research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

An iridium complex with an unsupported Ir—Zn bond: di­iodido­(η5-penta­methyl­cyclo­penta­dien­yl)bis­­(tri­methyl­phosphane)iridiumzinc(IrZn) benzene hemisolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, Ontario, L5L 1C6, Canada, and bDepartment of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S 3H6, Canada
*Correspondence e-mail: ulrich.fekl@utoronto.ca

Edited by M. Zeller, Purdue University, USA (Received 24 October 2019; accepted 28 October 2019; online 5 November 2019)

The title compound, [IrZnI2(C10H15)(C3H9P)2]·0.5C6H6 or [Cp*(PMe3)2Ir]-[ZnI2] (Cp* = cyclo-C5Me5) was obtained and characterized as its benzene solvate [Cp*(PMe3)2Ir]-[ZnI2]·0.5C6H6. The bimetallic complex in this structure contains the Lewis-acidic fragment ZnI2 bonded to the Lewis-basic fragment Cp*(PMe3)2Ir, with an Ir—Zn bond distance of 2.452 (1) Å. The compound was obtained by reacting [Cp*(PMe3)IrI2] with 2-Ad2Zn (2-Ad = 2-adamant­yl), resulting in the reduction of the IrIII complex and formation of the IrI–ZnII adduct. The crystal studied was a twin by non-merohedry with a refined BASF parameter of 0.223 (1).

1. Chemical context

An intuitive way to create metal–metal bonds is by linking a Lewis-basic metal center to a Lewis-acidic metal center. Lewis acid/base adducts of the type [CpR(L)(L′)Ir]-[ZnX2] (CpR = either Cp, cyclo­penta­dienyl, or Cp*, penta­methyl­cyclo­penta­dienyl; L and L′ = neutral ligand; X = halogen) have been known for a long time. Regarding the Lewis-basic fragment, it has been noted that electron-rich half-sandwich complexes can be considered `metal bases par excellence' (Werner, 1983[Werner, H. (1983). Angew. Chem. Int. Ed. Engl. 22, 927-949.]), and zinc dihalides are among the most well-known Lewis acids. The bimetallic complex [Cp(PPh3)(CO)Ir]-[ZnBr2] was isolated and spectroscopically characterized 49 years ago (Oliver & Graham, 1970[Oliver, A. J. & Graham, W. A. G. (1970). Inorg. Chem. 9, 2653-2657.]). However, crystallographic characterization of such complexes having iridium–zinc bonds is elusive. While a related complex [Cp*(CO)2Ir]-[ZnCl2] was later prepared in a different group, it too was not structurally characterized, instead an adduct with mercury(II) chloride was crystallographically characterized (Einstein et al., 1992[Einstein, F. W. B., Yan, X., Zhang, X. & Sutton, D. (1992). J. Organomet. Chem. 439, 221-230.]). A cobalt complex [Cp(PMe3)2Co]-[ZnCl2PMe3] is known as well; it too is lacking crystallographic characterization (Dey & Werner, 1977[Dey, K. & Werner, H. (1977). J. Organomet. Chem. 137, C28-C30.]). In fact, while complexes are known where a zinc dihalide acts as a bridge between metals (iridium: Kimura et al., 2012[Kimura, T., Ishiwata, K., Kuwata, S. & Ikariya, T. (2012). Organometallics, 31, 1204-1207.]) or where aggregation occurs to form multi-zinc clusters (rhodium and zinc: Molon et al., 2010[Molon, M., Cadenbach, T., Bollermann, T., Gemel, C. & Fischer, R. A. (2010). Chem. Commun. 46, 5677-5679.]), a search of the Cambridge Crystallographic Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed no example of a structurally characterized complex [CpR(L)(L′)M]-[ZnX2] (M = either Co, Rh, or Ir) with a terminal (non-bridging) zinc dihalide. For iridium, it appears, in fact, that regardless of the ligand coordination sphere there is no single example of an unsupported iridum–zinc bond. The scarcity of examples for iridium contrasts with the situation of rhodium, for which a couple of examples of unsupported Rh–ZnX2 structures exist with a PNP `pincer' providing the coordination environment at rhodium (Gair et al., 2019[Gair, J. J., Qiu, Y., Khade, R. L., Chan, N. H., Filatov, A. S., Zhang, Y. & Lewis, J. C. (2019). Organometallics, 38, 1407-1412.]). Additionally, several Rh–Zn structures exist with Zn–Cp* and Zn–C environments (Cadenbach et al., 2009[Cadenbach, T., Bollermann, T., Gemel, C., Tombul, M., Fernandez, I., von Hopffgarten, M., Frenking, G. & Fischer, R. A. (2009). J. Am. Chem. Soc. 131, 16063-16077.]). In this contribution, we provide crystallographic characterization for [Cp*(PMe3)2Ir]-[ZnI2] (benzene solvate). The bimetallic complex in this structure is the formal adduct of the Lewis base Cp*(PMe3)2IrI and the Lewis acid ZnIII2, providing the first structural characterization within the large class of metal–metal-bonded compounds [CpR(L)(L′)M]-[ZnX2] (M = Co, Rh, or Ir, X = halide, L, L′ = neutral ligand). We did not synthesize the title compound from iridium(I). Rather, it was obtained through the reduction of iridium(III) with di-(2-adamant­yl)zinc, as described under 'Synthesis and crystallization'.

[Scheme 1]

2. Structural commentary

An anisotropic displacement plot showing [Cp*(PMe3)2Ir]-[ZnI2] and its benzene solvate mol­ecule is shown in Fig. 1[link]. The Ir1—Zn1 distance is 2.452 (1) Å, which is within the expected distance range when compared to other examples of M—Zn bonds, specifically those of unsupported Rh—Zn bonds, which were determined to be 2.4224 (6) Å for Rh—ZnCl2 and 2.4147 (5) Å for Rh—ZnBr2 (Gair et al., 2019[Gair, J. J., Qiu, Y., Khade, R. L., Chan, N. H., Filatov, A. S., Zhang, Y. & Lewis, J. C. (2019). Organometallics, 38, 1407-1412.]). The only crystallographically characterized Ir—Zn bonds are those of a structure that contains a bridging zinc dihalide, which leads to expected longer M—Zn bond distances of 2.563 (1) and 2.566 (1) Å (Kimura et al., 2012[Kimura, T., Ishiwata, K., Kuwata, S. & Ikariya, T. (2012). Organometallics, 31, 1204-1207.]). Bond angles around the iridium center in [Cp*(PMe3)2Ir]-[ZnI2] match those of a three-legged piano stool, with roughly 90° angles. The Zn1—Ir1—P1 angle was found to be 88.74 (7)°, the Zn1—Ir1—P2 angle 91.35 (7)°, and the P1—Ir1—P2 angle 93.81 (9)°. The ZnI2 fragment is close to planar, with Zn1 being displaced from the I1–I2–Ir1 plane by only 0.1427 (11) Å. The Zn1—I1 distance is 2.588 (1) Å and the Zn1—I2 distance is 2.582 (1) Å. The angles about Zn are 127.19 (5)° for Ir1—Zn—I1, 126.73 (5)° for Ir1—Zn1—I2, and 105.11 (4)° for I1—Zn1—I2. The larger Ir—Zn—X angles and the comparably small X—Zn—X angle are consistent with what has been observed for the ZnBr2 and ZnCl2 fragments in the existing Rh–Zn complexes (Gair et al., 2019[Gair, J. J., Qiu, Y., Khade, R. L., Chan, N. H., Filatov, A. S., Zhang, Y. & Lewis, J. C. (2019). Organometallics, 38, 1407-1412.]). These complexes had Rh1—Zn1—X1 (where X = Br or Cl) angles of 130.14 (2) and 130.26 (4)°, Rh1—Zn1—X2 angles of 120.42 (2) and 120.31 (11)°, and X1—Zn1—X2 angles of 109.43 (2) and 109.41 (4)°. In [Cp*(PMe3)2Ir]-[ZnI2], there is a relatively short intra­molecular C—H⋯I inter­action between H14B (on the C14 methyl group) and I1, with an H⋯I contact distance of 3.06 Å (this reported distance is based on the calculated position of H14B, which is placed at 0.98 Å from C14 and at an angle C14—H14B⋯I1 of 157°); the C14⋯I1 distance is 3.977 (12) Å.

[Figure 1]
Figure 1
A view of the mol­ecular structure of [Cp*(PMe3)2Ir]-[ZnI2] and its benzene solvate mol­ecule. Anisotropic displacement ellipsoids in this plot, generated with ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), are shown at the 30% level. The benzene mol­ecule lies on a crystallographic twofold axis – atoms bearing primed labels are generated by symmetry.

3. Supra­molecular features

The packing of [Cp*(PMe3)2Ir]-[ZnI2]·0.5C6H6 is shown in Fig. 2[link]. Mol­ecules of [Cp*(PMe3)2Ir]-[ZnI2] and the C6H6 solvent pack through contacting van der Waals surfaces, without any particular short contacts. There are no inter­molecular hydrogen bonds in the structure. A possible intra­molecular C—H⋯I hydrogen bond is discussed above under Structural commentary.

[Figure 2]
Figure 2
Packing of mol­ecules of [Cp*(PMe3)2Ir]-[ZnI2] and benzene solvate mol­ecules, viewed along the b axis.

4. Database survey

The Cambridge Crystallographic Database (version 5.40, including updates up to May 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) was searched. No example of an unsupported iridium–zinc bond was found, using the substructure Ir—Zn (any bond). Only one structure was found, namely a structure that contains a bridging zinc dihalide, as discussed under Chemical context (Kimura et al., 2012[Kimura, T., Ishiwata, K., Kuwata, S. & Ikariya, T. (2012). Organometallics, 31, 1204-1207.]).

5. Synthesis and crystallization

The synthesis was performed using air-free conditions, solvents were dried over Na/benzo­phenone, [Cp*IrI2]2 was purchased from Sigma Aldrich, 2-Ad2Zn was synthesized according to literature (Armstrong et al., 2017[Armstrong, D., Taullaj, F., Singh, K., Mirabi, B., Lough, A. J. & Fekl, U. (2017). Dalton Trans. 46, 6212-6217.]). [Cp*(PMe3)2Ir]-[ZnI2] was obtained via reduction of Cp*(PMe3)IrI2 with 2-Ad2Zn. Cp*(PMe3)IrI2 was generated in situ via reaction of 50mg of [Cp*IrI2]2 (0.04 mmol) with two equivalents of PMe3 (added as a 1 M PMe3 solution in THF, 100 µL, 0.1 mmol) over 1 h of stirring at room temperature. Next, 30 mg (0.08 mmol) of 2-Ad2Zn were added to the reaction mixture, and the reaction was allowed to proceed overnight with stirring at room temperature, resulting in a yellow solution and yellow precipitate. The solution layer was deca­nted into a round-bottom flask, and dried in vacuo to yield a yellow solid, which was extracted with C6H6 forming a colorless solution, with some precipitate forming over time. The colorless crystals of [Cp*(PMe3)2Ir]-[ZnI2] grew out of the benzene solution via slow evaporation at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The crystal studied was a twin by non-merohedry with a twin transformation matrix of 1.00 0.00 0.00, −0.90 − 1.00 0.00, 0.06 0.00 − 1.00 and a refined BASF parameter of 0.223 (1). The TWINABS (Bruker, 2012[Bruker (2012). TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) function in APEX2 (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) was used to de-twin the data. Uij components of ADPs for atoms C1 through C5 were restrained to be similar to each other (SIMU 0.01 command of SHELXL).

Table 1
Experimental details

Crystal data
Chemical formula [IrZnI2(C10H15)(C3H9P)2]·0.5C6H6
Mr 837.79
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 9.5353 (7), 10.1962 (8), 14.6331 (10)
α, β, γ (°) 95.975 (2), 91.255 (2), 114.847 (2)
V3) 1280.58 (16)
Z 2
Radiation type Mo Kα
μ (mm−1) 8.67
Crystal size (mm) 0.22 × 0.03 × 0.02
 
Data collection
Diffractometer Bruker Kappa APEX DUO CCD
Absorption correction Multi-scan (TWINABS; Bruker, 2012[Bruker (2012). TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.560, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 56694, 5865, 4967
Rint 0.056
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.116, 1.13
No. of reflections 5865
No. of parameters 238
No. of restraints 30
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.81, −1.66
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: APEX2 (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Diiodido(η5-pentamethylcyclopentadienyl)bis(trimethylphosphane)\ iridiumzinc(IrZn) benzene hemisolvate top
Crystal data top
[IrZnI2(C10H15)(C3H9P)2]·0.5C6H6Z = 2
Mr = 837.79F(000) = 786
Triclinic, P1Dx = 2.173 Mg m3
a = 9.5353 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1962 (8) ÅCell parameters from 9876 reflections
c = 14.6331 (10) Åθ = 2.2–27.5°
α = 95.975 (2)°µ = 8.66 mm1
β = 91.255 (2)°T = 150 K
γ = 114.847 (2)°Needle, colourless
V = 1280.58 (16) Å30.22 × 0.03 × 0.02 mm
Data collection top
Bruker Kappa APEX DUO CCD
diffractometer
4967 reflections with I > 2σ(I)
Radiation source: sealed tube with Bruker Triumph monochromatorRint = 0.056
φ and ω scansθmax = 27.6°, θmin = 1.4°
Absorption correction: multi-scan
(TWINABS; Bruker, 2012)
h = 1212
Tmin = 0.560, Tmax = 0.746k = 1313
56694 measured reflectionsl = 019
5865 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0542P)2 + 11.6185P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.001
5865 reflectionsΔρmax = 1.81 e Å3
238 parametersΔρmin = 1.66 e Å3
30 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.64620 (4)0.30438 (4)0.23280 (2)0.01416 (10)
Zn10.85316 (12)0.54793 (12)0.22619 (7)0.0182 (2)
I11.13849 (8)0.64673 (8)0.29085 (5)0.03107 (17)
I20.84656 (9)0.74030 (8)0.12668 (5)0.03387 (18)
P10.4792 (3)0.4076 (3)0.25762 (17)0.0184 (5)
P20.7072 (3)0.3167 (3)0.38389 (16)0.0184 (5)
C10.5046 (12)0.1007 (11)0.1315 (7)0.028 (2)
C20.6108 (11)0.0698 (10)0.1844 (7)0.0216 (18)
C30.7631 (12)0.1679 (11)0.1690 (7)0.0224 (18)
C40.7521 (13)0.2568 (12)0.1035 (7)0.027 (2)
C50.5942 (13)0.2200 (11)0.0809 (6)0.0260 (19)
C60.3309 (13)0.0135 (13)0.1213 (9)0.039 (3)
H6A0.3024150.0583830.0662360.059*
H6B0.2808480.0790580.1153150.059*
H6C0.2966070.0367850.1757660.059*
C70.5730 (14)0.0549 (12)0.2404 (9)0.036 (3)
H7A0.5871490.1343790.2042560.054*
H7B0.4652430.0894020.2565540.054*
H7C0.6421010.0220470.2967750.054*
C80.9134 (13)0.1610 (14)0.1988 (9)0.038 (3)
H8A0.9518640.1222960.1458450.056*
H8B0.8945690.0973130.2472180.056*
H8C0.9907380.2590900.2224450.056*
C90.8854 (16)0.3580 (13)0.0514 (8)0.042 (3)
H9A0.8914650.3047180.0070050.064*
H9B0.9832910.3918070.0889810.064*
H9C0.8664250.4420110.0389670.064*
C100.5338 (18)0.2725 (17)0.0030 (8)0.049 (4)
H10A0.5618660.2379870.0557490.074*
H10B0.5794340.3792300.0113190.074*
H10C0.4207180.2344410.0027330.074*
C110.3809 (14)0.4250 (14)0.1551 (8)0.035 (3)
H11A0.3051450.4627470.1731100.053*
H11B0.3275690.3293620.1184230.053*
H11C0.4570130.4923460.1184690.053*
C120.3114 (11)0.3065 (12)0.3218 (8)0.026 (2)
H12A0.2377100.3503300.3199950.040*
H12B0.3463430.3104990.3859610.040*
H12C0.2608180.2047060.2936880.040*
C130.5420 (12)0.5912 (11)0.3179 (8)0.028 (2)
H13A0.4511690.6098240.3307050.042*
H13B0.6084720.6622360.2792840.042*
H13C0.6002170.6000060.3759880.042*
C140.8854 (12)0.2999 (13)0.4124 (7)0.027 (2)
H14A0.9051370.3134440.4795450.041*
H14B0.9720120.3743600.3857040.041*
H14C0.8748870.2030200.3874520.041*
C150.5697 (13)0.1720 (12)0.4447 (7)0.034 (3)
H15A0.6097390.1848050.5087840.051*
H15B0.5566510.0767870.4143980.051*
H15C0.4693930.1772720.4431550.051*
C160.7304 (13)0.4736 (11)0.4657 (7)0.029 (2)
H16A0.7723210.4656700.5255930.043*
H16B0.6295200.4761170.4725350.043*
H16C0.8018490.5632310.4429540.043*
C1S1.1540 (14)1.0646 (12)0.5329 (8)0.033 (3)
H1S1.2599171.1087540.5553090.040*
C2S1.1106 (14)0.9857 (13)0.4464 (9)0.037 (3)
H2S1.1866660.9755860.4091070.045*
C3S0.9552 (14)0.9211 (13)0.4139 (8)0.037 (3)
H3S0.9253140.8667690.3543270.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.01386 (16)0.01348 (16)0.01504 (16)0.00549 (13)0.00113 (12)0.00274 (11)
Zn10.0172 (5)0.0147 (5)0.0226 (5)0.0060 (4)0.0056 (4)0.0042 (4)
I10.0205 (3)0.0307 (4)0.0406 (4)0.0092 (3)0.0000 (3)0.0061 (3)
I20.0403 (4)0.0313 (4)0.0366 (4)0.0197 (3)0.0079 (3)0.0114 (3)
P10.0175 (12)0.0213 (12)0.0192 (12)0.0108 (10)0.0015 (9)0.0038 (9)
P20.0168 (11)0.0198 (12)0.0172 (11)0.0058 (9)0.0004 (9)0.0057 (9)
C10.025 (4)0.025 (4)0.026 (4)0.007 (4)0.003 (4)0.007 (4)
C20.028 (4)0.014 (4)0.024 (4)0.011 (3)0.003 (3)0.003 (3)
C30.030 (4)0.018 (4)0.021 (4)0.012 (3)0.007 (3)0.002 (3)
C40.036 (5)0.028 (4)0.015 (4)0.015 (4)0.012 (3)0.007 (3)
C50.035 (4)0.027 (4)0.017 (4)0.016 (4)0.001 (3)0.003 (3)
C60.030 (6)0.031 (6)0.052 (8)0.014 (5)0.012 (5)0.017 (5)
C70.042 (7)0.022 (6)0.046 (7)0.013 (5)0.000 (5)0.013 (5)
C80.026 (6)0.036 (7)0.055 (8)0.021 (5)0.005 (5)0.007 (6)
C90.057 (8)0.030 (6)0.034 (7)0.011 (6)0.027 (6)0.004 (5)
C100.086 (11)0.061 (9)0.016 (6)0.049 (8)0.010 (6)0.004 (6)
C110.043 (7)0.044 (7)0.032 (6)0.033 (6)0.007 (5)0.003 (5)
C120.011 (4)0.028 (6)0.037 (6)0.005 (4)0.013 (4)0.005 (4)
C130.024 (5)0.017 (5)0.045 (7)0.011 (4)0.005 (4)0.003 (4)
C140.027 (5)0.036 (6)0.026 (5)0.017 (5)0.003 (4)0.012 (4)
C150.033 (6)0.034 (6)0.029 (5)0.006 (5)0.005 (4)0.014 (5)
C160.031 (6)0.030 (5)0.023 (5)0.012 (5)0.004 (4)0.000 (4)
C1S0.036 (6)0.018 (5)0.041 (7)0.009 (5)0.000 (5)0.006 (5)
C2S0.040 (7)0.026 (6)0.047 (7)0.014 (5)0.015 (5)0.010 (5)
C3S0.048 (8)0.031 (6)0.030 (6)0.015 (5)0.000 (5)0.004 (4)
Geometric parameters (Å, º) top
Ir1—P22.251 (2)C8—H8B0.9800
Ir1—C52.264 (9)C8—H8C0.9800
Ir1—P12.265 (2)C9—H9A0.9800
Ir1—C32.265 (9)C9—H9B0.9800
Ir1—C42.267 (9)C9—H9C0.9800
Ir1—C12.291 (10)C10—H10A0.9800
Ir1—C22.301 (9)C10—H10B0.9800
Ir1—Zn12.4516 (11)C10—H10C0.9800
Zn1—I22.5819 (13)C11—H11A0.9800
Zn1—I12.5880 (13)C11—H11B0.9800
P1—C111.815 (11)C11—H11C0.9800
P1—C131.825 (11)C12—H12A0.9800
P1—C121.840 (10)C12—H12B0.9800
P2—C141.822 (10)C12—H12C0.9800
P2—C161.826 (10)C13—H13A0.9800
P2—C151.840 (10)C13—H13B0.9800
C1—C21.417 (14)C13—H13C0.9800
C1—C51.449 (15)C14—H14A0.9800
C1—C61.510 (15)C14—H14B0.9800
C2—C31.414 (14)C14—H14C0.9800
C2—C71.504 (14)C15—H15A0.9800
C3—C41.417 (15)C15—H15B0.9800
C3—C81.521 (15)C15—H15C0.9800
C4—C51.412 (15)C16—H16A0.9800
C4—C91.538 (15)C16—H16B0.9800
C5—C101.509 (15)C16—H16C0.9800
C6—H6A0.9800C1S—C3Si1.360 (17)
C6—H6B0.9800C1S—C2S1.381 (17)
C6—H6C0.9800C1S—H1S0.9500
C7—H7A0.9800C2S—C3S1.393 (18)
C7—H7B0.9800C2S—H2S0.9500
C7—H7C0.9800C3S—H3S0.9500
C8—H8A0.9800
P2—Ir1—C5160.3 (3)C1—C6—H6B109.5
P2—Ir1—P193.81 (9)H6A—C6—H6B109.5
C5—Ir1—P1102.1 (3)C1—C6—H6C109.5
P2—Ir1—C3101.5 (3)H6A—C6—H6C109.5
C5—Ir1—C361.2 (4)H6B—C6—H6C109.5
P1—Ir1—C3162.4 (3)C2—C7—H7A109.5
P2—Ir1—C4133.0 (3)C2—C7—H7B109.5
C5—Ir1—C436.3 (4)H7A—C7—H7B109.5
P1—Ir1—C4131.8 (3)C2—C7—H7C109.5
C3—Ir1—C436.4 (4)H7A—C7—H7C109.5
P2—Ir1—C1127.8 (3)H7B—C7—H7C109.5
C5—Ir1—C137.1 (4)C3—C8—H8A109.5
P1—Ir1—C1103.0 (3)C3—C8—H8B109.5
C3—Ir1—C160.6 (4)H8A—C8—H8B109.5
C4—Ir1—C160.6 (4)C3—C8—H8C109.5
P2—Ir1—C299.7 (3)H8A—C8—H8C109.5
C5—Ir1—C260.8 (4)H8B—C8—H8C109.5
P1—Ir1—C2132.8 (3)C4—C9—H9A109.5
C3—Ir1—C236.1 (4)C4—C9—H9B109.5
C4—Ir1—C260.1 (4)H9A—C9—H9B109.5
C1—Ir1—C236.0 (4)C4—C9—H9C109.5
P2—Ir1—Zn191.35 (7)H9A—C9—H9C109.5
C5—Ir1—Zn1100.5 (3)H9B—C9—H9C109.5
P1—Ir1—Zn188.74 (7)C5—C10—H10A109.5
C3—Ir1—Zn199.4 (3)C5—C10—H10B109.5
C4—Ir1—Zn180.8 (3)H10A—C10—H10B109.5
C1—Ir1—Zn1137.2 (3)C5—C10—H10C109.5
C2—Ir1—Zn1135.3 (2)H10A—C10—H10C109.5
Ir1—Zn1—I2126.73 (5)H10B—C10—H10C109.5
Ir1—Zn1—I1127.19 (5)P1—C11—H11A109.5
I2—Zn1—I1105.11 (4)P1—C11—H11B109.5
C11—P1—C1399.5 (5)H11A—C11—H11B109.5
C11—P1—C12100.2 (6)P1—C11—H11C109.5
C13—P1—C12100.5 (5)H11A—C11—H11C109.5
C11—P1—Ir1115.7 (4)H11B—C11—H11C109.5
C13—P1—Ir1121.9 (3)P1—C12—H12A109.5
C12—P1—Ir1115.6 (4)P1—C12—H12B109.5
C14—P2—C16100.7 (5)H12A—C12—H12B109.5
C14—P2—C15100.1 (5)P1—C12—H12C109.5
C16—P2—C1598.6 (5)H12A—C12—H12C109.5
C14—P2—Ir1115.9 (4)H12B—C12—H12C109.5
C16—P2—Ir1121.8 (3)P1—C13—H13A109.5
C15—P2—Ir1116.2 (4)P1—C13—H13B109.5
C2—C1—C5107.5 (9)H13A—C13—H13B109.5
C2—C1—C6125.9 (10)P1—C13—H13C109.5
C5—C1—C6126.3 (10)H13A—C13—H13C109.5
C2—C1—Ir172.4 (6)H13B—C13—H13C109.5
C5—C1—Ir170.4 (5)P2—C14—H14A109.5
C6—C1—Ir1127.9 (8)P2—C14—H14B109.5
C3—C2—C1108.6 (9)H14A—C14—H14B109.5
C3—C2—C7124.2 (9)P2—C14—H14C109.5
C1—C2—C7126.9 (10)H14A—C14—H14C109.5
C3—C2—Ir170.6 (5)H14B—C14—H14C109.5
C1—C2—Ir171.7 (6)P2—C15—H15A109.5
C7—C2—Ir1128.4 (8)P2—C15—H15B109.5
C2—C3—C4107.8 (9)H15A—C15—H15B109.5
C2—C3—C8127.2 (10)P2—C15—H15C109.5
C4—C3—C8123.8 (10)H15A—C15—H15C109.5
C2—C3—Ir173.3 (5)H15B—C15—H15C109.5
C4—C3—Ir171.9 (5)P2—C16—H16A109.5
C8—C3—Ir1130.4 (7)P2—C16—H16B109.5
C5—C4—C3109.0 (9)H16A—C16—H16B109.5
C5—C4—C9123.7 (11)P2—C16—H16C109.5
C3—C4—C9126.4 (10)H16A—C16—H16C109.5
C5—C4—Ir171.7 (5)H16B—C16—H16C109.5
C3—C4—Ir171.7 (5)C3Si—C1S—C2S119.9 (11)
C9—C4—Ir1130.9 (7)C3Si—C1S—H1S120.0
C4—C5—C1107.0 (9)C2S—C1S—H1S120.0
C4—C5—C10125.0 (11)C1S—C2S—C3S119.9 (11)
C1—C5—C10126.6 (11)C1S—C2S—H2S120.1
C4—C5—Ir172.0 (5)C3S—C2S—H2S120.1
C1—C5—Ir172.5 (5)C1Si—C3S—C2S120.2 (11)
C10—C5—Ir1131.1 (8)C1Si—C3S—H3S119.9
C1—C6—H6A109.5C2S—C3S—H3S119.9
C5—C1—C2—C30.8 (11)Ir1—C3—C4—C9127.8 (10)
C6—C1—C2—C3174.3 (10)C2—C3—C4—Ir165.0 (7)
Ir1—C1—C2—C361.2 (7)C8—C3—C4—Ir1127.0 (10)
C5—C1—C2—C7173.2 (10)C3—C4—C5—C12.1 (10)
C6—C1—C2—C70.3 (17)C9—C4—C5—C1168.1 (10)
Ir1—C1—C2—C7124.7 (11)Ir1—C4—C5—C164.5 (7)
C5—C1—C2—Ir162.1 (7)C3—C4—C5—C10169.6 (10)
C6—C1—C2—Ir1124.5 (11)C9—C4—C5—C100.6 (15)
C1—C2—C3—C42.1 (11)Ir1—C4—C5—C10128.0 (10)
C7—C2—C3—C4172.1 (10)C3—C4—C5—Ir162.4 (6)
Ir1—C2—C3—C464.1 (7)C9—C4—C5—Ir1127.4 (10)
C1—C2—C3—C8169.6 (10)C2—C1—C5—C40.8 (11)
C7—C2—C3—C84.6 (16)C6—C1—C5—C4172.6 (10)
Ir1—C2—C3—C8128.5 (10)Ir1—C1—C5—C464.2 (6)
C1—C2—C3—Ir161.9 (7)C2—C1—C5—C10168.1 (10)
C7—C2—C3—Ir1123.9 (10)C6—C1—C5—C105.4 (17)
C2—C3—C4—C52.7 (11)Ir1—C1—C5—C10128.6 (11)
C8—C3—C4—C5170.7 (9)C2—C1—C5—Ir163.4 (7)
Ir1—C3—C4—C562.4 (6)C6—C1—C5—Ir1123.2 (11)
C2—C3—C4—C9167.2 (10)C3Si—C1S—C2S—C3S0 (2)
C8—C3—C4—C90.8 (16)C1S—C2S—C3S—C1Si0 (2)
Symmetry code: (i) x+2, y+2, z+1.
 

Funding information

Funding for this research was provided by: Natural Sciences and Engineering Research Council of Canada; University of Toronto.

References

First citationArmstrong, D., Taullaj, F., Singh, K., Mirabi, B., Lough, A. J. & Fekl, U. (2017). Dalton Trans. 46, 6212–6217.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2012). TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCadenbach, T., Bollermann, T., Gemel, C., Tombul, M., Fernandez, I., von Hopffgarten, M., Frenking, G. & Fischer, R. A. (2009). J. Am. Chem. Soc. 131, 16063–16077.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDey, K. & Werner, H. (1977). J. Organomet. Chem. 137, C28–C30.  CrossRef CAS Web of Science Google Scholar
First citationEinstein, F. W. B., Yan, X., Zhang, X. & Sutton, D. (1992). J. Organomet. Chem. 439, 221–230.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGair, J. J., Qiu, Y., Khade, R. L., Chan, N. H., Filatov, A. S., Zhang, Y. & Lewis, J. C. (2019). Organometallics, 38, 1407–1412.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKimura, T., Ishiwata, K., Kuwata, S. & Ikariya, T. (2012). Organometallics, 31, 1204–1207.  Web of Science CSD CrossRef CAS Google Scholar
First citationMolon, M., Cadenbach, T., Bollermann, T., Gemel, C. & Fischer, R. A. (2010). Chem. Commun. 46, 5677–5679.  Web of Science CSD CrossRef CAS Google Scholar
First citationOliver, A. J. & Graham, W. A. G. (1970). Inorg. Chem. 9, 2653–2657.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWerner, H. (1983). Angew. Chem. Int. Ed. Engl. 22, 927–949.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds