research communications
S,3R)-3-(3-amino-1H-1,2,4-triazol-1-yl)-2-hydroxy-3-phenylpropanoate
computational study and Hirshfeld surface analysis of ethyl (2aLaboratoire de Chimie Appliquée des Matériaux, Centres des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn, Battouta, BP 1014, Rabat, Morocco, bLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, cDepartment of Medical Applied Chemistry, Chung Shan Medical University, Taichung 40241, Taiwan, dDepartment of Medical Education, Chung Shan Medical University Hospital, Taichung 40241, Taiwan, and eDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: yns.elbakri@gmail.com
In the title molecule, C13H16N4O3, the mean planes of the phenyl and triazole rings are nearly perpendicular to one another as a result of the intramolecular C—H⋯O and C—H⋯π(ring) interactions. In the crystal, layers parallel to (101) are generated by O—H⋯N, N—H⋯O and N—H⋯N hydrogen bonds. The layers are connected by inversion-related pairs of C—H⋯O hydrogen bonds. The experimental molecular structure is close to the gas-phase geometry-optimized structure calculated by DFT methods. Hirshfeld surface analysis indicates that the most important interaction involving hydrogen in the title compound is the H⋯H contact. The contribution of the H⋯O, H⋯N, and H⋯H contacts are 13.6, 16.1, and 54.6%, respectively.
Keywords: crystal structure; triazole; hydrogen bond; C—H⋯π(ring) interaction; Hirshfeld surface analysis; computational chemistry.
CCDC reference: 1967185
1. Chemical context
The triazole ring system has attracted considerable interest among synthetic organic chemists and those dealing with medicinal compounds because of its versatile potential to interact with biological systems (Martins et al., 2015). Many of its derivatives are important as agrochemicals (Dayan et al., 2000; Huang et al., 2006; Ling et al., 2007). There is also a continuing need for the development of new drugs as those currently available are becoming ineffective because of the drug resistance developed by pathogens. Moreover, life-threatening infections caused by pathogenic fungi are becoming increasingly very common (Leather & Wingard, 2006; Walsh et al., 2004; Chai et al., 2011). Triazole compounds have shown great efficacy against fungal infections. In 1944, Woolly discovered the excellent antifungal properties of azole derivatives, which led to the development of fluconazole, variconazole, albaconazole and itraconazole (Dismukes et al., 2000; Zonios et al., 2008; Gupta et al., 2003). Further structural modifications of this ring system are expected to result in potential candidates for antifungal agents. These modifications use different functionalities such as aliphatic chains, aromatic rings, heterocyclic ring systems etc. (Calderone et al., 2008; Kim et al., 2010; Giffin et al., 2008; Wang et al., 2005). As a continuation of our research on the synthesis, functionalization, physico-chemical and biological properties of triazole derivatives (El Bakri et al., 2018, 2019a,b,c), we report herein on the DFT calculations and Hirshfeld surface analysis of ethyl (2S,3R)-3-(3-amino-1H-1,2,4-triazol-1-yl)-2-hydroxy-3-phenylpropanoate (1).
2. Structural commentary
The conformation of the molecule is controlled in part by two intramolecular interactions, a C2—H2⋯O1 hydrogen bond and a C—H⋯π(ring) interaction between C5—H5 and the triazole ring (Table 1 and Fig. 1). This leads to a dihedral angle of 87.12 (4)° between the phenyl and triazole rings. Atoms N4 and C3 are displaced from the mean plane of the triazole ring by 0.046 (1) and −0.056 (1) Å, respectively. All bond distances and interbond angles are as expected for the formulation given.
3. Supramolecular features
In the crystal, O1—H1⋯N3, N4—H4A⋯O2 and N4—H4B⋯N1 hydrogen bonds (Table 1) form layers of molecules parallel to (101) (see Fig. 2), which are joined by inversion-related pairs of C12—H12B⋯O1 hydrogen bonds (Table 1 and Fig. 2).
4. Database survey
Searches of the CSD (Version 5.40, updated to September 2019; Groom et al., 2016) with two different search fragments were performed. The first, with 3-amino-1H-1,2,4-triazole as the search fragment, found three structures in which a side chain is bound to the nitrogen atom in the 1-position of the triazole ring (N2 in 1), namely 4-(3-amino-1H-1,2,4-triazol-1-yl)-4-methylpentan-2-one (QISROC; Zemlyanaya et al., 2018), 1-(3-amino-1H-1,2,4-triazol-1-yl)-3,3-dimethylbutan-2-one (VATPEO; Cai et al., 2017) and 3-amino-1-guanyl-1,2,4-triazole dinitramide (YOPDAJ; Zeng et al., 2008). The triazole ring in each of these is essentially planar and the distances of the corresponding C and N substituent atoms from the mean plane of the triazole ring are comparable to those observed for 1.
The second search, using 1-benzyl-1H-1,2,4-triazole as the search fragment, found fifteen structures, but in most of these the phenyl group is oriented with the line joining the ortho carbon atoms approximately parallel to that joining the atoms in the triazole ring corresponding to C2 and N3 in Fig. 1, so that there is an intramolecular C—H⋯π(ring) interaction is not possible. Those in which this interaction is possible are (+)-6-[(4-chlorophenyl)(1H-1,2,4-triazol-1-yl)methyl]-1-methyl-1H-benzotriazole (HALHOR; Peeters et al., 1993), (+)-6-[(4-chlorophenyl)(4-azonia-1H-1,2-diazol-1-yl)methyl]-1-methyl-1H-benzotriazole bromide monohydrate (HALHUX; Peeters et al., 1993), 5,6-bis{4-methyl-2,6-bis[(1H-1,2,4-triazol-1-yl)methyl]phenoxy}pyrazine-2,3-dicarbonitrile monohydrate (NEJFIU; Ghazal et al., 2017) and 4,4′-(1H-1,2,4-triazol-1-yl)methylenebis(benzonitrile) (UKAKIA; Xu et al., 2002). The H⋯centroid distances and C—H⋯centroid angles for these are: HALHOR: 2.94 Å, 111°; HALHUX: 2.78 Å, 124°; NEJFIU: 2.92 Å, 153° and 2.66 Å, 127°; UKAKIA: 2.83 Å, 126°. The geometries of all of the C—H⋯π(ring) interactions in these molecules, except for the first of the two interactions listed for NEJFIU, are comparable to that found in 1.
5. Theoretical studies
5.1. calculation of the electronic structure
The structure in the gas phase of 1 was optimized by means of density functional theory. The DFT calculation was performed by the hybrid B3LYP method, which is based on the idea of Becke and considers a mixture of the exact (HF) and DFT exchange utilizing the B3 functional, together with the LYP correlation functional (Becke, 1993; Lee et al., 1988; Miehlich et al., 1989). In conjunction with the basis set def2-SVP, the B3LYP calculation was performed (Weigend & Ahlrichs, 2005). After obtaining the converged geometry, the harmonic vibrational frequencies were calculated at the same theoretical level to confirm the number of imaginary frequencies is zero for the stationary point. Both the geometry optimization and harmonic vibrational frequency analysis of 1 were performed using the Gaussian 16 program (Frisch et al., 2016).
5.2. comparison between the gas- and solid-phase geometries
From a comparison of selected geometrical parameters obtained from the B3LYP geometry optimization for 1 (Fig. 3) with those from the crystallographic study (Table 2), it is evident that the B3LYP-optimized geometry shows little deviation from the X-ray structure. To quantify the difference between the calculated and experimental geometries, the structure comparer built into the ChemCraft software (https://www.chemcraftprog.com) was used to obtain their r.m.s. deviation. A weighted r.m.s.d. of 0.5684 was obtained with r.m.s. deviations of 0.7365, 0.4474, 0.1926, and 0.2606 for the H, C, N and O atoms, respectively.
|
5.3. Hirshfeld surface analysis
Both the definition of a molecule in a condensed phase and the recognition of distinct entities in molecular liquids and crystals are fundamental concepts in chemistry. Based on Hirshfeld's partitioning scheme, Spackman et al. (1997) proposed a method to divide the electron distribution in a crystalline phase into molecular fragments (Spackman & Byrom, 1997; McKinnon et al., 2004; Spackman & Jayatilaka, 2009). Their proposed method partitioned the crystal into regions where the electron distribution of a sum of spherical atoms for the molecule dominates over the corresponding sum of the crystal. As it is derived from Hirshfeld's stockholder partitioning, the molecular surface is named as the Hirshfeld surface. In this study, the Hirshfeld surface analysis of 1 was performed using CrystalExplorer (Turner et al., 2017).
The standard resolution molecular Hirshfeld surface (dnorm) of 1 is depicted in Fig. 4. This surface can be used to identify very close intermolecular interactions. The value of dnorm is negative (positive) when intermolecular contacts are shorter (longer) than the van der Waals radii. The red regions on the surface represent closer contacts with a negative dnorm value while the blue regions represent longer contacts with a positive dnorm value while, the white regions represent contacts equal to the van der Waals separation and have a dnorm value of zero. As depicted in Fig. 4, the important interactions in 1 are H⋯O and H⋯N hydrogen bonds. In order to understand the relative importance of H⋯O hydrogen bonds versus H⋯N hydrogen bonds, we calculated the two-dimensional fingerprint plots for 1 (Fig. 5), which highlight particular atom-pair contacts and enable the separation of contributions from different interaction types that overlap in the full fingerprint. The most important interaction involving hydrogen in 1 is the H⋯H contact. The contributions of the H⋯O, H⋯N, and H⋯H contact are 13.6%, 16.1% and 54.6%, respectively.
6. Synthesis and crystallization
A mixture of 3-amino-1,2,4-triazole (2 g, 23.8 mmol) and ethyl 3-phenylglycidate (4.5 mL, 32.8 mmol) in n-butanol (20 mL) was refluxed for 24 h. After completion of the reaction (TLC indicated complete consumption of reactants), the solvents were removed in vacuo. The purified product was recrystallized from ethanol solution to afford 1 as colourless crystals. 1H NMR (300 MHz, DMSO-d6), δ(ppm): 1.77 (s, 3H, CH3),7.66 (q, 2H, CH2), 5.21 (d, 1H, CH), 5.82 (d, 1H, CH), 6.20 (s, 1H, OH), 6.62 (s, 2H, NH2), 7.28–7.32 (CHAr), 8.32 (s, 1H, CHtriazolic).13C NMR (75 MHz, DMSO-d6) δ (ppm): δ 15.6, 63.8, 70.3, 82.02, 129.2, 130.6, 131.1, 145.9, 146.8, 164.5, 172.9. HRMS (EI). Calculated for C13H16N4O3: [M + H+] = 277.12. Found: [M + H+] = 277.30. Elemental analysis: calculated: C, 56.51%; H, 5.84%; N, 20.28%; O, 17.37%, found: C, 56.76%; H, 4.16%; N, 19.94%; O, 19.14%.
7. Refinement
Crystal data, data collection and structure .
details are summarized in Table 3
|
Supporting information
CCDC reference: 1967185
https://doi.org/10.1107/S2056989019015743/tx2015sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019015743/tx2015Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019015743/tx2015Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989019015743/tx2015Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C13H16N4O3 | F(000) = 584 |
Mr = 276.30 | Dx = 1.347 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54178 Å |
a = 8.4766 (2) Å | Cell parameters from 8615 reflections |
b = 9.4841 (2) Å | θ = 2.6–74.5° |
c = 16.9904 (3) Å | µ = 0.82 mm−1 |
β = 94.308 (1)° | T = 150 K |
V = 1362.05 (5) Å3 | Thick plate, colourless |
Z = 4 | 0.34 × 0.22 × 0.09 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 2718 independent reflections |
Radiation source: INCOATEC IµS micro–focus source | 2485 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.027 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 74.5°, θmin = 5.2° |
ω scans | h = −9→10 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −11→11 |
Tmin = 0.83, Tmax = 0.93 | l = −20→21 |
10203 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | All H-atom parameters refined |
wR(F2) = 0.084 | w = 1/[σ2(Fo2) + (0.0378P)2 + 0.3844P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
2718 reflections | Δρmax = 0.22 e Å−3 |
246 parameters | Δρmin = −0.16 e Å−3 |
0 restraints | Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: dual | Extinction coefficient: 0.0057 (5) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.91699 (9) | 0.36786 (8) | 0.32916 (5) | 0.02713 (19) | |
H1 | 0.835 (2) | 0.3191 (18) | 0.3429 (10) | 0.051 (5)* | |
O2 | 0.81808 (10) | 0.45251 (9) | 0.47136 (5) | 0.0329 (2) | |
O3 | 0.85502 (10) | 0.68009 (8) | 0.44013 (4) | 0.0308 (2) | |
N1 | 0.97355 (13) | 0.50581 (12) | 0.09965 (6) | 0.0373 (3) | |
N2 | 0.85183 (11) | 0.57435 (10) | 0.20247 (5) | 0.0263 (2) | |
N3 | 0.81168 (11) | 0.67258 (10) | 0.14453 (5) | 0.0265 (2) | |
N4 | 0.88970 (15) | 0.69505 (13) | 0.01404 (6) | 0.0382 (3) | |
H4A | 0.8193 (19) | 0.7639 (17) | 0.0066 (9) | 0.039 (4)* | |
H4B | 0.917 (2) | 0.6404 (18) | −0.0258 (10) | 0.049 (4)* | |
C1 | 0.88946 (13) | 0.62675 (12) | 0.08448 (6) | 0.0286 (3) | |
C2 | 0.94526 (15) | 0.47729 (14) | 0.17358 (7) | 0.0346 (3) | |
H2 | 0.9802 (18) | 0.3965 (17) | 0.2035 (9) | 0.043 (4)* | |
C3 | 0.78317 (13) | 0.58436 (12) | 0.27861 (6) | 0.0246 (2) | |
H3 | 0.7800 (16) | 0.6852 (14) | 0.2914 (8) | 0.027 (3)* | |
C4 | 0.61677 (13) | 0.52484 (12) | 0.27637 (6) | 0.0266 (2) | |
C5 | 0.55667 (14) | 0.43446 (13) | 0.21732 (7) | 0.0315 (3) | |
H5 | 0.6185 (16) | 0.4141 (14) | 0.1720 (8) | 0.030 (3)* | |
C6 | 0.40816 (16) | 0.37325 (15) | 0.22196 (8) | 0.0409 (3) | |
H6 | 0.372 (2) | 0.3122 (18) | 0.1811 (10) | 0.051 (4)* | |
C7 | 0.31994 (16) | 0.40186 (17) | 0.28540 (9) | 0.0460 (3) | |
H7 | 0.220 (2) | 0.3540 (19) | 0.2888 (10) | 0.056 (5)* | |
C8 | 0.37591 (15) | 0.49637 (17) | 0.34260 (8) | 0.0436 (3) | |
H8 | 0.311 (2) | 0.5198 (18) | 0.3888 (10) | 0.056 (5)* | |
C9 | 0.52284 (14) | 0.55881 (15) | 0.33796 (7) | 0.0349 (3) | |
H9 | 0.5614 (19) | 0.6306 (17) | 0.3805 (9) | 0.045 (4)* | |
C10 | 0.89794 (13) | 0.51219 (11) | 0.34175 (6) | 0.0250 (2) | |
H10 | 1.0024 (15) | 0.5580 (13) | 0.3377 (7) | 0.025 (3)* | |
C11 | 0.85120 (13) | 0.54268 (12) | 0.42518 (6) | 0.0263 (2) | |
C12 | 0.81350 (16) | 0.72230 (14) | 0.51908 (7) | 0.0344 (3) | |
H12A | 0.6980 (19) | 0.7131 (16) | 0.5195 (9) | 0.041 (4)* | |
H12B | 0.8654 (17) | 0.6543 (16) | 0.5579 (9) | 0.039 (4)* | |
C13 | 0.8721 (2) | 0.86853 (16) | 0.53308 (10) | 0.0515 (4) | |
H13A | 0.839 (2) | 0.905 (2) | 0.5884 (13) | 0.077 (6)* | |
H13B | 0.821 (2) | 0.932 (2) | 0.4918 (12) | 0.076 (6)* | |
H13C | 1.000 (3) | 0.870 (2) | 0.5340 (11) | 0.071 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0277 (4) | 0.0259 (4) | 0.0285 (4) | 0.0019 (3) | 0.0070 (3) | 0.0016 (3) |
O2 | 0.0381 (5) | 0.0354 (4) | 0.0258 (4) | −0.0044 (3) | 0.0064 (3) | 0.0033 (3) |
O3 | 0.0387 (5) | 0.0307 (4) | 0.0232 (4) | 0.0009 (3) | 0.0049 (3) | −0.0016 (3) |
N1 | 0.0413 (6) | 0.0472 (6) | 0.0247 (5) | 0.0175 (5) | 0.0113 (4) | 0.0041 (4) |
N2 | 0.0274 (5) | 0.0307 (5) | 0.0214 (4) | 0.0049 (4) | 0.0073 (4) | 0.0028 (4) |
N3 | 0.0308 (5) | 0.0279 (5) | 0.0217 (4) | 0.0019 (4) | 0.0077 (4) | 0.0030 (4) |
N4 | 0.0515 (7) | 0.0397 (6) | 0.0250 (5) | 0.0125 (5) | 0.0141 (5) | 0.0052 (4) |
C1 | 0.0296 (6) | 0.0335 (6) | 0.0235 (5) | 0.0025 (4) | 0.0072 (4) | 0.0005 (4) |
C2 | 0.0376 (7) | 0.0414 (7) | 0.0257 (6) | 0.0159 (5) | 0.0087 (5) | 0.0035 (5) |
C3 | 0.0279 (5) | 0.0272 (5) | 0.0196 (5) | 0.0034 (4) | 0.0079 (4) | 0.0009 (4) |
C4 | 0.0249 (5) | 0.0307 (6) | 0.0244 (5) | 0.0052 (4) | 0.0039 (4) | 0.0050 (4) |
C5 | 0.0298 (6) | 0.0357 (6) | 0.0289 (6) | 0.0053 (5) | 0.0013 (5) | 0.0023 (5) |
C6 | 0.0333 (7) | 0.0462 (8) | 0.0419 (7) | −0.0008 (5) | −0.0065 (5) | 0.0003 (6) |
C7 | 0.0253 (6) | 0.0625 (9) | 0.0501 (8) | −0.0028 (6) | 0.0026 (6) | 0.0103 (7) |
C8 | 0.0279 (6) | 0.0658 (9) | 0.0382 (7) | 0.0027 (6) | 0.0099 (5) | 0.0052 (6) |
C9 | 0.0286 (6) | 0.0480 (7) | 0.0290 (6) | 0.0047 (5) | 0.0074 (5) | 0.0007 (5) |
C10 | 0.0246 (5) | 0.0270 (5) | 0.0237 (5) | 0.0001 (4) | 0.0042 (4) | 0.0005 (4) |
C11 | 0.0251 (5) | 0.0298 (6) | 0.0237 (5) | −0.0004 (4) | 0.0013 (4) | 0.0005 (4) |
C12 | 0.0376 (7) | 0.0423 (7) | 0.0236 (6) | 0.0048 (5) | 0.0043 (5) | −0.0059 (5) |
C13 | 0.0712 (11) | 0.0410 (8) | 0.0414 (8) | 0.0027 (7) | −0.0013 (7) | −0.0099 (6) |
O1—C10 | 1.3968 (13) | C4—C9 | 1.3992 (16) |
O1—H1 | 0.881 (18) | C5—C6 | 1.3939 (18) |
O2—C11 | 1.2079 (14) | C5—H5 | 0.982 (14) |
O3—C11 | 1.3277 (14) | C6—C7 | 1.384 (2) |
O3—C12 | 1.4679 (13) | C6—H6 | 0.938 (17) |
N1—C2 | 1.3242 (15) | C7—C8 | 1.380 (2) |
N1—C1 | 1.3648 (15) | C7—H7 | 0.963 (18) |
N2—C2 | 1.3319 (15) | C8—C9 | 1.3867 (18) |
N2—N3 | 1.3794 (13) | C8—H8 | 1.017 (18) |
N2—C3 | 1.4609 (13) | C9—H9 | 1.028 (16) |
N3—C1 | 1.3288 (14) | C10—C11 | 1.5278 (15) |
N4—C1 | 1.3610 (15) | C10—H10 | 0.993 (13) |
N4—H4A | 0.887 (16) | C12—C13 | 1.486 (2) |
N4—H4B | 0.898 (18) | C12—H12A | 0.983 (16) |
C2—H2 | 0.954 (16) | C12—H12B | 1.000 (15) |
C3—C4 | 1.5171 (15) | C13—H13A | 1.06 (2) |
C3—C10 | 1.5522 (15) | C13—H13B | 1.00 (2) |
C3—H3 | 0.982 (14) | C13—H13C | 1.08 (2) |
C4—C5 | 1.3871 (17) | ||
C10—O1—H1 | 111.7 (11) | C8—C7—C6 | 119.90 (13) |
C11—O3—C12 | 116.00 (9) | C8—C7—H7 | 121.3 (10) |
C2—N1—C1 | 102.80 (10) | C6—C7—H7 | 118.8 (10) |
C2—N2—N3 | 108.99 (9) | C7—C8—C9 | 120.01 (13) |
C2—N2—C3 | 131.21 (10) | C7—C8—H8 | 120.6 (10) |
N3—N2—C3 | 119.65 (8) | C9—C8—H8 | 119.4 (10) |
C1—N3—N2 | 102.53 (9) | C8—C9—C4 | 120.54 (12) |
C1—N4—H4A | 115.5 (10) | C8—C9—H9 | 118.8 (9) |
C1—N4—H4B | 114.0 (11) | C4—C9—H9 | 120.6 (9) |
H4A—N4—H4B | 121.9 (14) | O1—C10—C11 | 111.63 (9) |
N3—C1—N4 | 123.58 (11) | O1—C10—C3 | 113.57 (9) |
N3—C1—N1 | 114.34 (10) | C11—C10—C3 | 111.41 (9) |
N4—C1—N1 | 122.06 (10) | O1—C10—H10 | 107.7 (7) |
N1—C2—N2 | 111.32 (11) | C11—C10—H10 | 106.0 (7) |
N1—C2—H2 | 126.7 (9) | C3—C10—H10 | 106.0 (7) |
N2—C2—H2 | 121.9 (9) | O2—C11—O3 | 125.05 (10) |
N2—C3—C4 | 112.65 (9) | O2—C11—C10 | 123.90 (10) |
N2—C3—C10 | 108.22 (8) | O3—C11—C10 | 111.04 (9) |
C4—C3—C10 | 112.74 (9) | O3—C12—C13 | 107.49 (11) |
N2—C3—H3 | 106.2 (8) | O3—C12—H12A | 106.8 (9) |
C4—C3—H3 | 109.1 (8) | C13—C12—H12A | 113.7 (9) |
C10—C3—H3 | 107.6 (8) | O3—C12—H12B | 107.6 (9) |
C5—C4—C9 | 118.98 (11) | C13—C12—H12B | 111.8 (9) |
C5—C4—C3 | 122.57 (10) | H12A—C12—H12B | 109.1 (12) |
C9—C4—C3 | 118.41 (10) | C12—C13—H13A | 110.1 (12) |
C4—C5—C6 | 120.04 (12) | C12—C13—H13B | 109.0 (12) |
C4—C5—H5 | 120.0 (8) | H13A—C13—H13B | 107.4 (17) |
C6—C5—H5 | 120.0 (8) | C12—C13—H13C | 109.9 (11) |
C7—C6—C5 | 120.36 (13) | H13A—C13—H13C | 108.1 (15) |
C7—C6—H6 | 122.1 (10) | H13B—C13—H13C | 112.4 (16) |
C5—C6—H6 | 117.6 (10) | ||
C2—N2—N3—C1 | −1.38 (12) | C3—C4—C5—C6 | 174.36 (11) |
C3—N2—N3—C1 | −177.37 (10) | C4—C5—C6—C7 | −0.12 (19) |
N2—N3—C1—N4 | −177.46 (11) | C5—C6—C7—C8 | 2.9 (2) |
N2—N3—C1—N1 | 1.03 (13) | C6—C7—C8—C9 | −2.3 (2) |
C2—N1—C1—N3 | −0.29 (15) | C7—C8—C9—C4 | −1.2 (2) |
C2—N1—C1—N4 | 178.23 (12) | C5—C4—C9—C8 | 3.98 (18) |
C1—N1—C2—N2 | −0.65 (15) | C3—C4—C9—C8 | −173.77 (11) |
N3—N2—C2—N1 | 1.33 (15) | N2—C3—C10—O1 | −63.92 (11) |
C3—N2—C2—N1 | 176.70 (11) | C4—C3—C10—O1 | 61.36 (12) |
C2—N2—C3—C4 | −94.74 (14) | N2—C3—C10—C11 | 168.99 (9) |
N3—N2—C3—C4 | 80.22 (12) | C4—C3—C10—C11 | −65.74 (12) |
C2—N2—C3—C10 | 30.59 (16) | C12—O3—C11—O2 | −0.70 (16) |
N3—N2—C3—C10 | −154.44 (9) | C12—O3—C11—C10 | −179.49 (9) |
N2—C3—C4—C5 | 18.19 (15) | O1—C10—C11—O2 | −7.54 (15) |
C10—C3—C4—C5 | −104.64 (12) | C3—C10—C11—O2 | 120.60 (12) |
N2—C3—C4—C9 | −164.15 (10) | O1—C10—C11—O3 | 171.26 (9) |
C10—C3—C4—C9 | 73.02 (13) | C3—C10—C11—O3 | −60.59 (12) |
C9—C4—C5—C6 | −3.29 (17) | C11—O3—C12—C13 | 162.57 (11) |
Cg1 is the centroid of the triazole ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N3i | 0.881 (18) | 1.887 (18) | 2.7417 (12) | 162.9 (16) |
N4—H4A···O2ii | 0.887 (16) | 2.182 (17) | 3.0317 (14) | 160.2 (13) |
N4—H4B···N1iii | 0.898 (18) | 2.127 (18) | 3.0066 (15) | 166.1 (15) |
C2—H2···O1 | 0.954 (16) | 2.257 (16) | 2.8665 (14) | 120.9 (12) |
C12—H12B···O1iv | 1.000 (15) | 2.569 (15) | 3.4225 (15) | 143.2 (11) |
C5—H5···Cg1 | 0.982 (14) | 2.856 (14) | 3.4816 (13) | 122.3 (10) |
Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) −x+3/2, y+1/2, −z+1/2; (iii) −x+2, −y+1, −z; (iv) −x+2, −y+1, −z+1. |
B3LYP | X-ray | B3LYP | X-ray | ||
N1—C1 | 1.365 | 1.3648 (15) | O1—C10 | 1.399 | 1.3968 (13) |
N1—C2 | 1.321 | 1.3242 (15) | O2—C11 | 1.210 | 1.2079 (14) |
N2—C3 | 1.459 | 1.4609 (13) | O3—C11 | 1.329 | 1.3277 (14) |
N2—C22 | 1.354 | 1.3319 (15) | O3—C12 | 1.447 | 1.4697 (13) |
N2—N3 | 1.364 | 1.3794 (13) | C4—C9 | 1.403 | 1.3992 (16) |
N3—C1 | 1.328 | 1.3288 (14) | C8—C7 | 1.397 | 1.380 (2) |
N4—C1 | 1.377 | 1.3610 (15) | C8—C9 | 1.398 | 1.3867 (18) |
C3—C4 | 1.523 | 1.5171 (15) | C10—C11 | 1.530 | 1.5278 (15) |
C3—C10 | 1.551 | 1.5522 (15) | |||
C2—N2—N3 | 109.4 | 108.99 (9) | N1—C1—N3 | 114.9 | 114.34 (10) |
O2—C11—O3 | 125.0 | 125.05 (10) | C10—C11—O3 | 113.4 | 111.04 (9) |
Funding information
The support of NSF-MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.
References
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA. Google Scholar
Cai, G.-R., Zheng, D.-F., Li, B. & Feng, N.-J. (2017). Jiegou Huaxue, 36, 599–605. CAS Google Scholar
Calderone, V., Fiamingo, F. L., Amato, G., Giorgi, I., Livi, O., Martelli, A. & Martinotti, E. (2008). Eur. J. Med. Chem. 43, 2618–2626. CrossRef PubMed CAS Google Scholar
Chai, X., Zhang, J., Cao, Y., Zou, Y., Wu, Q., Zhang, D., Jiang, Y. & Sun, Q. (2011). Bioorg. Med. Chem. Lett. 21, 686–689. CrossRef CAS PubMed Google Scholar
Dayan, F. E., Vincent, A. C., Romagni, J. G., Allen, S. N., Duke, S. O., Duke, M. V., Bowling, J. J. & Zjawiony, J. K. (2000). J. Agric. Food Chem. 48, 3689–3693. CrossRef PubMed CAS Google Scholar
Dismukes, W. E. (2000). Clin. Infect. Dis. 30, 653–657. CrossRef PubMed CAS Google Scholar
El Bakri, Y., Guo, L., Anouar, E. H., Harmaoui, A., Ben Ali, A., Essassi, E. M. & Mague, J. T. (2019b). J. Mol. Struct. 1176, 290–297. CSD CrossRef CAS Google Scholar
El Bakri, Y., Guo, L., Anouar, E. H., Harmaoui, A., Ben Ali, A., Essassi, E. M. & Mague, J. T. (2019c). J. Mol. Struct. 1176, 290–297. CSD CrossRef CAS Google Scholar
El Bakri, Y., Lai, C., Sebhaoui, J., Ali, A. B., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018). Chem. Data Collect. 17–18, 472–482. CSD CrossRef Google Scholar
El Bakri, Y., Marmouzi, I., El Jemli, M., Anouar, E. H., Karthikeyan, S., Harmaoui, A., Faouzi, M. A., Mague, J. T. & Essassi, E. M. (2019a). Bioorg. Chem. 92, 103193–103215. CrossRef CAS PubMed Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A., Peralta, J. E. Jr, Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). Gaussian 16, Revision A. 03. Gaussian, Inc., Wallingford CT. Google Scholar
Ghazal, B., Machacek, M., Shalaby, M. A., Novakova, V., Zimcik, P. & Makhseed, S. (2017). J. Med. Chem. 60, 6060–6076. CSD CrossRef CAS PubMed Google Scholar
Giffin, M. J., Heaslet, H., Brik, A., Lin, Y. C., Cauvi, G., Wong, C. H., McRee, D. E., Elder, J. H., Stout, C. D. & Torbett, B. E. (2008). J. Med. Chem. 51, 6263–6270. Web of Science CrossRef PubMed CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gupta, A. K. & Tomas, E. (2003). Dermatol. Clin. 21, 565–576. CrossRef PubMed CAS Google Scholar
Huang, W. & Yang, G. G. (2006). Bioorg. Med. Chem. 14, 8280–8285. CrossRef PubMed CAS Google Scholar
Kim, E. M., Joung, M. H., Lee, C. M., Jeong, H. J., Lim, S. T., Sohn, M. H. & Kim, D. W. (2010). Bioorg. Med. Chem. Lett. 20, 4240–4243. CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Leather, H. L. & Wingard, J. R. (2006). Blood Rev. 20, 267–287. CrossRef PubMed CAS Google Scholar
Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789. CrossRef CAS Web of Science Google Scholar
Ling, S., Xin, Z., Qing, Z., Jian–Bing, L., Zhong, J. & Jian–Xin, F. (2007). Synth. Commun. 37, 199–207. CSD CrossRef CAS Google Scholar
Martins, P., Jesus, J., Santos, S., Raposo, L. R., Roma-Rodrigues, C., Baptista, P. V. & Fernandes, A. R. (2015). Molecules, 20, 16852–16891. CrossRef CAS PubMed Google Scholar
McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668. Web of Science CrossRef CAS IUCr Journals Google Scholar
Miehlich, B., Savin, A., Stoll, H. & Preuss, H. (1989). Chem. Phys. Lett. 157, 200–206. CrossRef CAS Web of Science Google Scholar
Peeters, O. M., Schuerman, G. S., Blaton, N. M. & De Ranter, C. J. (1993). Acta Cryst. C49, 1958–1961. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Byrom, P. G. (1997). Chem. Phys. Lett. 267, 215–220. CrossRef CAS Web of Science Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. Google Scholar
Walsh, T. J., Groll, A., Hiemenz, J., Fleming, R., Roilides, E. & Anaissie, E. (2004). Clin. Microbiol. Infect. 10 Suppl 1, 48–66. CrossRef Google Scholar
Wang, Q., Chittaboina, S. & Barnhill, H. N. (2005). Lett. Org. Chem. 2, 293–301. Web of Science CrossRef CAS Google Scholar
Weigend, F. & Ahlrichs, R. (2005). Phys. Chem. Chem. Phys. 7, 3297–3305. Web of Science CrossRef PubMed CAS Google Scholar
Xu, X.-Y., Ma, W.-X., Wang, J., Chem, H. H., Yang, X.-J. & Wang, X. (2002). HuaiHai Gongxueyuan Xuebao 11, 30–33. Google Scholar
Zemlyanaya, N. I., Karnozhitskaya, T. M., Musatov, V. I., Konovalova, I. S., Shishkina, S. V. & Lipson, V. V. (2018). Zh. Org. Khim. 54, 1241–1249. CAS Google Scholar
Zeng, Z., Wang, R., Twamley, B., Parrish, D. A. & Shreeve, J. M. (2008). Chem. Mater. 20, 6176–6182. CSD CrossRef CAS Google Scholar
Zonios, D. I. & Bennett, J. E. (2008). Semin. Respir. Crit. Care Med. 29, 198–210. CrossRef PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.