H2Me3)=CH)Pt(PPh3)], represents an example of a diphosphane-bridged heterobimetallic dimetalla­cyclo­pentenone complex resulting from a bimetallic activation of 1-ethynyl-2,4,5-tri­methyl­benzene and a metal-coordinated carbonyl ligand. The bridging μ2-C(=O)C(2,4,5-C6H2Me3)=CH unit (stemming from a carbon–carbon coupling reaction between CO and the terminal alkyne) forms a five-membered dimetalla­cyclo­pentenone ring, in which the C=C bond is π-coordinated to the Fe centre. The latter is connected to the Pt centre through a short metal–metal bond of 2.5770 (5) Å. In the crystal, the complex is solvated by one di­chloro­methane and two toluene mol­ecules.

1. Chemical context

The coordination and transformation of alkynes on homobimetallic transition-metal complexes, in which the two metal centres are in close contact via a metal–metal bond, has been investigated intensively (Liddle, 2015[Liddle, S. T. (2015). Molecular Metal-Metal Bonds. Weinheim: Wiley-VCH.]). For example, during the course of a Pauson–Khand reaction, an acetyl­enic triple bond is added across [Co2(CO)8)], yielding a dimetalla­tetra­hedrane [Co2(CO)6(μ-C2RR′)] (Bennett et al., 1992[Bennett, S. C., Gelling, A. & Went, M. J. (1992). J. Organomet. Chem. 439, 189-199.]; Clément et al., 2007[Clément, S., Guyard, L., Knorr, M., Dilsky, S., Strohmann, C. & Arroyo, M. (2007). J. Organomet. Chem. 692, 839-850.]).

The activation of alkynes by heterodinuclear transition-metal complexes LnMMLn has also stimulated much inter­est because of possible synergic effects exerted by the close proximity of metal centres (with different coordination spheres, oxidation states, …; Stephan, 1989[Stephan, D. W. (1989). Coord. Chem. Rev. 95, 41-107.]; Ritleng & Chetcuti, 2007[Ritleng, V. & Chetcuti, M. J. (2007). Chem. Rev. 107, 797-858.]; Cooper et al., 2012[Cooper, B. G., Napoline, J. W. & Thomas, C. M. (2012). Catal. Rev. 54, 1-40.]). Among the different heterobimetallic combinations, the investigation of the group 8–10 Fe–Pt couple has been pioneered by Fontaine et al. (1988[Fontaine, X. L. R., Jacobsen, G. B., Shaw, B. L. & Thornton-Pett, M. (1988). J. Chem. Soc. Dalton Trans. pp. 741-750.]), who has shown that, upon treatment of the μ-carbonyl complex [(OC)3Fe(μ-dppm)(μ-CO)Pt(PPh3)] (dppm = bis(di­phenyl­phosphino)methane) with ArC≡CH (Ar = Ph, p-Tol), dimetalla­cyclo­pentone complexes are formed, stemming from a carbon–carbon coupling reaction between CO and the alkyne. The first step involves formation of a kinetic isomer [(OC)2Fe(μ-dppm){μ-C(=O)C(H)=C(Ar)}Pt(PPh3)], which then evolves to the thermodynamic one [(OC)2Fe(μ-dppm){μ-C(=O)C(Ar)=C(H)}Pt(PPh3)]. Other strategies leading to structurally characterized dimetalla­cyclo­pentones have been reported by Yamazaki et al. (2005[Yamazaki, S., Taira, Z., Yonemura, T. & Deeming, A. J. (2005). Organometallics, 24, 20-27.], 2006[Yamazaki, S., Taira, Z., Yonemura, T. & Deeming, A. J. (2006). Organometallics, 25, 849-853.]), implying the reaction of Fe(CO)5 with the π-alkyne-Pt0 complex Pt(η2-PhC≡CC≡CPh)(PPh3)2 or the bis-acetyl­ide-PtII compound Pt(C≡CTp)2(dppe) (Tp = 3-thio­phene, dppe = 1,2-bis­(di­phenyl­phosphino)ethane), and leading to [(OC)3Fe{μ-C(=O)C(Ph)=C(C≡C-Ph)}Pt(PPh3)2] and [(OC)2Fe(μ-CO){μ-C(=O)C(Tp)=C(C≡C-Tp)}Pt(dppe)], respectively.

Our investigations on the reactivity of bimetallic silyl-substituted hydride complexes, [(OC)3Fe{Si(OMe)3}(μ-PPh2XPPh2)Pt(H)(PPh3)] (X = CH2, NH), toward a huge panel of terminal aliphatic and aromatic alkynes led to σ-alkenyl complexes [(OC)3Fe{μ-Si(OMe)2(OMe)}(μ-PPh2XPPh2)Pt(RC=CH2)], resulting from initial insertion into the Pt—H bond. The latter can then, depending on the function of the R substituent, convert to dimetalla­cyclo­pentones or to isomeric μ-vinyl­idene complexes [(OC)3Fe(μ-PPh2XPPh2){μ-C=C(R)H}Pt(PPh3)] (Jourdain et al., 2006[Jourdain, I., Vieille-Petit, L., Clément, S., Knorr, M., Villafañe, F. & Strohmann, C. (2006). Inorg. Chem. Commun. 9, 127-131.]). A third type of complex crystallographically characterized by our group is the dimetalla­cyclo­butene [(OC)3Fe(μ-dppm){μ-C(o-CF3-C6H4)C=C(H)}Pt(PPh3)]. This latter compound was obtained by treatment of [(OC)3Fe{Si(OMe)3}(μ-dppm)Pt(H)(PPh3)] or [(OC)3Fe(μ-dppm)(μ-CO)Pt(PPh3)] with o-CF3-C6H4C≡CH, bearing a sterically crowded –CF3 substituent at the ortho-position of the aryl group (Jourdain et al., 2013[Jourdain, I., Knorr, M., Strohmann, C., Unkelbach, C., Rojo, S., Gómez-Iglesias, P. & Villafañe, F. (2013). Organometallics, 32, 5343-5359.]). To probe whether other sterically crowded alkynes may lead to the formation of dimetalla­cyclo­butenes or rather dimetalla­cyclo­pentones, we also reacted [(OC)3Fe(μ-dppm)(μ-CO)Pt(PPh3)] with 1-ethynyl-2,4,5-tri­methyl­benzene bearing three methyl groups on the aromatic cycle; see Fig. 1[link].

[Scheme 1]
[Figure 1]
Figure 1
Reaction scheme for the synthesis of the title compound.

2. Structural commentary

The mol­ecular structure of the title heterobimetallic complex is depicted in Fig. 2[link]. It crystallized from CH2Cl2/toluene in the monoclinic crystal system, space group P21/n, together with one mol­ecule of CH2Cl2 and two mol­ecules of toluene. Selected bond lengths and bond angles are given in Table 1[link].

Table 1
Selected geometric parameters (Å, °)

Pt1—Fe1 2.5770 (5) Fe1—C2 2.109 (4)
Pt1—P2 2.2700 (9) Fe1—C12 1.929 (4)
Pt1—P3 2.2529 (9) Fe1—C13 1.749 (4)
Pt1—C1 2.023 (3) Fe1—C14 1.781 (4)
Fe1—P1 2.1857 (11) O1—C12 1.207 (4)
Fe1—C1 2.107 (3) C1—C2 1.386 (4)
       
P2—Pt1—Fe1 102.03 (3) C1—Fe1—C2 38.38 (12)
P3—Pt1—Fe1 152.88 (3) C13—Fe1—P1 95.17 (13)
C1—Pt1—Fe1 52.87 (10) C14—Fe1—P1 104.63 (12)
P3—Pt1—P2 105.07 (3) C12—Fe1—P1 94.69 (11)
C1—Pt1—P2 152.26 (10) C1—Fe1—P1 137.46 (10)
C1—Pt1—P3 100.38 (10) C2—Fe1—P1 135.94 (10)
Pt1—C1—Fe1 77.18 (12) C13—Fe1—Pt1 170.69 (12)
C13—Fe1—C14 96.51 (17) C14—Fe1—Pt1 91.16 (13)
C13—Fe1—C12 96.59 (16) C12—Fe1—Pt1 74.38 (10)
C14—Fe1—C12 155.50 (17) C1—Fe1—Pt1 49.95 (9)
C13—Fe1—C1 125.43 (16) C2—Fe1—Pt1 74.35 (9)
C14—Fe1—C1 84.72 (15) P1—Fe1—Pt1 87.95 (3)
C12—Fe1—C1 70.81 (14) C2—C1—Pt1 112.5 (3)
C13—Fe1—C2 97.50 (15) C2—C1—Fe1 70.9 (2)
C14—Fe1—C2 115.51 (16) P1—C45—P2 108.83 (17)
C12—Fe1—C2 42.03 (13)    
[Figure 2]
Figure 2
The mol­ecular structure of the title complex, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. For clarity, only H atom H1 has been included, and the solvent mol­ecules have been omitted.

The Fe—Pt bond is bridged by a dppm ligand, forming a five-membered ring that adopts an envelope conformation, with angle P1—C45—P2 = 108.83 (17)°, and the metal–phospho­rus bonds Pt—P2 and Fe—P1 being 2.2700 (9) and 2.1857 (11) Å, respectively. These structural features are in line with those of other related structures published by our group and the Fe1—Pt1 bond length of 2.5770 (5) Å is in the range, 2.5453 (9) to 2.597 (4) Å, encountered for similar dppm-bridged compounds, e.g. [(OC)2Fe(μ-dppm){μ-C(=O)C(CH2)2=C(H)}Pt(PPh3)]2 and [(OC)2Fe{μ-C(=O)C(H)=C(H)}(μ-dppm)Pt(PPh3)] (Mohamed et al., 2019[Mohamed, A. S., Jourdain, I., Knorr, M., Boullanger, S., Brieger, L. & Strohmann, C. (2019). J. Clust Sci. 30, 1211-1225.]; Fontaine et al., 1988[Fontaine, X. L. R., Jacobsen, G. B., Shaw, B. L. & Thornton-Pett, M. (1988). J. Chem. Soc. Dalton Trans. pp. 741-750.]). When the metals are not spanned by a diphosphane ligand, the Fe—Pt bond distance is slightly longer, as in [(OC)3Fe{μ-C(=O)C(Ph)=C(C≡C-Ph)}Pt(PPh3)2] and [(OC)2Fe(μ-CO){μ-C(=O)C(Tp)=C(C≡C-Tp)}Pt(dppe)] with Fe—Pt distances of 2.608 (2) and 2.605 (2) Å, respectively (Yamazaki et al., 2005[Yamazaki, S., Taira, Z., Yonemura, T. & Deeming, A. J. (2005). Organometallics, 24, 20-27.], 2006[Yamazaki, S., Taira, Z., Yonemura, T. & Deeming, A. J. (2006). Organometallics, 25, 849-853.]). Both metals are also incorporated in a dimetalla­cyclo­pentenone unit resulting from a carbon–carbon coupling reaction between CO and the terminal alkyne giving rise to an iron-acyl group [C12—O1 = 1.207 (4) Å]. The geometry at Fe1 can be considered as distorted octa­hedral resulting from π-coord­ination of the C1=C2 bond of the five-membered [FeC(=O)CR=C(H)Pt] unit [C1—Fe1 = 2.107 (3) and C2—Fe1 = 2.109 (4) Å]. The C1=C2 bond length compares well with that of [(OC)2Fe{μ-C(=O)C(o,p-C6H3-F2)=C(H)}(μ-dppm)Pt(PPh3)] [1.386 (4) vs 1.382 (5) Å; Jourdain et al., 2013[Jourdain, I., Knorr, M., Strohmann, C., Unkelbach, C., Rojo, S., Gómez-Iglesias, P. & Villafañe, F. (2013). Organometallics, 32, 5343-5359.]]. The formation of the thermodynamic isomer, already evidenced by 1H NMR spectroscopy, is indicated by the attachment of the aromatic C6H2Me3 ring at the C2 atom in the β position relative to platinum. The C(=O)C(C6H2Me3)=C(H) moiety is σ-bonded to the platinum atom [C1—Pt1 = 2.023 (3) Å], which adopts an irregular shape; see Table 1[link]. The τ4 descriptor for four-coord­ination is 0.39 (τ4 = 0 for a perfect square-planar geometry and = 1 for a perfect tetra­hedral geometry; for inter­mediate structures, including trigonal–pyramidal and seesaw, τ4 falls within the range 0 to 1; Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]).

3. Supra­molecular features

In the crystal, mol­ecules are linked by a number of C—H⋯O hydrogen bonds, forming layers parallel to the ab plane (Fig. 3[link] and Table 2[link]). There are also a number of intra- and inter­molecular C—H⋯π inter­actions present (Table 2[link]). The methyl group involving atom C11 forms an intra­molecular C11—H11A⋯O1 hydrogen bond and an inter­molecular C11—H11Bπ inter­action (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

Cg3, Cg6, Cg8, Cg9 and Cg10 are the centroids of the C21–C26, C39–C44, C52–C57, C59–C64 and C66–C71 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O1 0.96 2.36 3.193 (4) 145
C31—H31⋯O1i 0.93 2.55 3.370 (5) 147
C41—H41⋯O2ii 0.93 2.49 3.202 (5) 134
C48—H48⋯O3iii 0.93 2.46 3.325 (5) 154
C11—H11BCg9iv 0.96 2.80 3.719 (4) 160
C22—H22⋯Cg6 0.93 2.80 3.597 (3) 145
C34—H34⋯Cg3 0.93 2.98 3.519 (4) 118
C38—H38⋯Cg10 0.93 2.82 3.694 (4) 156
C60—H60⋯Cg8 0.93 2.81 3.543 (5) 137
Symmetry codes: (i) x+1, y, z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x-1, y, z; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
A partial view along the c axis of the crystal packing of the title compound. The C—H⋯O hydrogen bonds (Table 2[link]) are shown as dashed lines. For clarity, only the H atoms (grey balls) involved in these inter­actions have been included. Colour code: the two toluene mol­ecules are red and blue and the di­chloro­methane mol­ecule is green.

4. Database survey

Other examples of crystallographically characterized dimetalla­cyclo­pentenone complexes are Fe2Cp2(CO)(μ-CO){μ-CH=C(Ph)C(=O)} (Boni et al., 2011[Boni, A., Funaioli, T., Marchetti, F., Pampaloni, G., Pinzino, C. & Zacchini, S. (2011). J. Organomet. Chem. 696, 3551-3556.]), Fe2Cp*2(CO)(μ-CO){μ-C(C≡CH)=CHC(=O)] (Akita et al., 1993[Akita, M., Sugimoto, S., Terada, M. & Moro-oka, Y. (1993). J. Organomet. Chem. 447, 103-106.]), Fe2(CO)5(μ-dppm){μ-C(=O)CH=CH} (Knox et al., 1995[Knox, S. A. R., Lloyd, B. R., Morton, D. A. V., Orpen, A. G., Turner, M. L. & Hogarth, G. (1995). Polyhedron, 14, 2723-2743.]), Fe2(CO)5(μ-dppm){μ-C(=O)C(Ph)=CH} (Hitchcock et al., 1993[Hitchcock, P. B., Madden, T. J. & Nixon, J. F. (1993). J. Organomet. Chem. 463, 155-162.]), Fe2Cp2(CO)(μ-CO){μ-C(COR)=C(Me)C(=O)}, where R = Ph, Bu (Wong et al., 1991[Wong, A., Pawlick, R. V., Thomas, C. G., Leon, D. R. & Liu, L.-K. (1991). Organometallics, 10, 530-532.]), Fe2{(η-C5H4)2SiMe2}(CO)2(μ-CO){μ-C(Ph)=C(H)C(=O)} (McKee et al., 1994[McKee, S. D., Krause, J. A., Lunder, D. M. & Bursten, B. E. (1994). J. Coord. Chem. 32, 249-259.]), Ru2(CO)4(μ-dppm)2{μ-C(=O)C(CO2Me)=C(CO2Me)} (Johnson & Gladfelter, 1991[Johnson, K. A. & Gladfelter, W. L. (1991). J. Am. Chem. Soc. 113, 5097-5099.]), Ru2(CO)4(μ-dppm)2{μ-CH=CHC(=O)} (Mirza et al., 1994[Mirza, H. A., Vittal, J. J. & Puddephatt, R. J. (1994). Organometallics, 13, 3063-3067.]), Ru2(η-C5HMe4)2(CO)(μ-CO){μ-C(=O)C(R)=C(R)}, where R = Et, Me (Horiuchi et al., 2012[Horiuchi, S., Murase, T. & Fujita, M. (2012). Angew. Chem. Int. Ed. 51, 12029-12031.]), Rh2Cp2(CO)4{μ-C(CF3)=C(CF3)C(=O)} (Dickson et al., 1981[Dickson, R. S., Gatehouse, B. M., Nesbit, M. C. & Pain, G. N. (1981). J. Organomet. Chem. 215, 97-109.]), Re2Cp*2(CO)2{μ-CH=C{C(=CH2)CH3}C(=O)} (Casey et al., 1994[Casey, C. P., Ha, Y. & Powell, D. R. (1994). J. Am. Chem. Soc. 116, 3424-3428.]). A rare example of a heterodinuclear combination is CpFe{μ-C(=O)C(CMe2OH)=CH}(μ-CO)Ru(CO)Cp* (Dennett et al., 2005[Dennett, J. N. L., Knox, S. A. R., Anderson, K. M., Charmant, J. P. H. & Orpen, A. G. (2005). Dalton Trans. pp. 63-73.]).

5. Synthesis and crystallization

[(OC)3Fe(μ-CO)μ-Ph2PCH2PPh2)Pt(PPh3)] (110 mg, 0.1 mmol) was treated with an excess of 1-ethynyl-2,4,5-tri­methyl­benzene (30 mg, 0.2 mmol) in toluene (3 ml). The solution was stirred at 343 K for 2 h. The reaction mixture was filtered, and all volatiles removed under reduced pressure. The red residue was redissolved in a minimum of a di­chloro­methane/toluene mixture (50:50). Yellow crystals were isolated by layering with heptane (yield 123 mg, 88%).

Elemental analysis calculated for C57H49FeO3P3Pt, CH2Cl2, 2(C7H8) (Mw = 1395.09): C, 61.99; H, 4.84%. Found: C, 61.75; H, 4.78%. 1H NMR: δ 2.14 (s, 3H, CH3), 2.17 (s, 3H, CH3), 2.43 (s, 3H, CH3), 4.64 (m, 2H, PCH2P, 2JPH = 8.5, 2JPtH = 42), 6.81–7.55 (m, 37H, Ph), 8.07 (dd, 1H, =CH, 3JPH = 8.2, 3JPH = 5.0, 2JPtH = 32). 31P{1H} NMR: δ 8.6 (d, Pdppm Pt, 2JPP = 58, 1JPtP = 2641), 33.7 (d, PPPh3 Pt, 3JPP = 36, 1JPtP = 3432), 61.3 (dd, Pdppm Fe, 2JPP = 58, 3JPP = 36). IR(ATR): 1962, 1913vs ν(CO), 1686m ν(C=O).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All of the hydrogen atoms were placed in geometrically calculated positions (C—H = 0.93–0.98 Å) and refined as riding on the parent C atom, with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 3
Experimental details

Crystal data
Chemical formula [FePt(C12H12O)(C18H15P)(C25H22P2)(CO)2]·2C7H8·CH2Cl2
Mr 1395.00
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 10.2117 (3), 24.7895 (6), 24.6241 (7)
β (°) 92.056 (3)
V3) 6229.4 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.69
Crystal size (mm) 0.49 × 0.39 × 0.15
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.923, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 52106, 14857, 8982
Rint 0.070
(sin θ/λ)max−1) 0.687
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.054, 0.81
No. of reflections 14857
No. of parameters 744
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.52, −0.97
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), SHELXL (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Dicarbonyl[µ2-methylenebis(diphenylphosphane)-κ2P:P'][µ2-2-(2,4,5-trimethylphenyl)-3-oxoprop-1-ene-1,3-diyl](triphenylphosphane-κP)ironplatinum(FePt)–dichloromethane–toluene (1/1/2) top
Crystal data top
[FePt(C12H12O)(C18H15P)(C25H22P2)(CO)2]·2C7H8·CH2Cl2F(000) = 2824
Mr = 1395.00Dx = 1.487 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.2117 (3) ÅCell parameters from 14906 reflections
b = 24.7895 (6) Åθ = 2.1–29.2°
c = 24.6241 (7) ŵ = 2.69 mm1
β = 92.056 (3)°T = 293 K
V = 6229.4 (3) Å3Block, yellow
Z = 40.49 × 0.39 × 0.14 mm
Data collection top
Oxford Diffraction Xcalibur, Sapphire3
diffractometer
14857 independent reflections
Radiation source: microfocus sealed X-ray tube8982 reflections with I > 2σ(I)
Grahpite monochromatorRint = 0.070
Detector resolution: 16.0560 pixels mm-1θmax = 29.2°, θmin = 2.1°
ω and φ scansh = 1313
Absorption correction: multi-scan
(CrysAlisPro; Oxford Diffraction, 2010)
k = 3333
Tmin = 0.923, Tmax = 1.000l = 3333
52106 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: mixed
wR(F2) = 0.054H-atom parameters constrained
S = 0.81 w = 1/[σ2(Fo2) + (0.0167P)2]
where P = (Fo2 + 2Fc2)/3
14857 reflections(Δ/σ)max = 0.004
744 parametersΔρmax = 1.52 e Å3
0 restraintsΔρmin = 0.97 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.54891 (2)0.43749 (2)0.70894 (2)0.01562 (4)
Fe10.51432 (5)0.33557 (2)0.72321 (2)0.01800 (12)
P10.41192 (9)0.35546 (4)0.79703 (4)0.0181 (2)
P20.42967 (9)0.47366 (4)0.77594 (4)0.0166 (2)
P30.63044 (9)0.50877 (4)0.66456 (4)0.0174 (2)
O10.2571 (2)0.36786 (10)0.67002 (10)0.0277 (7)
O20.4463 (3)0.22195 (10)0.72360 (12)0.0468 (8)
O30.7908 (3)0.32228 (13)0.75629 (11)0.0529 (9)
C10.5924 (3)0.37724 (14)0.65717 (13)0.0202 (9)
H10.6803750.3707870.6438640.024*
C20.4823 (3)0.34885 (14)0.63921 (15)0.0207 (9)
C30.4833 (3)0.30712 (15)0.59518 (14)0.0211 (9)
C40.5756 (4)0.26604 (15)0.59748 (15)0.0278 (10)
H40.6320620.2640560.6279040.033*
C50.5883 (4)0.22799 (16)0.55717 (16)0.0317 (10)
C60.6912 (4)0.18437 (17)0.56150 (17)0.0565 (14)
H6A0.7479930.1909770.5926990.085*
H6B0.7416310.1844300.5293370.085*
H6C0.6494190.1499390.5652080.085*
C70.5028 (4)0.23059 (15)0.51200 (16)0.0323 (10)
C80.5085 (4)0.19051 (17)0.46646 (16)0.0475 (12)
H8A0.5002490.1546690.4807000.071*
H8B0.5908350.1938770.4490980.071*
H8C0.4382240.1973410.4404470.071*
C90.4092 (4)0.27137 (16)0.50997 (15)0.0304 (10)
H90.3514540.2728380.4799380.036*
C100.3974 (3)0.30992 (15)0.55019 (14)0.0240 (9)
C110.2989 (4)0.35501 (16)0.54280 (15)0.0372 (11)
H11A0.2484330.3580140.5747960.056*
H11B0.2416250.3473600.5120040.056*
H11C0.3441700.3883340.5368860.056*
C120.3729 (4)0.35839 (14)0.67444 (14)0.0207 (9)
C130.4732 (4)0.26710 (16)0.72377 (15)0.0272 (9)
C140.6811 (4)0.32730 (16)0.74531 (15)0.0289 (10)
C150.5260 (3)0.53319 (15)0.60843 (14)0.0185 (8)
C160.4393 (3)0.49690 (15)0.58390 (14)0.0241 (9)
H160.4351540.4616130.5965490.029*
C170.3586 (4)0.51324 (17)0.54045 (15)0.0319 (10)
H170.3012310.4887040.5237450.038*
C180.3630 (4)0.56526 (19)0.52205 (15)0.0367 (10)
H180.3090490.5759260.4927590.044*
C190.4470 (4)0.60178 (16)0.54680 (16)0.0357 (11)
H190.4483090.6373970.5349810.043*
C200.5286 (4)0.58554 (16)0.58877 (15)0.0282 (10)
H200.5871860.6101600.6045390.034*
C210.6723 (3)0.56935 (14)0.70350 (13)0.0184 (8)
C220.5742 (3)0.60459 (14)0.71862 (14)0.0228 (9)
H220.4884740.5994010.7055930.027*
C230.6035 (4)0.64710 (15)0.75278 (15)0.0285 (10)
H230.5370280.6702660.7629080.034*
C240.7283 (4)0.65583 (15)0.77201 (15)0.0300 (10)
H240.7471130.6849530.7947820.036*
C250.8256 (4)0.62155 (15)0.75764 (15)0.0295 (10)
H250.9108550.6271900.7710230.035*
C260.7987 (4)0.57856 (14)0.72340 (14)0.0246 (9)
H260.8660470.5556360.7136450.030*
C270.7855 (3)0.49061 (14)0.63509 (15)0.0220 (9)
C280.8308 (4)0.51595 (17)0.58964 (15)0.0350 (11)
H280.7820370.5434290.5730410.042*
C290.9485 (5)0.5005 (2)0.56880 (19)0.0564 (15)
H290.9786210.5179320.5382050.068*
C301.0213 (5)0.4604 (2)0.5922 (2)0.0582 (16)
H301.0996170.4498240.5771500.070*
C310.9788 (4)0.43555 (18)0.63789 (19)0.0445 (12)
H311.0294480.4086460.6545270.053*
C320.8601 (3)0.45036 (14)0.65964 (16)0.0306 (10)
H320.8311820.4332210.6905930.037*
C330.5029 (3)0.49956 (13)0.83862 (14)0.0163 (8)
C340.6295 (4)0.51743 (14)0.83861 (15)0.0240 (9)
H340.6766340.5146380.8070960.029*
C350.6883 (4)0.53955 (16)0.88470 (16)0.0315 (10)
H350.7741470.5520290.8841280.038*
C360.6194 (4)0.54305 (16)0.93152 (16)0.0342 (11)
H360.6587760.5575290.9628840.041*
C370.4921 (4)0.52508 (16)0.93185 (14)0.0294 (10)
H370.4447110.5277620.9632990.035*
C380.4356 (3)0.50336 (14)0.88599 (14)0.0223 (9)
H380.3497850.4908200.8866210.027*
C390.3165 (3)0.52640 (13)0.75401 (14)0.0157 (8)
C400.3041 (3)0.57485 (13)0.78128 (15)0.0250 (9)
H400.3496730.5800820.8142440.030*
C410.2253 (4)0.61542 (15)0.76031 (16)0.0316 (10)
H410.2180620.6477620.7791090.038*
C420.1575 (4)0.60827 (15)0.71186 (16)0.0298 (10)
H420.1043780.6356680.6976180.036*
C430.1685 (3)0.56021 (17)0.68438 (15)0.0319 (9)
H430.1220810.5551140.6516000.038*
C440.2475 (3)0.51976 (14)0.70495 (14)0.0232 (9)
H440.2548090.4876210.6858190.028*
C450.3186 (3)0.41845 (12)0.79317 (13)0.0167 (8)
H45A0.2797200.4256800.8277980.020*
H43B0.2486050.4154730.7656330.020*
C460.2875 (3)0.30636 (14)0.81481 (13)0.0171 (8)
C470.1619 (4)0.30890 (15)0.79365 (15)0.0307 (10)
H470.1376700.3373750.7708420.037*
C480.0702 (4)0.26986 (17)0.80557 (17)0.0406 (12)
H480.0147390.2724520.7908480.049*
C490.1037 (4)0.22774 (15)0.83871 (16)0.0323 (10)
H490.0417250.2018130.8470430.039*
C500.2290 (4)0.22384 (15)0.85963 (15)0.0310 (10)
H500.2531270.1951270.8821550.037*
C510.3195 (4)0.26267 (15)0.84714 (15)0.0294 (10)
H510.4049640.2592880.8610230.035*
C520.5016 (3)0.36484 (14)0.86208 (14)0.0198 (9)
C530.6322 (4)0.37850 (14)0.86408 (15)0.0255 (9)
H530.6773210.3810070.8320400.031*
C540.6971 (4)0.38856 (16)0.91340 (16)0.0318 (10)
H540.7852340.3980830.9140700.038*
C550.6334 (4)0.38468 (16)0.96099 (16)0.0348 (11)
H550.6782800.3905480.9940010.042*
C560.5024 (4)0.37203 (15)0.95967 (15)0.0340 (11)
H560.4580200.3697320.9919240.041*
C570.4365 (4)0.36275 (14)0.91088 (15)0.0251 (9)
H570.3473770.3549670.9104120.030*
C580.7015 (5)0.21333 (19)0.86522 (18)0.0629 (15)
H58A0.7670690.1857600.8629750.094*
H58B0.7429220.2473260.8731720.094*
H58C0.6529540.2157440.8311890.094*
C590.6110 (5)0.1997 (2)0.90902 (19)0.0455 (12)
C600.5850 (5)0.23732 (19)0.9492 (2)0.0520 (13)
H600.6267370.2706610.9489310.062*
C610.4975 (5)0.2259 (2)0.9899 (2)0.0636 (16)
H610.4821330.2516531.0164620.076*
C620.4343 (5)0.1775 (2)0.9912 (2)0.0716 (17)
H620.3748550.1698701.0179640.086*
C630.4614 (5)0.1401 (2)0.9516 (2)0.0700 (17)
H630.4203090.1066330.9518550.084*
C640.5489 (5)0.1516 (2)0.9113 (2)0.0532 (14)
H640.5652550.1256290.8851750.064*
C650.0246 (4)0.4584 (2)0.8046 (2)0.085 (2)
H65A0.0254290.4197020.8042990.128*
H65B0.0287020.4713430.7760000.128*
H65C0.1123690.4716940.7990970.128*
C660.0300 (4)0.4778 (2)0.8576 (2)0.0549 (14)
C670.0512 (5)0.5325 (3)0.8671 (3)0.085 (2)
H670.0323870.5570280.8392530.102*
C680.0994 (6)0.5514 (3)0.9166 (4)0.099 (3)
H680.1126880.5880530.9228870.119*
C690.1268 (5)0.5136 (3)0.9564 (3)0.082 (2)
H690.1578150.5251300.9904250.098*
C700.1098 (5)0.4592 (3)0.9473 (2)0.0660 (16)
H700.1311560.4343840.9744790.079*
C710.0617 (4)0.4422 (2)0.89843 (19)0.0512 (13)
H710.0498220.4055040.8924070.061*
Cl10.61998 (19)0.31739 (7)1.11202 (6)0.1133 (6)
Cl20.47570 (16)0.22636 (7)1.14958 (6)0.0936 (5)
C720.6305 (5)0.2515 (2)1.1363 (2)0.0799 (17)
H72A0.6851100.2507111.1693200.096*
H72B0.6711310.2288371.1095530.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01643 (7)0.01350 (6)0.01695 (7)0.00082 (8)0.00098 (5)0.00172 (8)
Fe10.0182 (3)0.0137 (3)0.0221 (3)0.0020 (2)0.0000 (2)0.0001 (2)
P10.0171 (5)0.0158 (5)0.0214 (6)0.0004 (4)0.0008 (5)0.0012 (4)
P20.0173 (5)0.0152 (5)0.0174 (5)0.0013 (4)0.0009 (4)0.0023 (4)
P30.0183 (5)0.0155 (5)0.0184 (5)0.0000 (4)0.0018 (4)0.0015 (4)
O10.0141 (15)0.0360 (17)0.0330 (17)0.0090 (12)0.0007 (13)0.0043 (13)
O20.062 (2)0.0146 (15)0.064 (2)0.0073 (15)0.0116 (17)0.0017 (15)
O30.0243 (18)0.080 (3)0.054 (2)0.0202 (17)0.0047 (17)0.0024 (18)
C10.016 (2)0.023 (2)0.021 (2)0.0030 (16)0.0019 (17)0.0014 (17)
C20.023 (2)0.0132 (19)0.026 (2)0.0020 (16)0.0043 (18)0.0015 (17)
C30.022 (2)0.020 (2)0.021 (2)0.0015 (17)0.0039 (18)0.0013 (18)
C40.030 (2)0.028 (2)0.025 (2)0.0030 (19)0.0074 (19)0.009 (2)
C50.037 (3)0.028 (2)0.030 (2)0.009 (2)0.002 (2)0.012 (2)
C60.069 (4)0.047 (3)0.052 (3)0.028 (3)0.014 (3)0.024 (3)
C70.045 (3)0.023 (2)0.029 (3)0.000 (2)0.001 (2)0.010 (2)
C80.062 (3)0.038 (3)0.042 (3)0.004 (2)0.001 (2)0.015 (2)
C90.036 (3)0.032 (2)0.022 (2)0.003 (2)0.007 (2)0.003 (2)
C100.024 (2)0.026 (2)0.021 (2)0.0031 (18)0.0033 (18)0.0031 (19)
C110.040 (3)0.037 (3)0.034 (3)0.006 (2)0.010 (2)0.003 (2)
C120.025 (2)0.016 (2)0.022 (2)0.0022 (17)0.0021 (19)0.0028 (17)
C130.025 (2)0.027 (2)0.030 (2)0.0008 (19)0.0043 (19)0.002 (2)
C140.032 (3)0.029 (2)0.025 (2)0.004 (2)0.000 (2)0.0013 (19)
C150.020 (2)0.020 (2)0.016 (2)0.0008 (17)0.0064 (17)0.0031 (17)
C160.024 (2)0.026 (2)0.022 (2)0.0020 (18)0.0017 (18)0.0048 (19)
C170.030 (3)0.039 (3)0.026 (2)0.009 (2)0.007 (2)0.000 (2)
C180.038 (3)0.050 (3)0.021 (2)0.014 (3)0.0043 (19)0.008 (3)
C190.048 (3)0.027 (2)0.032 (3)0.002 (2)0.002 (2)0.009 (2)
C200.036 (3)0.024 (2)0.024 (2)0.0014 (19)0.003 (2)0.0008 (19)
C210.023 (2)0.0134 (19)0.0191 (19)0.0069 (17)0.0025 (16)0.0014 (17)
C220.023 (2)0.020 (2)0.025 (2)0.0041 (17)0.0030 (18)0.0003 (18)
C230.034 (3)0.023 (2)0.029 (2)0.0077 (19)0.011 (2)0.0020 (19)
C240.041 (3)0.020 (2)0.029 (2)0.008 (2)0.002 (2)0.0083 (19)
C250.027 (2)0.030 (2)0.030 (2)0.0094 (19)0.006 (2)0.001 (2)
C260.028 (2)0.019 (2)0.027 (2)0.0013 (16)0.0004 (19)0.0024 (17)
C270.022 (2)0.021 (2)0.023 (2)0.0045 (17)0.0017 (18)0.0068 (18)
C280.039 (3)0.044 (3)0.023 (2)0.004 (2)0.003 (2)0.009 (2)
C290.046 (3)0.088 (4)0.037 (3)0.020 (3)0.017 (3)0.027 (3)
C300.031 (3)0.070 (4)0.075 (4)0.001 (3)0.019 (3)0.044 (3)
C310.019 (2)0.032 (2)0.083 (4)0.002 (2)0.000 (2)0.019 (3)
C320.020 (2)0.023 (2)0.049 (3)0.0016 (17)0.002 (2)0.003 (2)
C330.020 (2)0.0106 (18)0.018 (2)0.0033 (16)0.0008 (17)0.0029 (16)
C340.025 (2)0.026 (2)0.022 (2)0.0025 (18)0.0084 (19)0.0006 (19)
C350.023 (2)0.038 (3)0.034 (3)0.0082 (19)0.004 (2)0.007 (2)
C360.039 (3)0.040 (3)0.023 (2)0.004 (2)0.005 (2)0.007 (2)
C370.036 (3)0.039 (3)0.013 (2)0.001 (2)0.0035 (19)0.002 (2)
C380.023 (2)0.023 (2)0.022 (2)0.0012 (17)0.0012 (18)0.0043 (18)
C390.015 (2)0.0116 (18)0.020 (2)0.0006 (15)0.0014 (17)0.0026 (16)
C400.029 (2)0.019 (2)0.026 (2)0.0088 (17)0.0024 (18)0.0027 (17)
C410.033 (3)0.021 (2)0.040 (3)0.0089 (19)0.001 (2)0.008 (2)
C420.028 (2)0.025 (2)0.036 (3)0.0117 (19)0.003 (2)0.010 (2)
C430.031 (2)0.033 (2)0.031 (2)0.002 (2)0.0112 (18)0.005 (2)
C440.027 (2)0.019 (2)0.025 (2)0.0036 (18)0.0025 (19)0.0036 (18)
C450.018 (2)0.0178 (19)0.0144 (19)0.0003 (15)0.0032 (16)0.0026 (16)
C460.016 (2)0.018 (2)0.017 (2)0.0009 (16)0.0001 (17)0.0047 (17)
C470.029 (2)0.023 (2)0.040 (3)0.0050 (19)0.005 (2)0.012 (2)
C480.021 (2)0.039 (3)0.060 (3)0.003 (2)0.013 (2)0.012 (2)
C490.030 (3)0.024 (2)0.043 (3)0.0107 (19)0.006 (2)0.003 (2)
C500.034 (3)0.023 (2)0.035 (3)0.0045 (19)0.007 (2)0.011 (2)
C510.019 (2)0.030 (2)0.039 (3)0.0005 (18)0.0033 (19)0.002 (2)
C520.020 (2)0.017 (2)0.022 (2)0.0002 (16)0.0040 (18)0.0018 (17)
C530.024 (2)0.026 (2)0.026 (2)0.0038 (18)0.0051 (19)0.0004 (19)
C540.026 (2)0.031 (2)0.038 (3)0.0014 (19)0.010 (2)0.002 (2)
C550.045 (3)0.033 (2)0.025 (3)0.003 (2)0.013 (2)0.003 (2)
C560.049 (3)0.034 (3)0.019 (2)0.000 (2)0.004 (2)0.004 (2)
C570.024 (2)0.027 (2)0.024 (2)0.0006 (18)0.0008 (19)0.0027 (19)
C580.071 (4)0.061 (4)0.057 (3)0.012 (3)0.002 (3)0.008 (3)
C590.051 (3)0.041 (3)0.043 (3)0.010 (3)0.017 (3)0.000 (3)
C600.057 (3)0.036 (3)0.062 (4)0.006 (3)0.021 (3)0.003 (3)
C610.071 (4)0.059 (4)0.060 (4)0.023 (3)0.017 (3)0.015 (3)
C620.067 (4)0.061 (4)0.085 (5)0.003 (3)0.018 (3)0.001 (4)
C630.067 (4)0.053 (4)0.088 (5)0.010 (3)0.023 (4)0.006 (4)
C640.060 (4)0.040 (3)0.058 (4)0.002 (3)0.018 (3)0.010 (3)
C650.037 (3)0.151 (6)0.069 (4)0.026 (3)0.001 (3)0.019 (4)
C660.022 (3)0.076 (4)0.068 (4)0.016 (3)0.017 (3)0.025 (3)
C670.034 (4)0.075 (5)0.148 (7)0.020 (3)0.036 (4)0.042 (5)
C680.042 (4)0.087 (6)0.172 (8)0.003 (4)0.045 (5)0.000 (6)
C690.049 (4)0.103 (6)0.096 (5)0.021 (4)0.043 (4)0.041 (5)
C700.053 (4)0.086 (5)0.060 (4)0.008 (3)0.022 (3)0.007 (3)
C710.037 (3)0.067 (4)0.050 (3)0.000 (3)0.011 (2)0.019 (3)
Cl10.1933 (19)0.0721 (12)0.0726 (11)0.0196 (12)0.0191 (12)0.0096 (9)
Cl20.0980 (13)0.0890 (13)0.0943 (12)0.0133 (10)0.0097 (10)0.0026 (10)
C720.083 (4)0.055 (4)0.101 (5)0.008 (3)0.002 (4)0.002 (3)
Geometric parameters (Å, º) top
Pt1—Fe12.5770 (5)C33—C381.379 (4)
Pt1—P22.2700 (9)C34—C351.378 (5)
Pt1—P32.2529 (9)C34—H340.9300
Pt1—C12.023 (3)C35—C361.375 (5)
Fe1—P12.1857 (11)C35—H350.9300
Fe1—C12.107 (3)C36—C371.375 (5)
Fe1—C22.109 (4)C36—H360.9300
Fe1—C121.929 (4)C37—C381.360 (5)
Fe1—C131.749 (4)C37—H370.9300
Fe1—C141.781 (4)C38—H380.9300
P1—C461.824 (4)C39—C401.384 (4)
P1—C451.830 (3)C39—C441.386 (4)
P1—C521.831 (3)C40—C411.377 (5)
P2—C331.809 (3)C40—H400.9300
P2—C391.814 (3)C41—C421.369 (5)
P2—C451.837 (3)C41—H410.9300
P3—C151.819 (4)C42—C431.377 (5)
P3—C271.822 (4)C42—H420.9300
P3—C211.824 (3)C43—C441.372 (5)
O1—C121.207 (4)C43—H430.9300
O2—C131.152 (4)C44—H440.9300
O3—C141.149 (4)C45—H45A0.9700
C1—C21.386 (4)C45—H43B0.9700
C1—H10.9806C46—C471.369 (4)
C2—C121.458 (5)C46—C511.376 (5)
C2—C31.499 (5)C47—C481.386 (5)
C3—C41.387 (5)C47—H470.9300
C3—C101.390 (4)C48—C491.362 (5)
C4—C51.379 (5)C48—H480.9300
C4—H40.9300C49—C501.366 (5)
C5—C71.391 (5)C49—H490.9300
C5—C61.509 (5)C50—C511.376 (5)
C6—H6A0.9600C50—H500.9300
C6—H6B0.9600C51—H510.9300
C6—H6C0.9600C52—C531.375 (4)
C7—C91.391 (5)C52—C571.395 (5)
C7—C81.501 (5)C53—C541.385 (5)
C8—H8A0.9600C53—H530.9300
C8—H8B0.9600C54—C551.364 (5)
C8—H8C0.9600C54—H540.9300
C9—C101.385 (5)C55—C561.374 (5)
C9—H90.9300C55—H550.9300
C10—C111.510 (5)C56—C571.375 (5)
C11—H11A0.9600C56—H560.9300
C11—H11B0.9600C57—H570.9300
C11—H11C0.9600C58—C591.484 (6)
C15—C161.386 (5)C58—H58A0.9600
C15—C201.386 (5)C58—H58B0.9600
C16—C171.387 (5)C58—H58C0.9600
C16—H160.9300C59—C641.351 (6)
C17—C181.368 (5)C59—C601.393 (6)
C17—H170.9300C60—C611.395 (6)
C18—C191.375 (5)C60—H600.9300
C18—H180.9300C61—C621.365 (7)
C19—C201.364 (5)C61—H610.9300
C19—H190.9300C62—C631.382 (7)
C20—H200.9300C62—H620.9300
C21—C261.383 (4)C63—C641.389 (6)
C21—C221.390 (4)C63—H630.9300
C22—C231.375 (5)C64—H640.9300
C22—H220.9300C65—C661.481 (6)
C23—C241.361 (5)C65—H65A0.9600
C23—H230.9300C65—H65B0.9600
C24—C251.364 (5)C65—H65C0.9600
C24—H240.9300C66—C711.366 (6)
C25—C261.380 (5)C66—C671.393 (7)
C25—H250.9300C67—C681.382 (8)
C26—H260.9300C67—H670.9300
C27—C281.378 (5)C68—C691.377 (8)
C27—C321.381 (5)C68—H680.9300
C28—C291.377 (6)C69—C701.377 (7)
C28—H280.9300C69—H690.9300
C29—C301.358 (6)C70—C711.349 (6)
C29—H290.9300C70—H700.9300
C30—C311.368 (6)C71—H710.9300
C30—H300.9300Cl1—C721.741 (5)
C31—C321.392 (5)Cl2—C721.741 (5)
C31—H310.9300C72—H72A0.9700
C32—H320.9300C72—H72B0.9700
C33—C341.367 (4)
P2—Pt1—Fe1102.03 (3)C28—C29—H29119.4
P3—Pt1—Fe1152.88 (3)C29—C30—C31119.6 (4)
C1—Pt1—Fe152.87 (10)C29—C30—H30120.2
P3—Pt1—P2105.07 (3)C31—C30—H30120.2
C1—Pt1—P2152.26 (10)C30—C31—C32120.3 (4)
C1—Pt1—P3100.38 (10)C30—C31—H31119.8
Pt1—C1—Fe177.18 (12)C32—C31—H31119.8
C13—Fe1—C1496.51 (17)C27—C32—C31119.7 (4)
C13—Fe1—C1296.59 (16)C27—C32—H32120.1
C14—Fe1—C12155.50 (17)C31—C32—H32120.1
C13—Fe1—C1125.43 (16)C34—C33—C38118.6 (3)
C14—Fe1—C184.72 (15)C34—C33—P2118.5 (3)
C12—Fe1—C170.81 (14)C38—C33—P2122.9 (3)
C13—Fe1—C297.50 (15)C33—C34—C35120.8 (3)
C14—Fe1—C2115.51 (16)C33—C34—H34119.6
C12—Fe1—C242.03 (13)C35—C34—H34119.6
C1—Fe1—C238.38 (12)C36—C35—C34119.6 (4)
C13—Fe1—P195.17 (13)C36—C35—H35120.2
C14—Fe1—P1104.63 (12)C34—C35—H35120.2
C12—Fe1—P194.69 (11)C37—C36—C35119.8 (4)
C1—Fe1—P1137.46 (10)C37—C36—H36120.1
C2—Fe1—P1135.94 (10)C35—C36—H36120.1
C13—Fe1—Pt1170.69 (12)C38—C37—C36119.8 (4)
C14—Fe1—Pt191.16 (13)C38—C37—H37120.1
C12—Fe1—Pt174.38 (10)C36—C37—H37120.1
C1—Fe1—Pt149.95 (9)C37—C38—C33121.3 (3)
C2—Fe1—Pt174.35 (9)C37—C38—H38119.3
P1—Fe1—Pt187.95 (3)C33—C38—H38119.3
C2—C1—Pt1112.5 (3)C40—C39—C44118.2 (3)
C2—C1—Fe170.9 (2)C40—C39—P2123.3 (3)
C46—P1—C45102.47 (15)C44—C39—P2118.2 (3)
C46—P1—C52101.87 (16)C41—C40—C39120.9 (3)
C45—P1—C52100.39 (15)C41—C40—H40119.5
C46—P1—Fe1114.02 (11)C39—C40—H40119.5
C45—P1—Fe1114.40 (11)C42—C41—C40120.2 (4)
C52—P1—Fe1121.13 (12)C42—C41—H41119.9
C33—P2—C39103.75 (16)C40—C41—H41119.9
C33—P2—C45107.90 (16)C41—C42—C43119.5 (3)
C39—P2—C45102.34 (15)C41—C42—H42120.2
C33—P2—Pt1122.98 (12)C43—C42—H42120.2
C39—P2—Pt1114.88 (11)C44—C43—C42120.5 (3)
C45—P2—Pt1103.02 (11)C44—C43—H43119.7
C15—P3—C27105.92 (16)C42—C43—H43119.7
C15—P3—C21104.21 (16)C43—C44—C39120.6 (3)
C27—P3—C21102.83 (16)C43—C44—H44119.7
C15—P3—Pt1114.37 (12)C39—C44—H44119.7
C27—P3—Pt1109.93 (12)P1—C45—P2108.83 (17)
C21—P3—Pt1118.32 (11)P1—C45—H45A109.9
C2—C1—H1123.6P2—C45—H45A109.9
Pt1—C1—H1123.7P1—C45—H43B109.9
Fe1—C1—H1123.7P2—C45—H43B109.9
C1—C2—C12111.0 (3)H45A—C45—H43B108.3
C1—C2—C3123.7 (3)C47—C46—C51117.1 (3)
C12—C2—C3124.6 (3)C47—C46—P1122.0 (3)
C1—C2—Fe170.8 (2)C51—C46—P1120.8 (3)
C12—C2—Fe162.4 (2)C46—C47—C48121.2 (4)
C3—C2—Fe1126.7 (2)C46—C47—H47119.4
C4—C3—C10118.5 (3)C48—C47—H47119.4
C4—C3—C2120.0 (3)C49—C48—C47120.4 (4)
C10—C3—C2121.4 (3)C49—C48—H48119.8
C5—C4—C3123.6 (3)C47—C48—H48119.8
C5—C4—H4118.2C48—C49—C50119.5 (4)
C3—C4—H4118.2C48—C49—H49120.3
C4—C5—C7118.1 (4)C50—C49—H49120.3
C4—C5—C6121.5 (3)C49—C50—C51119.6 (4)
C7—C5—C6120.4 (3)C49—C50—H50120.2
C5—C6—H6A109.5C51—C50—H50120.2
C5—C6—H6B109.5C46—C51—C50122.2 (3)
H6A—C6—H6B109.5C46—C51—H51118.9
C5—C6—H6C109.5C50—C51—H51118.9
H6A—C6—H6C109.5C53—C52—C57118.0 (3)
H6B—C6—H6C109.5C53—C52—P1121.1 (3)
C5—C7—C9118.3 (4)C57—C52—P1120.7 (3)
C5—C7—C8121.8 (4)C52—C53—C54120.6 (4)
C9—C7—C8120.0 (4)C52—C53—H53119.7
C7—C8—H8A109.5C54—C53—H53119.7
C7—C8—H8B109.5C55—C54—C53120.8 (4)
H8A—C8—H8B109.5C55—C54—H54119.6
C7—C8—H8C109.5C53—C54—H54119.6
H8A—C8—H8C109.5C54—C55—C56119.3 (4)
H8B—C8—H8C109.5C54—C55—H55120.3
C10—C9—C7123.6 (4)C56—C55—H55120.3
C10—C9—H9118.2C55—C56—C57120.3 (4)
C7—C9—H9118.2C55—C56—H56119.9
C9—C10—C3117.8 (3)C57—C56—H56119.9
C9—C10—C11120.0 (3)C56—C57—C52120.9 (4)
C3—C10—C11122.1 (3)C56—C57—H57119.6
C10—C11—H11A109.5C52—C57—H57119.6
C10—C11—H11B109.5C59—C58—H58A109.5
H11A—C11—H11B109.5C59—C58—H58B109.5
C10—C11—H11C109.5H58A—C58—H58B109.5
H11A—C11—H11C109.5C59—C58—H58C109.5
H11B—C11—H11C109.5H58A—C58—H58C109.5
O1—C12—C2138.3 (3)H58B—C58—H58C109.5
O1—C12—Fe1145.3 (3)C64—C59—C60117.4 (5)
C2—C12—Fe175.6 (2)C64—C59—C58122.4 (5)
O2—C13—Fe1179.3 (4)C60—C59—C58120.2 (5)
O3—C14—Fe1175.8 (4)C59—C60—C61121.2 (5)
C16—C15—C20118.4 (3)C59—C60—H60119.4
C16—C15—P3117.6 (3)C61—C60—H60119.4
C20—C15—P3124.0 (3)C62—C61—C60120.7 (5)
C15—C16—C17120.0 (4)C62—C61—H61119.6
C15—C16—H16120.0C60—C61—H61119.6
C17—C16—H16120.0C61—C62—C63117.8 (6)
C18—C17—C16120.3 (4)C61—C62—H62121.1
C18—C17—H17119.8C63—C62—H62121.1
C16—C17—H17119.8C62—C63—C64121.2 (5)
C17—C18—C19120.1 (4)C62—C63—H63119.4
C17—C18—H18120.0C64—C63—H63119.4
C19—C18—H18120.0C59—C64—C63121.7 (5)
C20—C19—C18119.7 (4)C59—C64—H64119.1
C20—C19—H19120.1C63—C64—H64119.1
C18—C19—H19120.1C66—C65—H65A109.5
C19—C20—C15121.5 (4)C66—C65—H65B109.5
C19—C20—H20119.3H65A—C65—H65B109.5
C15—C20—H20119.3C66—C65—H65C109.5
C26—C21—C22118.3 (3)H65A—C65—H65C109.5
C26—C21—P3121.3 (3)H65B—C65—H65C109.5
C22—C21—P3120.0 (3)C71—C66—C67118.3 (6)
C23—C22—C21120.1 (3)C71—C66—C65120.8 (6)
C23—C22—H22119.9C67—C66—C65120.9 (6)
C21—C22—H22119.9C68—C67—C66121.7 (7)
C24—C23—C22121.0 (4)C68—C67—H67119.1
C24—C23—H23119.5C66—C67—H67119.1
C22—C23—H23119.5C69—C68—C67117.0 (7)
C23—C24—C25119.5 (4)C69—C68—H68121.5
C23—C24—H24120.2C67—C68—H68121.5
C25—C24—H24120.2C68—C69—C70122.0 (7)
C24—C25—C26120.6 (4)C68—C69—H69119.0
C24—C25—H25119.7C70—C69—H69119.0
C26—C25—H25119.7C71—C70—C69119.4 (6)
C25—C26—C21120.4 (4)C71—C70—H70120.3
C25—C26—H26119.8C69—C70—H70120.3
C21—C26—H26119.8C70—C71—C66121.6 (6)
C28—C27—C32119.3 (4)C70—C71—H71119.2
C28—C27—P3122.2 (3)C66—C71—H71119.2
C32—C27—P3118.5 (3)Cl1—C72—Cl2110.8 (3)
C29—C28—C27119.9 (4)Cl1—C72—H72A109.5
C29—C28—H28120.0Cl2—C72—H72A109.5
C27—C28—H28120.0Cl1—C72—H72B109.5
C30—C29—C28121.2 (5)Cl2—C72—H72B109.5
C30—C29—H29119.4H72A—C72—H72B108.1
Pt1—C1—C2—C1217.8 (4)Pt1—P2—C33—C3425.8 (3)
Fe1—C1—C2—C1248.8 (3)C39—P2—C33—C3871.6 (3)
Pt1—C1—C2—C3171.6 (3)C45—P2—C33—C3836.5 (3)
Fe1—C1—C2—C3121.8 (3)Pt1—P2—C33—C38156.0 (3)
Pt1—C1—C2—Fe166.57 (17)C38—C33—C34—C350.9 (5)
C1—C2—C3—C450.4 (5)P2—C33—C34—C35177.4 (3)
C12—C2—C3—C4118.9 (4)C33—C34—C35—C360.9 (6)
Fe1—C2—C3—C439.8 (5)C34—C35—C36—C370.8 (6)
C1—C2—C3—C10126.4 (4)C35—C36—C37—C380.8 (6)
C12—C2—C3—C1064.3 (5)C36—C37—C38—C330.9 (6)
Fe1—C2—C3—C10143.4 (3)C34—C33—C38—C371.0 (5)
C10—C3—C4—C50.9 (6)P2—C33—C38—C37177.3 (3)
C2—C3—C4—C5176.0 (4)C33—P2—C39—C403.1 (3)
C3—C4—C5—C70.8 (6)C45—P2—C39—C40115.3 (3)
C3—C4—C5—C6179.5 (4)Pt1—P2—C39—C40133.9 (3)
C4—C5—C7—C90.0 (6)C33—P2—C39—C44177.3 (3)
C6—C5—C7—C9179.7 (4)C45—P2—C39—C4470.5 (3)
C4—C5—C7—C8179.3 (4)Pt1—P2—C39—C4440.3 (3)
C6—C5—C7—C80.4 (6)C44—C39—C40—C410.0 (6)
C5—C7—C9—C100.7 (6)P2—C39—C40—C41174.2 (3)
C8—C7—C9—C10180.0 (4)C39—C40—C41—C420.1 (6)
C7—C9—C10—C30.6 (6)C40—C41—C42—C430.1 (6)
C7—C9—C10—C11175.8 (4)C41—C42—C43—C440.5 (6)
C4—C3—C10—C90.2 (5)C42—C43—C44—C390.6 (6)
C2—C3—C10—C9176.7 (3)C40—C39—C44—C430.4 (5)
C4—C3—C10—C11176.5 (4)P2—C39—C44—C43174.9 (3)
C2—C3—C10—C110.4 (6)C46—P1—C45—P2179.53 (17)
C1—C2—C12—O1135.7 (5)C52—P1—C45—P274.8 (2)
C3—C2—C12—O153.8 (7)Fe1—P1—C45—P256.55 (18)
Fe1—C2—C12—O1171.1 (5)C33—P2—C45—P187.49 (19)
C1—C2—C12—Fe153.2 (3)C39—P2—C45—P1163.46 (17)
C3—C2—C12—Fe1117.2 (3)Pt1—P2—C45—P143.94 (17)
C27—P3—C15—C1696.0 (3)C45—P1—C46—C4738.0 (3)
C21—P3—C15—C16155.9 (3)C52—P1—C46—C47141.6 (3)
Pt1—P3—C15—C1625.2 (3)Fe1—P1—C46—C4786.2 (3)
C27—P3—C15—C2083.6 (3)C45—P1—C46—C51146.9 (3)
C21—P3—C15—C2024.5 (4)C52—P1—C46—C5143.3 (3)
Pt1—P3—C15—C20155.2 (3)Fe1—P1—C46—C5188.9 (3)
C20—C15—C16—C170.5 (5)C51—C46—C47—C481.7 (6)
P3—C15—C16—C17179.1 (3)P1—C46—C47—C48176.9 (3)
C15—C16—C17—C180.8 (6)C46—C47—C48—C490.2 (7)
C16—C17—C18—C190.4 (6)C47—C48—C49—C500.8 (7)
C17—C18—C19—C201.8 (6)C48—C49—C50—C510.3 (6)
C18—C19—C20—C152.1 (6)C47—C46—C51—C502.2 (6)
C16—C15—C20—C190.9 (6)P1—C46—C51—C50177.5 (3)
P3—C15—C20—C19179.4 (3)C49—C50—C51—C461.2 (6)
C15—P3—C21—C26136.5 (3)C46—P1—C52—C53150.9 (3)
C27—P3—C21—C2626.2 (3)C45—P1—C52—C53103.8 (3)
Pt1—P3—C21—C2695.1 (3)Fe1—P1—C52—C5323.1 (3)
C15—P3—C21—C2250.2 (3)C46—P1—C52—C5734.5 (3)
C27—P3—C21—C22160.5 (3)C45—P1—C52—C5770.8 (3)
Pt1—P3—C21—C2278.1 (3)Fe1—P1—C52—C57162.3 (2)
C26—C21—C22—C230.4 (5)C57—C52—C53—C541.5 (5)
P3—C21—C22—C23173.1 (3)P1—C52—C53—C54176.2 (3)
C21—C22—C23—C240.6 (6)C52—C53—C54—C550.6 (6)
C22—C23—C24—C250.7 (6)C53—C54—C55—C561.7 (6)
C23—C24—C25—C260.7 (6)C54—C55—C56—C570.8 (6)
C24—C25—C26—C210.5 (6)C55—C56—C57—C521.4 (6)
C22—C21—C26—C250.4 (5)C53—C52—C57—C562.5 (5)
P3—C21—C26—C25173.0 (3)P1—C52—C57—C56177.2 (3)
C15—P3—C27—C2829.2 (4)C64—C59—C60—C610.5 (7)
C21—P3—C27—C2879.8 (3)C58—C59—C60—C61178.2 (4)
Pt1—P3—C27—C28153.3 (3)C59—C60—C61—C620.4 (7)
C15—P3—C27—C32151.3 (3)C60—C61—C62—C631.0 (8)
C21—P3—C27—C3299.6 (3)C61—C62—C63—C640.8 (8)
Pt1—P3—C27—C3227.3 (3)C60—C59—C64—C630.7 (7)
C32—C27—C28—C290.9 (6)C58—C59—C64—C63177.9 (4)
P3—C27—C28—C29179.7 (3)C62—C63—C64—C590.1 (8)
C27—C28—C29—C300.3 (7)C71—C66—C67—C681.8 (8)
C28—C29—C30—C311.5 (7)C65—C66—C67—C68178.6 (5)
C29—C30—C31—C321.6 (7)C66—C67—C68—C690.6 (9)
C28—C27—C32—C310.7 (6)C67—C68—C69—C701.2 (9)
P3—C27—C32—C31179.8 (3)C68—C69—C70—C711.7 (8)
C30—C31—C32—C270.5 (6)C69—C70—C71—C660.3 (7)
C39—P2—C33—C34106.7 (3)C67—C66—C71—C701.4 (7)
C45—P2—C33—C34145.2 (3)C65—C66—C71—C70179.0 (4)
Hydrogen-bond geometry (Å, º) top
Cg3, Cg6, Cg8, Cg9 and Cg10 are the centroids of the C21–C26, C39–C44, C52–C57, C59–C64 and C66–C71 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C11—H11A···O10.962.363.193 (4)145
C31—H31···O1i0.932.553.370 (5)147
C41—H41···O2ii0.932.493.202 (5)134
C48—H48···O3iii0.932.463.325 (5)154
C11—H11B···Cg9iv0.962.803.719 (4)160
C22—H22···Cg60.932.803.597 (3)145
C34—H34···Cg30.932.983.519 (4)118
C38—H38···Cg100.932.823.694 (4)156
C60—H60···Cg80.932.813.543 (5)137
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+3/2; (iii) x1, y, z; (iv) x1/2, y+1/2, z1/2.
 

Funding information

We are grateful to the Deutsche Forschungsgemeinschaft (DFG) for financial support. LB thanks the Fonds der Chemischen Industrie (FCI) for doctoral fellowships.

References

First citationAkita, M., Sugimoto, S., Terada, M. & Moro-oka, Y. (1993). J. Organomet. Chem. 447, 103–106.  CSD CrossRef CAS Google Scholar
First citationBennett, S. C., Gelling, A. & Went, M. J. (1992). J. Organomet. Chem. 439, 189–199.  CrossRef CAS Google Scholar
First citationBoni, A., Funaioli, T., Marchetti, F., Pampaloni, G., Pinzino, C. & Zacchini, S. (2011). J. Organomet. Chem. 696, 3551–3556.  CAS Google Scholar
First citationCasey, C. P., Ha, Y. & Powell, D. R. (1994). J. Am. Chem. Soc. 116, 3424–3428.  CSD CrossRef CAS Google Scholar
First citationClément, S., Guyard, L., Knorr, M., Dilsky, S., Strohmann, C. & Arroyo, M. (2007). J. Organomet. Chem. 692, 839–850.  Google Scholar
First citationCooper, B. G., Napoline, J. W. & Thomas, C. M. (2012). Catal. Rev. 54, 1–40.  CrossRef CAS Google Scholar
First citationDennett, J. N. L., Knox, S. A. R., Anderson, K. M., Charmant, J. P. H. & Orpen, A. G. (2005). Dalton Trans. pp. 63–73.  CSD CrossRef Google Scholar
First citationDickson, R. S., Gatehouse, B. M., Nesbit, M. C. & Pain, G. N. (1981). J. Organomet. Chem. 215, 97–109.  CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFontaine, X. L. R., Jacobsen, G. B., Shaw, B. L. & Thornton-Pett, M. (1988). J. Chem. Soc. Dalton Trans. pp. 741–750.  CSD CrossRef Web of Science Google Scholar
First citationHitchcock, P. B., Madden, T. J. & Nixon, J. F. (1993). J. Organomet. Chem. 463, 155–162.  CSD CrossRef CAS Google Scholar
First citationHoriuchi, S., Murase, T. & Fujita, M. (2012). Angew. Chem. Int. Ed. 51, 12029–12031.  CSD CrossRef CAS Google Scholar
First citationJohnson, K. A. & Gladfelter, W. L. (1991). J. Am. Chem. Soc. 113, 5097–5099.  CSD CrossRef CAS Google Scholar
First citationJourdain, I., Knorr, M., Strohmann, C., Unkelbach, C., Rojo, S., Gómez-Iglesias, P. & Villafañe, F. (2013). Organometallics, 32, 5343–5359.  CSD CrossRef CAS Google Scholar
First citationJourdain, I., Vieille-Petit, L., Clément, S., Knorr, M., Villafañe, F. & Strohmann, C. (2006). Inorg. Chem. Commun. 9, 127–131.  CSD CrossRef CAS Google Scholar
First citationKnox, S. A. R., Lloyd, B. R., Morton, D. A. V., Orpen, A. G., Turner, M. L. & Hogarth, G. (1995). Polyhedron, 14, 2723–2743.  CSD CrossRef CAS Google Scholar
First citationLiddle, S. T. (2015). Molecular Metal–Metal Bonds. Weinheim: Wiley-VCH.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKee, S. D., Krause, J. A., Lunder, D. M. & Bursten, B. E. (1994). J. Coord. Chem. 32, 249–259.  CSD CrossRef CAS Google Scholar
First citationMirza, H. A., Vittal, J. J. & Puddephatt, R. J. (1994). Organometallics, 13, 3063–3067.  CSD CrossRef CAS Google Scholar
First citationMohamed, A. S., Jourdain, I., Knorr, M., Boullanger, S., Brieger, L. & Strohmann, C. (2019). J. Clust Sci. 30, 1211–1225.  CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRitleng, V. & Chetcuti, M. J. (2007). Chem. Rev. 107, 797–858.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStephan, D. W. (1989). Coord. Chem. Rev. 95, 41–107.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWong, A., Pawlick, R. V., Thomas, C. G., Leon, D. R. & Liu, L.-K. (1991). Organometallics, 10, 530–532.  CSD CrossRef CAS Google Scholar
First citationYamazaki, S., Taira, Z., Yonemura, T. & Deeming, A. J. (2005). Organometallics, 24, 20–27.  CSD CrossRef CAS Google Scholar
First citationYamazaki, S., Taira, Z., Yonemura, T. & Deeming, A. J. (2006). Organometallics, 25, 849–853.  CSD CrossRef CAS Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds