research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses and crystal structures of 2,2,5-tri­methyl-1,3-dioxane-5-carb­­oxy­lic acid and 2,2,5-tri­methyl-1,3-dioxane-5-carb­­oxy­lic anhydride

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: joelt@tulane.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 26 November 2019; accepted 11 December 2019; online 1 January 2020)

In 2,2,5-trimethyl-1,3-dioxane-5-carb­oxy­lic acid, C8H14O4, the carboxyl group occupies an equatorial position on the 1,3-dioxane ring. In the crystal, O—H⋯O hydrogen bonds form chains of mol­ecules, which are linked into a three-dimensional network by C—H⋯O hydrogen bonds. The asymmetric unit of 2,2,5-trimethyl-1,3-dioxane-5-carb­oxy­lic anhydride, C16H26O7, consists of two independent mol­ecules, which are linked by C—H⋯O hydrogen bonds. In the crystal, these units are connected into corrugated layers two mol­ecules thick and parallel to the ab plane by additional C—H⋯O hydrogen bonds.

1. Chemical context

Dendrimers are perfectly branched, monodisperse, multivalent polymeric structures that exhibit enhanced solubility, increased reactivity and reduced dispersity compared to linear polymer analogs (Ihre et al., 1996a[Ihre, H., Johansson, M., Malmström, E. & Hult, A. (1996a). Adv. Dendritic Macromol 3, 1-25.]). While there are several varieties of dendrimers, a protected monomer has been used to make most dendrimers (Buhleier et al., 1978[Buhleier, E., Wehner, W. & Vögtle, F. (1978). Synthesis, 155-158.]; Tomalia et al. 1985[Tomalia, D. A., Baker, H., Dewald, J., Hall, M., Kallos, G., Martin, S., Roeck, J., Ryder, J. & Smith, P. (1985). Polym. J. 17, 117-132.]; Hawker & Fréchet, 1992[Hawker, C. J. & Fréchet, J. M. J. (1992). J. Am. Chem. Soc. 114, 8405-8413.]). 2,2-Bis(hy­droxy­meth­yl)propionic acid (bis-MPA) is one of the most popular (Ihre et al., 1996b[Ihre, H., Hult, A. & Söderlind, E. (1996b). J. Am. Chem. Soc. 118, 6388-6395.]), useful and well-studied because of its low cost and relative ease of synthesis yielding extremely precise structures (Grayson et al., 2014[Grayson, S. M., Myers, B. K., Bengtsson, J. & Malkoch, M. (2014). J. Am. Soc. Mass Spectrom. 25, 303-309.]), while also being biocomp­atible, biodegradable and extremely modular. The synthesis of these polyester-based dendrimers relies on first protecting the hydroxyl groups of the monomer and then, after an exhaustive protection of the core, complete removal of the protecting group exposing the hydroxyl groups of the next generation. To that end, the isopropyl acetal (iso­propyl­idene/acetonide) has become one of the most commonly compounds used in the production of the monomeric unit (Stenström et al., 2016[Stenström, P., Andrén, O. C. J. & Malkoch, M. (2016). Molecules, 21, 366, https://doi.org/10.3390/molecules21030366.]; García-Gallego et al., 2015[García-Gallego, S., Hult, D., Olsson, J. V. & Malkoch, M. (2015). Angew. Chem. Int. Ed. 54, 2416-2419.]). Anhydride-catalyzed esterification has become the preferred route of synthesis to produce these highly precise, bis-functional structures by decreasing the steps of purification and improving the efficiency of deprotection to the final poly-ol. The scope and diversity of these types of structures can be seen in the increase in publications on dendrimers and the numerous reviews published in recent years. We report here the syntheses and crystal structures of two important inter­mediates in our work on dendrimer syntheses, viz. 2,2,5-trimethyl-1,3-dioxane-5-carb­oxy­lic acid (C8H14O4) and 2,2,5-trimethyl-1,3-dioxane-5-carb­oxy­lic anhydride (C16H26O7).

[Scheme 1]

2. Structural commentary

2,2,5-Trimethyl-1,3-dioxane-5-carb­oxy­lic acid, I, (Fig. 1[link]) has the methyl groups containing C6 and C8 in trans axial positions while the C7 methyl group and the carboxyl group are equatorial on the 1,3-dioxane ring, which adopts an approximate chair conformation. A puckering analysis of this conformation gave the parameters Q = 0.5540 (9) Å, θ = 176.65 (9)° and φ = 301.8 (17)°. The O2—C1—C2—C5 torsion angle of −159.88 (8)° indicates that the carboxyl group is approximately aligned with the mean plane through the 1,3-dioxane ring.

[Figure 1]
Figure 1
Perspective view of I with 50% probability displacement ellipsoids.

The asymmetric unit of 2,2,5-trimethyl-1,3-dioxane-5-carb­oxy­lic anhydride, II, consists of two independent mol­ecules each having an overall `U′ shape (Fig. 2[link]) but differing in part by having opposite conformations in the anhydride portions. Thus, the O5—C9—O1—C1 and O2—C1—O1—C9 torsion angles are, respectively, 57.23 (13) and 3.46 (14)° while the O9—C17—O8—C25 and O12—C25—O8—C17 torsion angles are, respectively, −55.71 (13) and −5.51 (15)°. The positions of the substituents on the 1,3-dioxane rings are the same as for I and all four rings are in approximate chair forms. Puckering analyses gave Q = 0.5533 (10) Å, θ = 177.07 (10) and φ = 73.5 (19)° for the ring containing O3 with corresponding values of 0.5486 (10) Å, 177.14 (10) and 310 (2)°, respectively, for that containing O6, 0.5494 (10) Å, 5.32 (10) and 259.2 (11)°, respectively for that containing O10 and 0.5502 (10) Å, 4.03 (10) and 128.7 (15)°, respectively for that containing O13. In both mol­ecules, the puckering amplitudes are all comparable with the differences in the angular values resulting from the conventions used to define them (Evans & Boeyens, 1989[Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.]).

[Figure 2]
Figure 2
The asymmetric unit of II with 50% probability displacement ellipsoids. The C—H⋯O hydrogen bonds are indicated by dashed lines.

3. Supra­molecular features

Unlike many carb­oxy­lic acids, compound I does not form hydrogen-bonded dimers in the crystal but rather zigzag chains along the c-axis direction through O2—H2⋯O3 hydrogen bonds (Table 1[link] and Fig. 3[link]). These are connected into `tubes' by C8—H8B⋯O1 hydrogen bonds (Fig. 4[link]), with these units further linked into a three-dimensional network by C6—H6A⋯O4 hydrogen bonds on all sides of the `tube' (Figs. 3[link] and 4[link]).

Table 1
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3i 0.909 (17) 1.804 (17) 2.7086 (9) 172.6 (14)
C6—H6A⋯O4ii 0.979 (15) 2.527 (15) 3.4958 (13) 170.4 (12)
C8—H8B⋯O1iii 0.984 (14) 2.405 (14) 3.3864 (12) 174.8 (11)
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Packing of I viewed along the b-axis direction with O—H⋯O and C—H⋯O hydrogen bonds depicted, respectively, by red and black dashed lines.
[Figure 4]
Figure 4
Packing of I viewed along the c-axis direction with C—H⋯O hydrogen bonds depicted by black dashed lines.

The independent mol­ecules in compound II are connected by C19—H19A⋯O7 and C27—H27A⋯O7 hydrogen bonds (Table 2[link] and Fig. 5[link]) and these units are joined into chains extending along the b-axis direction by C3—H3B⋯O10 and C11—H11B⋯O10 hydrogen bonds. These are linked into layers parallel to the ab plane by C16—H16C⋯O3 hydrogen bonds (Fig. 5[link]) with two such layers joined by C5—H5A⋯O9 and C14—H14A⋯O12 hydrogen bonds (Fig. 6[link]).

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3B⋯O10i 0.99 2.54 3.5043 (16) 164
C5—H5A⋯O9ii 0.99 2.54 3.4723 (18) 156
C11—H11B⋯O10i 0.99 2.57 3.5152 (17) 161
C14—H14A⋯O12iii 0.98 2.56 3.531 (2) 171
C16—H16C⋯O3iv 0.98 2.53 3.4973 (16) 170
C19—H19A⋯O7 0.99 2.53 3.5095 (17) 168
C27—H27A⋯O7 0.99 2.52 3.5035 (16) 170
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y+1, -z+1; (iv) x+1, y, z.
[Figure 5]
Figure 5
Plan view of one corrugated sheet in II seen along the c-axis direction with C—H⋯O hydrogen bonds shown as dashed lines.
[Figure 6]
Figure 6
Elevation view of the double layer in II seen along the b-axis direction C—H⋯O hydrogen bonds shown as dashed lines.

4. Database survey

A search of the Cambridge Crystallographic Database (Version 5.40, updated to September 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with fragment A[link] yielded only the one structure which is closely related to I and II (B[link], WARLIN; Garmendia et al., 2017[Garmendia, S., Mantione, D., Alonso-de Castro, S., Jehanno, C., Lezama, L., Hedrick, J. L., Mecerreyes, D., Salassa, L. & Sardon, H. (2017). Polym. Chem. 8, 2693-2701.]). The geometry of the substituted dioxane portion here is similar to those in I and II. In the 22 additional structures found, one, C[link], (AKEKOR; Simmons et al., 2011[Simmons, T. R., Pickett, C. J. & Wright, J. A. (2011). Acta Cryst. C67, o1-o5.]) contained a single 1,3-dioxane ring. The remaining hits were spiro­cyclic mol­ecules, e.g. D[link] (MINPEH; Gao et al., 2018[Gao, M., Wang, Y.-C., Yang, K.-R., He, W., Yang, X.-L. & Yao, Z.-J. (2018). Angew. Chem. Int. Ed. 57, 13313-13318.]).

[Scheme 2]

5. Synthesis and crystallization

Preparation of 2,2,5-trimeth­oxy-1,3-dioxane-5-carb­oxy­lic acid (I)[link]:

2,2,5-Trimeth­oxy-1,3-dioxane-5-carb­oxy­lic acid was syn­th­esized as previously reported (Ihre et al., 1998[Ihre, H., Hult, A., Fréchet, J. M. J. & Gitsov, I. (1998). Macromolecules, 31, 4061-4068.]; Gillies & Fréchet, 2002[Gillies, E. R. & Fréchet, J. M. J. (2002). J. Am. Chem. Soc. 124, 14137-14146.]; Andrén et al., 2017[Andrén, O. C. J., Fernandes, A. P. & Malkoch, M. (2017). J. Am. Chem. Soc. 139, 17660-17666.]). 2,2-Bis(hy­droxy­meth­yl)propionic acid (bis-MPA, 30.68 g, 0.229 mol) was added to a 500 ml round-bottom flask equipped with a magnetic stir bar and suspended in acetone (200 ml) under stirring. 2,2-Di­meth­oxy­propane (50.0 ml, 42.5 g, 0.408 mol) and p-toluene­sulfonic acid monohydrate (1.17 g, 6.13 mmol) were added to the reaction flask and the residue rinsed down with acetone (50 ml). The reaction was allowed to proceed under stirring at room temperature for 8 h. Subsequently a 1:1 tri­ethyl­amine:ethanol solution (1 ml) was used to quench the reaction for 3 h. The solvent was evaporated to yield a white solid residue that was then dissolved in di­chloro­methane (DCM, 300 ml), transferred to a 500 ml separatory funnel and washed with deionized H2O (5 × 50 ml). The organic layer was collected in an Erlenmeyer flask equipped with a stir bar and dried over anhydrous sodium sulfate (Na2SO4) under stirring for 30 min. The Na2SO4 was removed via vacuum filtration, the solvent was removed by rotary evaporation, the crude product was dissolved in fresh acetone (60 ml) and recrystallized at 249 K overnight. The solid was collected by vacuum filtration via a fritted glass funnel and dried under high vacuum overnight to yield the protected acid as a colorless crystalline solid (17.815 g, 0.102 mol, 44.7%) 1H NMR (400 MHz, CDCl3): δ 1.20 (s, 3H, –CH3), 1.41 (s, 3H, –CH3), 1.44 (s, 3H, –CH3), 3.68 (d, 2H, –CH2O-, J = 12.0 Hz), 4.19 (d, 2H, –CH2O–, J = 12.0 Hz). 13C NMR (75 MHz, CDCl3): δ 18.48 (CH3), 21.89 (CH3), 25.59 (CH3), 41.82 (C), 66.11 (CH2), 98.55 (C), 179.52 (C).

Synthesis of 2,2,5-trimeth­oxy-1,3-dioxane-5-carb­oxy­lic anhydride (II)[link]:

2,2,5-Trimeth­oxy-1,3-dioxane-5-carb­oxy­lic anhydride was prepared according to the literature but with an optimized purification (Malkoch et al., 2002[Malkoch, M., Malmström, E. & Hult, A. (2002). Macromolecules, 35, 8307-8314.]; Giesen et al., 2018[Giesen, J. A., Diament, B. J. & Grayson, S. M. (2018). J. Am. Soc. Mass Spectrom. 29, 490-500.]). Iso­propyl­idene-protected acid (I, 2.334 g, 13.40 mmol) was added to a 100 ml round-bottom flask equipped with a stir bar and the solid was dissolved in di­chloro­methane (25 ml). N,N-Di­cyclo­hexyl­carbodi­imide was warmed to a liquid, transferred to a tared vial (1.349 g, 6.58 mmol) and dissolved in di­chloro­methane (10 ml). This solution was slowly added to the acid while stirring and the reaction was allowed to proceed overnight. The solid di­cyclo­hexyl­urea (DCU) that formed was removed via gravity filtration through fluted Q2 filter paper. The filtrate was collected and evaporated to dryness in vacuo affording a viscous oil that was subsequently dissolved in a minimal amount of diethyl ether under stirring and the remaining solid again removed via gravity filtration using Q2 filter paper. This filtrate was collected, the solvent removed, and the resulting residue dissolved in a minimal amount of warm hexa­nes. This solution was stirred overnight, affording a white solid that was removed via filtration and the filtrate was evaporated to yield the anhydride as a transparent viscous oil (1.956 g, 5.92 mmol, 88.4%). This was previously reported (Giesen et al., 2018[Giesen, J. A., Diament, B. J. & Grayson, S. M. (2018). J. Am. Soc. Mass Spectrom. 29, 490-500.]) and crystals of the anhydride were grown from hexa­nes. Additional purification can be achieved with removal of additional DCU by dissolving the crude viscous product in warm hexa­nes and cooling the solution at 276 K overnight to precipitate out additional DCU. This white solid was removed by vacuum filtration and the hexane evaporated yielding a transparent, viscous oil. This precipitation procedure was repeated as needed until a pure product was obtained, as judged by NMR. 1H NMR (400 MHz, CDCl3): δ 1.21 (s, 6H, –CH3), 1.42 (s, 6H, –CH3), 1.45 (s, 6H, –CH3), 3.68 (d, 4H, –CH2O–, J = 12.0 Hz), 4.18 (d, 4H, –CH2O–, J = 12.0 Hz). 13C NMR (100 MHz, CDCl3): δ 17.80 (CH3), 21.70 (CH3), 25.70 (CH3), 43.79 (C), 65.81 (CH2), 98.53 (C), 169.63 (C). Elemental analysis: calculated for C16H26O7: C, 58.17; H, 7.93; 33.90. Found: C, 57.29; H, 8.30; O, 34.22.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms in II were included as riding contributions in idealized positions with C—H = 0.98–0.99 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl).

Table 3
Experimental details

  I II
Crystal data
Chemical formula C8H14O4 C16H26O7
Mr 174.19 330.37
Crystal system, space group Monoclinic, C2/c Triclinic, P[\overline{1}]
Temperature (K) 150 100
a, b, c (Å) 16.9457 (8), 9.6453 (5), 12.1052 (6) 10.355 (4), 11.928 (5), 14.496 (6)
α, β, γ (°) 90, 116.986 (1), 90 73.128 (5), 84.900 (5), 89.499 (6)
V3) 1763.12 (15) 1706.3 (11)
Z 8 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.11 0.10
Crystal size (mm) 0.35 × 0.32 × 0.25 0.30 × 0.30 × 0.22
 
Data collection
Diffractometer Bruker SMART APEX CCD Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.91, 0.97 0.97, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 16506, 2367, 2035 30041, 8606, 7451
Rint 0.026 0.044
(sin θ/λ)max−1) 0.685 0.687
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.113, 1.07 0.040, 0.109, 1.04
No. of reflections 2367 8606
No. of parameters 165 427
H-atom treatment All H-atom parameters refined H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.44, −0.18 0.35, −0.32
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

2,2,5-Trimethyl-1,3-dioxane-5-carboxylic acid (I) top
Crystal data top
C8H14O4F(000) = 752
Mr = 174.19Dx = 1.312 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 16.9457 (8) ÅCell parameters from 8540 reflections
b = 9.6453 (5) Åθ = 2.5–29.1°
c = 12.1052 (6) ŵ = 0.11 mm1
β = 116.986 (1)°T = 150 K
V = 1763.12 (15) Å3Block, colourless
Z = 80.35 × 0.32 × 0.25 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2367 independent reflections
Radiation source: fine-focus sealed tube2035 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 8.3333 pixels mm-1θmax = 29.1°, θmin = 2.5°
φ and ω scansh = 2323
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1313
Tmin = 0.91, Tmax = 0.97l = 1616
16506 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: difference Fourier map
wR(F2) = 0.113All H-atom parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0774P)2 + 0.3458P]
where P = (Fo2 + 2Fc2)/3
2367 reflections(Δ/σ)max = 0.001
165 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.18 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 10 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.39277 (7)0.35303 (8)0.10104 (8)0.0395 (2)
O20.35826 (5)0.54688 (7)0.16844 (7)0.0280 (2)
H20.3661 (10)0.5831 (16)0.1048 (16)0.044 (4)*
O30.36941 (4)0.33124 (7)0.47442 (6)0.01898 (17)
O40.37935 (4)0.12345 (7)0.38268 (6)0.01931 (17)
C10.36963 (6)0.41082 (10)0.16968 (8)0.01841 (19)
C20.34712 (6)0.33493 (9)0.26155 (7)0.01538 (18)
C30.38203 (6)0.41384 (9)0.38447 (8)0.01846 (19)
H30.4442 (8)0.4359 (13)0.4139 (12)0.025 (3)*
H3B0.3511 (9)0.5007 (14)0.3792 (12)0.028 (3)*
C40.41050 (6)0.19614 (9)0.49632 (8)0.0176 (2)
C50.39283 (6)0.19347 (9)0.28855 (8)0.0194 (2)
H50.4560 (9)0.2045 (15)0.3127 (13)0.034 (3)*
H5B0.3649 (9)0.1329 (14)0.2151 (13)0.031 (3)*
C60.24588 (6)0.31871 (11)0.20277 (9)0.0251 (2)
H6A0.2160 (9)0.4086 (15)0.1885 (13)0.031 (3)*
H6B0.2316 (8)0.2611 (14)0.2616 (12)0.028 (3)*
H6C0.2246 (10)0.2711 (16)0.1240 (14)0.042 (4)*
C70.37499 (7)0.11697 (11)0.57215 (9)0.0252 (2)
H7A0.3976 (10)0.1590 (16)0.6557 (15)0.045 (4)*
H7B0.3967 (10)0.0208 (16)0.5805 (14)0.037 (4)*
H7C0.3113 (10)0.1106 (16)0.5286 (14)0.039 (4)*
C80.51093 (6)0.20861 (11)0.56270 (9)0.0256 (2)
H8A0.5272 (10)0.2602 (16)0.6373 (14)0.039 (4)*
H8B0.5353 (9)0.2497 (15)0.5103 (13)0.034 (3)*
H8C0.5394 (9)0.1170 (16)0.5863 (13)0.034 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0713 (6)0.0306 (4)0.0381 (5)0.0155 (4)0.0436 (5)0.0086 (3)
O20.0493 (5)0.0185 (3)0.0265 (4)0.0005 (3)0.0263 (3)0.0028 (3)
O30.0299 (3)0.0157 (3)0.0163 (3)0.0032 (2)0.0147 (3)0.0010 (2)
O40.0287 (3)0.0139 (3)0.0173 (3)0.0008 (2)0.0122 (3)0.0004 (2)
C10.0209 (4)0.0207 (4)0.0148 (4)0.0014 (3)0.0091 (3)0.0013 (3)
C20.0189 (4)0.0159 (4)0.0134 (4)0.0005 (3)0.0091 (3)0.0000 (3)
C30.0285 (4)0.0144 (4)0.0152 (4)0.0004 (3)0.0123 (3)0.0001 (3)
C40.0229 (4)0.0149 (4)0.0158 (4)0.0005 (3)0.0094 (3)0.0013 (3)
C50.0284 (4)0.0163 (4)0.0172 (4)0.0037 (3)0.0136 (3)0.0003 (3)
C60.0195 (4)0.0307 (5)0.0232 (5)0.0006 (4)0.0081 (4)0.0039 (4)
C70.0348 (5)0.0233 (5)0.0227 (5)0.0022 (4)0.0175 (4)0.0037 (4)
C80.0219 (4)0.0301 (5)0.0207 (5)0.0002 (4)0.0062 (4)0.0055 (4)
Geometric parameters (Å, º) top
O1—C11.2043 (11)C4—C71.5129 (12)
O2—C11.3255 (12)C4—C81.5216 (12)
O2—H20.909 (17)C5—H50.979 (14)
O3—C31.4414 (10)C5—H5B0.986 (14)
O3—C41.4442 (11)C6—H6A0.979 (14)
O4—C41.4155 (10)C6—H6B1.015 (13)
O4—C51.4294 (10)C6—H6C0.968 (15)
C1—C21.5176 (11)C7—H7A0.991 (16)
C2—C51.5293 (12)C7—H7B0.986 (15)
C2—C31.5312 (12)C7—H7C0.964 (15)
C2—C61.5382 (12)C8—H8A0.955 (15)
C3—H30.970 (13)C8—H8B0.984 (14)
C3—H3B0.975 (13)C8—H8C0.985 (15)
C1—O2—H2108.3 (10)O4—C5—C2110.07 (7)
C3—O3—C4114.39 (6)O4—C5—H5111.2 (8)
C4—O4—C5114.63 (7)C2—C5—H5110.2 (9)
O1—C1—O2122.79 (8)O4—C5—H5B104.7 (8)
O1—C1—C2123.44 (9)C2—C5—H5B110.3 (8)
O2—C1—C2113.72 (7)H5—C5—H5B110.2 (11)
C1—C2—C5108.39 (7)C2—C6—H6A111.8 (8)
C1—C2—C3110.95 (7)C2—C6—H6B107.6 (7)
C5—C2—C3107.51 (7)H6A—C6—H6B109.9 (11)
C1—C2—C6107.98 (7)C2—C6—H6C110.0 (9)
C5—C2—C6111.02 (8)H6A—C6—H6C108.3 (13)
C3—C2—C6110.98 (7)H6B—C6—H6C109.3 (12)
O3—C3—C2109.57 (7)C4—C7—H7A109.6 (9)
O3—C3—H3110.6 (8)C4—C7—H7B107.7 (8)
C2—C3—H3110.0 (7)H7A—C7—H7B109.1 (13)
O3—C3—H3B105.3 (8)C4—C7—H7C110.8 (9)
C2—C3—H3B113.8 (8)H7A—C7—H7C113.7 (13)
H3—C3—H3B107.3 (11)H7B—C7—H7C105.7 (13)
O4—C4—O3109.42 (7)C4—C8—H8A108.3 (9)
O4—C4—C7105.31 (7)C4—C8—H8B112.8 (8)
O3—C4—C7105.98 (7)H8A—C8—H8B112.0 (13)
O4—C4—C8112.76 (7)C4—C8—H8C111.4 (8)
O3—C4—C8110.86 (7)H8A—C8—H8C107.4 (13)
C7—C4—C8112.14 (8)H8B—C8—H8C104.8 (12)
O1—C1—C2—C522.55 (12)C5—O4—C4—O356.51 (9)
O2—C1—C2—C5159.88 (8)C5—O4—C4—C7170.04 (7)
O1—C1—C2—C3140.38 (10)C5—O4—C4—C867.36 (10)
O2—C1—C2—C342.05 (10)C3—O3—C4—O456.03 (9)
O1—C1—C2—C697.79 (11)C3—O3—C4—C7169.12 (7)
O2—C1—C2—C679.77 (10)C3—O3—C4—C868.95 (9)
C4—O3—C3—C257.03 (9)C4—O4—C5—C258.36 (10)
C1—C2—C3—O3172.93 (7)C1—C2—C5—O4175.13 (7)
C5—C2—C3—O354.57 (9)C3—C2—C5—O455.13 (9)
C6—C2—C3—O367.02 (9)C6—C2—C5—O466.43 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.909 (17)1.804 (17)2.7086 (9)172.6 (14)
C6—H6A···O4ii0.979 (15)2.527 (15)3.4958 (13)170.4 (12)
C8—H8B···O1iii0.984 (14)2.405 (14)3.3864 (12)174.8 (11)
Symmetry codes: (i) x, y+1, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y, z+1/2.
2,2,5-Trimethyl-1,3-dioxane-5-carboxylic anhydride (II) top
Crystal data top
C16H26O7Z = 4
Mr = 330.37F(000) = 712
Triclinic, P1Dx = 1.286 Mg m3
a = 10.355 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.928 (5) ÅCell parameters from 9690 reflections
c = 14.496 (6) Åθ = 2.4–29.6°
α = 73.128 (5)°µ = 0.10 mm1
β = 84.900 (5)°T = 100 K
γ = 89.499 (6)°Block, colourless
V = 1706.3 (11) Å30.30 × 0.30 × 0.22 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
8606 independent reflections
Radiation source: fine-focus sealed tube7451 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 8.3333 pixels mm-1θmax = 29.3°, θmin = 2.0°
φ and ω scansh = 1314
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1615
Tmin = 0.97, Tmax = 0.98l = 1919
30041 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0556P)2 + 0.3868P]
where P = (Fo2 + 2Fc2)/3
8606 reflections(Δ/σ)max = 0.001
427 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.32 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 20 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.61114 (7)0.17397 (6)0.38614 (5)0.01811 (15)
O20.50096 (8)0.34387 (7)0.35198 (6)0.02453 (17)
O30.20648 (6)0.19286 (6)0.24679 (5)0.01536 (14)
O40.37528 (7)0.08851 (6)0.19282 (5)0.01796 (15)
O50.69640 (8)0.26493 (7)0.48443 (6)0.02468 (17)
O60.77584 (7)0.26736 (6)0.20400 (5)0.01762 (15)
O70.85266 (7)0.41175 (6)0.26717 (5)0.01698 (15)
C10.50623 (9)0.24255 (9)0.35590 (7)0.01594 (19)
C20.40734 (9)0.17221 (8)0.32402 (7)0.01479 (19)
C30.47061 (9)0.13905 (9)0.23488 (7)0.01764 (19)
H3A0.5095460.2098800.1864910.021*
H3B0.5405040.0823340.2548180.021*
C40.26705 (9)0.16139 (9)0.16544 (7)0.01538 (19)
C50.29198 (9)0.25081 (9)0.29146 (7)0.01568 (19)
H5A0.2447370.2680960.3480590.019*
H5B0.3235690.3259070.2448840.019*
C60.36290 (10)0.06178 (9)0.40559 (8)0.0201 (2)
H6A0.4375500.0117210.4238120.030*
H6B0.2980090.0188220.3832270.030*
H6C0.3247770.0842690.4618370.030*
C70.16859 (10)0.08444 (9)0.14008 (8)0.0197 (2)
H7A0.1376480.0221590.1983780.030*
H7B0.2092000.0494890.0915330.030*
H7C0.0952360.1319090.1139080.030*
C80.30637 (11)0.26922 (9)0.08043 (7)0.0213 (2)
H8A0.2311430.3194760.0652230.032*
H8B0.3378240.2443530.0237900.032*
H8C0.3753550.3129440.0978120.032*
C90.71419 (10)0.22328 (9)0.41881 (7)0.01674 (19)
C100.84583 (9)0.20922 (8)0.36723 (7)0.01496 (18)
C110.83536 (10)0.17628 (8)0.27399 (7)0.01655 (19)
H11A0.9230380.1619760.2469240.020*
H11B0.7833690.1029660.2884910.020*
C120.84132 (10)0.37818 (9)0.18094 (7)0.01700 (19)
C130.91677 (10)0.32801 (8)0.33964 (7)0.01650 (19)
H13A0.9185810.3556970.3976280.020*
H13B1.0074140.3196290.3147570.020*
C140.92243 (10)0.11550 (9)0.43651 (8)0.0221 (2)
H14A0.9257430.1350020.4974490.033*
H14B1.0108010.1128580.4068710.033*
H14C0.8795860.0388740.4493890.033*
C150.75121 (12)0.46587 (10)0.12292 (9)0.0268 (2)
H15A0.6672020.4621300.1606930.040*
H15B0.7390790.4474420.0625900.040*
H15C0.7889270.5448840.1078450.040*
C160.97334 (11)0.37799 (9)0.12476 (8)0.0216 (2)
H16A1.0133810.4563390.1074170.032*
H16B0.9619330.3562560.0657370.032*
H16C1.0293830.3212470.1650930.032*
O80.91353 (7)0.66447 (6)0.36711 (5)0.01908 (16)
O90.80649 (8)0.74653 (7)0.47388 (6)0.02506 (17)
O100.69272 (7)0.91031 (6)0.27307 (5)0.01648 (15)
O110.78656 (7)0.78188 (6)0.19087 (5)0.01714 (15)
O121.03035 (8)0.83256 (7)0.34106 (6)0.02418 (17)
O131.20111 (7)0.58226 (6)0.17388 (5)0.01848 (15)
O141.35295 (7)0.69110 (6)0.22514 (5)0.01777 (15)
C170.80283 (10)0.71100 (9)0.40517 (7)0.01728 (19)
C180.68200 (9)0.70215 (8)0.35467 (7)0.01530 (19)
C190.71338 (10)0.68437 (8)0.25503 (7)0.01675 (19)
H19A0.7637010.6119300.2616910.020*
H19B0.6316710.6747760.2272570.020*
C200.72594 (10)0.89232 (9)0.18016 (7)0.01614 (19)
C210.61304 (10)0.81907 (9)0.33904 (7)0.01696 (19)
H21A0.5290300.8144470.3125200.020*
H21B0.5955780.8365900.4016410.020*
C220.59509 (11)0.60097 (9)0.41984 (8)0.0232 (2)
H22A0.5140440.5983900.3903090.035*
H22B0.5756840.6133360.4835470.035*
H22C0.6401430.5267140.4272030.035*
C230.83068 (11)0.98287 (10)0.13041 (8)0.0226 (2)
H23A0.9035290.9732840.1706560.034*
H23B0.7955531.0615670.1209020.034*
H23C0.8607660.9723640.0674640.034*
C240.60689 (10)0.90425 (9)0.12294 (8)0.0196 (2)
H24A0.6336180.9014360.0570870.029*
H24B0.5653640.9791480.1201830.029*
H24C0.5453960.8397950.1548790.029*
C251.02532 (10)0.73291 (9)0.34016 (7)0.01695 (19)
C261.13437 (9)0.66492 (8)0.30582 (7)0.01591 (19)
C271.09366 (9)0.63078 (9)0.21756 (7)0.0179 (2)
H27A1.0213960.5725870.2383810.022*
H27B1.0629810.7009020.1696650.022*
C281.31372 (10)0.65704 (9)0.14491 (7)0.0171 (2)
C291.25393 (10)0.74666 (9)0.27107 (8)0.0182 (2)
H29A1.2294280.8208620.2247400.022*
H29B1.2872690.7653680.3269070.022*
C301.16462 (10)0.55598 (9)0.38751 (8)0.0207 (2)
H30A1.1906720.5800010.4424260.031*
H30B1.2353110.5132140.3641430.031*
H30C1.0872040.5051400.4081480.031*
C311.29214 (11)0.76289 (10)0.05887 (8)0.0236 (2)
H31A1.2212830.8094700.0770990.035*
H31B1.2696150.7360650.0044210.035*
H31C1.3716530.8110870.0398660.035*
C321.42178 (10)0.58090 (9)0.12077 (8)0.0211 (2)
H32A1.5018980.6279070.0993250.032*
H32B1.3981290.5495940.0689660.032*
H32C1.4351840.5159690.1784090.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0127 (3)0.0173 (3)0.0257 (4)0.0006 (3)0.0049 (3)0.0074 (3)
O20.0246 (4)0.0174 (4)0.0347 (4)0.0021 (3)0.0099 (3)0.0105 (3)
O30.0121 (3)0.0186 (3)0.0166 (3)0.0000 (3)0.0012 (2)0.0071 (3)
O40.0146 (3)0.0178 (3)0.0248 (4)0.0030 (3)0.0044 (3)0.0107 (3)
O50.0211 (4)0.0332 (4)0.0234 (4)0.0008 (3)0.0028 (3)0.0138 (3)
O60.0183 (3)0.0160 (3)0.0203 (3)0.0012 (3)0.0070 (3)0.0066 (3)
O70.0213 (4)0.0127 (3)0.0178 (3)0.0020 (3)0.0047 (3)0.0049 (3)
C10.0139 (4)0.0172 (5)0.0162 (4)0.0006 (4)0.0013 (3)0.0041 (4)
C20.0124 (4)0.0144 (4)0.0178 (4)0.0000 (3)0.0021 (3)0.0049 (3)
C30.0124 (4)0.0200 (5)0.0231 (5)0.0012 (4)0.0020 (4)0.0103 (4)
C40.0140 (4)0.0162 (4)0.0166 (4)0.0011 (3)0.0008 (3)0.0060 (4)
C50.0141 (4)0.0160 (4)0.0186 (4)0.0017 (3)0.0034 (3)0.0073 (4)
C60.0196 (5)0.0176 (5)0.0207 (5)0.0032 (4)0.0043 (4)0.0011 (4)
C70.0183 (5)0.0199 (5)0.0226 (5)0.0022 (4)0.0039 (4)0.0082 (4)
C80.0240 (5)0.0211 (5)0.0172 (5)0.0030 (4)0.0005 (4)0.0034 (4)
C90.0146 (4)0.0161 (4)0.0189 (5)0.0009 (4)0.0035 (3)0.0036 (4)
C100.0127 (4)0.0143 (4)0.0177 (4)0.0005 (3)0.0037 (3)0.0037 (3)
C110.0168 (4)0.0131 (4)0.0204 (5)0.0015 (3)0.0031 (4)0.0057 (4)
C120.0200 (5)0.0147 (4)0.0168 (4)0.0030 (4)0.0042 (4)0.0047 (4)
C130.0158 (4)0.0154 (4)0.0179 (4)0.0013 (4)0.0054 (4)0.0032 (4)
C140.0179 (5)0.0202 (5)0.0244 (5)0.0031 (4)0.0052 (4)0.0005 (4)
C150.0323 (6)0.0230 (5)0.0254 (5)0.0106 (5)0.0115 (5)0.0051 (4)
C160.0236 (5)0.0200 (5)0.0195 (5)0.0001 (4)0.0007 (4)0.0038 (4)
O80.0130 (3)0.0183 (3)0.0265 (4)0.0002 (3)0.0001 (3)0.0078 (3)
O90.0234 (4)0.0331 (4)0.0206 (4)0.0007 (3)0.0015 (3)0.0110 (3)
O100.0210 (4)0.0126 (3)0.0167 (3)0.0014 (3)0.0006 (3)0.0059 (3)
O110.0163 (3)0.0159 (3)0.0197 (3)0.0001 (3)0.0016 (3)0.0068 (3)
O120.0233 (4)0.0181 (4)0.0319 (4)0.0012 (3)0.0012 (3)0.0095 (3)
O130.0138 (3)0.0179 (3)0.0250 (4)0.0027 (3)0.0002 (3)0.0088 (3)
O140.0134 (3)0.0195 (4)0.0215 (4)0.0015 (3)0.0020 (3)0.0074 (3)
C170.0154 (4)0.0160 (4)0.0189 (5)0.0000 (4)0.0011 (4)0.0034 (4)
C180.0132 (4)0.0132 (4)0.0192 (4)0.0007 (3)0.0007 (3)0.0048 (3)
C190.0168 (5)0.0128 (4)0.0222 (5)0.0005 (4)0.0016 (4)0.0075 (4)
C200.0181 (5)0.0148 (4)0.0163 (4)0.0009 (4)0.0008 (3)0.0059 (3)
C210.0164 (5)0.0157 (4)0.0184 (5)0.0009 (4)0.0011 (4)0.0051 (4)
C220.0207 (5)0.0180 (5)0.0267 (5)0.0051 (4)0.0016 (4)0.0008 (4)
C230.0249 (5)0.0215 (5)0.0196 (5)0.0082 (4)0.0009 (4)0.0031 (4)
C240.0204 (5)0.0201 (5)0.0198 (5)0.0002 (4)0.0045 (4)0.0074 (4)
C250.0152 (4)0.0184 (5)0.0168 (4)0.0007 (4)0.0028 (3)0.0039 (4)
C260.0136 (4)0.0150 (4)0.0190 (5)0.0010 (3)0.0023 (3)0.0045 (4)
C270.0129 (4)0.0200 (5)0.0226 (5)0.0009 (4)0.0022 (4)0.0086 (4)
C280.0158 (5)0.0159 (5)0.0192 (5)0.0023 (4)0.0022 (4)0.0044 (4)
C290.0155 (5)0.0172 (5)0.0228 (5)0.0024 (4)0.0007 (4)0.0074 (4)
C300.0188 (5)0.0180 (5)0.0229 (5)0.0009 (4)0.0033 (4)0.0019 (4)
C310.0253 (5)0.0213 (5)0.0216 (5)0.0008 (4)0.0028 (4)0.0020 (4)
C320.0171 (5)0.0205 (5)0.0254 (5)0.0003 (4)0.0005 (4)0.0068 (4)
Geometric parameters (Å, º) top
O1—C11.3792 (12)O8—C251.3820 (13)
O1—C91.4041 (12)O8—C171.4073 (13)
O2—C11.1943 (13)O9—C171.1939 (13)
O3—C41.4304 (12)O10—C211.4321 (12)
O3—C51.4330 (12)O10—C201.4360 (12)
O4—C41.4251 (12)O11—C201.4274 (13)
O4—C31.4284 (12)O11—C191.4333 (12)
O5—C91.1946 (13)O12—C251.1942 (14)
O6—C121.4276 (13)O13—C281.4301 (12)
O6—C111.4314 (12)O13—C271.4318 (13)
O7—C131.4301 (12)O14—C281.4296 (13)
O7—C121.4331 (13)O14—C291.4341 (13)
C1—C21.5135 (14)C17—C181.5239 (15)
C2—C51.5336 (14)C18—C191.5264 (15)
C2—C61.5346 (14)C18—C211.5278 (14)
C2—C31.5482 (14)C18—C221.5378 (14)
C3—H3A0.9900C19—H19A0.9900
C3—H3B0.9900C19—H19B0.9900
C4—C71.5152 (14)C20—C231.5140 (14)
C4—C81.5293 (14)C20—C241.5290 (15)
C5—H5A0.9900C21—H21A0.9900
C5—H5B0.9900C21—H21B0.9900
C6—H6A0.9800C22—H22A0.9800
C6—H6B0.9800C22—H22B0.9800
C6—H6C0.9800C22—H22C0.9800
C7—H7A0.9800C23—H23A0.9800
C7—H7B0.9800C23—H23B0.9800
C7—H7C0.9800C23—H23C0.9800
C8—H8A0.9800C24—H24A0.9800
C8—H8B0.9800C24—H24B0.9800
C8—H8C0.9800C24—H24C0.9800
C9—C101.5273 (15)C25—C261.5163 (14)
C10—C111.5259 (14)C26—C301.5346 (14)
C10—C131.5312 (14)C26—C291.5369 (14)
C10—C141.5368 (14)C26—C271.5432 (15)
C11—H11A0.9900C27—H27A0.9900
C11—H11B0.9900C27—H27B0.9900
C12—C151.5112 (14)C28—C321.5154 (15)
C12—C161.5281 (15)C28—C311.5264 (15)
C13—H13A0.9900C29—H29A0.9900
C13—H13B0.9900C29—H29B0.9900
C14—H14A0.9800C30—H30A0.9800
C14—H14B0.9800C30—H30B0.9800
C14—H14C0.9800C30—H30C0.9800
C15—H15A0.9800C31—H31A0.9800
C15—H15B0.9800C31—H31B0.9800
C15—H15C0.9800C31—H31C0.9800
C16—H16A0.9800C32—H32A0.9800
C16—H16B0.9800C32—H32B0.9800
C16—H16C0.9800C32—H32C0.9800
C1—O1—C9118.80 (8)C25—O8—C17118.48 (8)
C4—O3—C5113.91 (7)C21—O10—C20114.29 (7)
C4—O4—C3114.18 (8)C20—O11—C19114.15 (8)
C12—O6—C11113.64 (8)C28—O13—C27114.50 (8)
C13—O7—C12114.10 (8)C28—O14—C29114.37 (8)
O2—C1—O1123.18 (9)O9—C17—O8121.02 (9)
O2—C1—C2126.81 (9)O9—C17—C18125.63 (9)
O1—C1—C2109.90 (8)O8—C17—C18113.21 (9)
C1—C2—C5108.49 (8)C17—C18—C19112.87 (8)
C1—C2—C6111.34 (8)C17—C18—C21106.98 (8)
C5—C2—C6110.85 (8)C19—C18—C21106.97 (8)
C1—C2—C3107.78 (8)C17—C18—C22108.84 (9)
C5—C2—C3107.70 (8)C19—C18—C22110.24 (8)
C6—C2—C3110.56 (9)C21—C18—C22110.90 (9)
O4—C3—C2109.92 (8)O11—C19—C18111.17 (8)
O4—C3—H3A109.7O11—C19—H19A109.4
C2—C3—H3A109.7C18—C19—H19A109.4
O4—C3—H3B109.7O11—C19—H19B109.4
C2—C3—H3B109.7C18—C19—H19B109.4
H3A—C3—H3B108.2H19A—C19—H19B108.0
O4—C4—O3110.43 (8)O11—C20—O10110.54 (8)
O4—C4—C7105.51 (8)O11—C20—C23105.06 (9)
O3—C4—C7105.46 (8)O10—C20—C23105.60 (8)
O4—C4—C8111.28 (8)O11—C20—C24111.92 (8)
O3—C4—C8111.84 (8)O10—C20—C24110.91 (8)
C7—C4—C8112.00 (9)C23—C20—C24112.51 (9)
O3—C5—C2109.66 (8)O10—C21—C18109.60 (8)
O3—C5—H5A109.7O10—C21—H21A109.7
C2—C5—H5A109.7C18—C21—H21A109.7
O3—C5—H5B109.7O10—C21—H21B109.7
C2—C5—H5B109.7C18—C21—H21B109.7
H5A—C5—H5B108.2H21A—C21—H21B108.2
C2—C6—H6A109.5C18—C22—H22A109.5
C2—C6—H6B109.5C18—C22—H22B109.5
H6A—C6—H6B109.5H22A—C22—H22B109.5
C2—C6—H6C109.5C18—C22—H22C109.5
H6A—C6—H6C109.5H22A—C22—H22C109.5
H6B—C6—H6C109.5H22B—C22—H22C109.5
C4—C7—H7A109.5C20—C23—H23A109.5
C4—C7—H7B109.5C20—C23—H23B109.5
H7A—C7—H7B109.5H23A—C23—H23B109.5
C4—C7—H7C109.5C20—C23—H23C109.5
H7A—C7—H7C109.5H23A—C23—H23C109.5
H7B—C7—H7C109.5H23B—C23—H23C109.5
C4—C8—H8A109.5C20—C24—H24A109.5
C4—C8—H8B109.5C20—C24—H24B109.5
H8A—C8—H8B109.5H24A—C24—H24B109.5
C4—C8—H8C109.5C20—C24—H24C109.5
H8A—C8—H8C109.5H24A—C24—H24C109.5
H8B—C8—H8C109.5H24B—C24—H24C109.5
O5—C9—O1120.96 (9)O12—C25—O8123.29 (9)
O5—C9—C10125.75 (9)O12—C25—C26126.46 (9)
O1—C9—C10113.15 (9)O8—C25—C26110.18 (9)
C11—C10—C9113.22 (8)C25—C26—C30110.55 (8)
C11—C10—C13107.29 (8)C25—C26—C29108.29 (8)
C9—C10—C13107.24 (8)C30—C26—C29111.02 (9)
C11—C10—C14109.60 (9)C25—C26—C27108.45 (8)
C9—C10—C14109.05 (8)C30—C26—C27111.08 (9)
C13—C10—C14110.40 (8)C29—C26—C27107.34 (8)
O6—C11—C10111.08 (8)O13—C27—C26110.17 (8)
O6—C11—H11A109.4O13—C27—H27A109.6
C10—C11—H11A109.4C26—C27—H27A109.6
O6—C11—H11B109.4O13—C27—H27B109.6
C10—C11—H11B109.4C26—C27—H27B109.6
H11A—C11—H11B108.0H27A—C27—H27B108.1
O6—C12—O7110.23 (8)O14—C28—O13110.38 (8)
O6—C12—C15105.58 (9)O14—C28—C32105.13 (8)
O7—C12—C15105.40 (8)O13—C28—C32105.60 (8)
O6—C12—C16111.80 (8)O14—C28—C31111.89 (9)
O7—C12—C16111.59 (9)O13—C28—C31111.58 (9)
C15—C12—C16111.91 (9)C32—C28—C31111.90 (9)
O7—C13—C10110.12 (8)O14—C29—C26109.88 (8)
O7—C13—H13A109.6O14—C29—H29A109.7
C10—C13—H13A109.6C26—C29—H29A109.7
O7—C13—H13B109.6O14—C29—H29B109.7
C10—C13—H13B109.6C26—C29—H29B109.7
H13A—C13—H13B108.2H29A—C29—H29B108.2
C10—C14—H14A109.5C26—C30—H30A109.5
C10—C14—H14B109.5C26—C30—H30B109.5
H14A—C14—H14B109.5H30A—C30—H30B109.5
C10—C14—H14C109.5C26—C30—H30C109.5
H14A—C14—H14C109.5H30A—C30—H30C109.5
H14B—C14—H14C109.5H30B—C30—H30C109.5
C12—C15—H15A109.5C28—C31—H31A109.5
C12—C15—H15B109.5C28—C31—H31B109.5
H15A—C15—H15B109.5H31A—C31—H31B109.5
C12—C15—H15C109.5C28—C31—H31C109.5
H15A—C15—H15C109.5H31A—C31—H31C109.5
H15B—C15—H15C109.5H31B—C31—H31C109.5
C12—C16—H16A109.5C28—C32—H32A109.5
C12—C16—H16B109.5C28—C32—H32B109.5
H16A—C16—H16B109.5H32A—C32—H32B109.5
C12—C16—H16C109.5C28—C32—H32C109.5
H16A—C16—H16C109.5H32A—C32—H32C109.5
H16B—C16—H16C109.5H32B—C32—H32C109.5
C9—O1—C1—O23.46 (14)C25—O8—C17—O955.71 (13)
C9—O1—C1—C2179.97 (8)C25—O8—C17—C18128.37 (9)
O2—C1—C2—C53.88 (14)O9—C17—C18—C19164.90 (10)
O1—C1—C2—C5179.70 (7)O8—C17—C18—C1919.41 (11)
O2—C1—C2—C6126.13 (11)O9—C17—C18—C2147.51 (13)
O1—C1—C2—C657.46 (10)O8—C17—C18—C21136.79 (8)
O2—C1—C2—C3112.47 (11)O9—C17—C18—C2272.37 (13)
O1—C1—C2—C363.95 (10)O8—C17—C18—C22103.33 (10)
C4—O4—C3—C256.70 (10)C20—O11—C19—C1855.78 (11)
C1—C2—C3—O4171.01 (8)C17—C18—C19—O1162.23 (11)
C5—C2—C3—O454.14 (10)C21—C18—C19—O1155.16 (10)
C6—C2—C3—O467.10 (10)C22—C18—C19—O11175.83 (8)
C3—O4—C4—O356.64 (10)C19—O11—C20—O1053.54 (10)
C3—O4—C4—C7170.13 (8)C19—O11—C20—C23167.00 (8)
C3—O4—C4—C868.19 (11)C19—O11—C20—C2470.62 (11)
C5—O3—C4—O457.13 (10)C21—O10—C20—O1155.42 (11)
C5—O3—C4—C7170.65 (8)C21—O10—C20—C23168.54 (8)
C5—O3—C4—C867.37 (10)C21—O10—C20—C2469.31 (10)
C4—O3—C5—C257.84 (10)C20—O10—C21—C1858.32 (10)
C1—C2—C5—O3170.98 (7)C17—C18—C21—O1065.26 (10)
C6—C2—C5—O366.48 (10)C19—C18—C21—O1055.93 (10)
C3—C2—C5—O354.57 (10)C22—C18—C21—O10176.18 (8)
C1—O1—C9—O557.23 (13)C17—O8—C25—O125.51 (15)
C1—O1—C9—C10126.81 (9)C17—O8—C25—C26177.25 (8)
O5—C9—C10—C11168.32 (10)O12—C25—C26—C30121.38 (11)
O1—C9—C10—C1115.95 (11)O8—C25—C26—C3061.49 (11)
O5—C9—C10—C1350.17 (13)O12—C25—C26—C290.44 (14)
O1—C9—C10—C13134.10 (8)O8—C25—C26—C29176.69 (8)
O5—C9—C10—C1469.39 (13)O12—C25—C26—C27116.62 (11)
O1—C9—C10—C14106.34 (10)O8—C25—C26—C2760.51 (10)
C12—O6—C11—C1056.87 (11)C28—O13—C27—C2656.55 (11)
C9—C10—C11—O663.78 (10)C25—C26—C27—O13171.20 (8)
C13—C10—C11—O654.34 (10)C30—C26—C27—O1367.12 (10)
C14—C10—C11—O6174.23 (8)C29—C26—C27—O1354.41 (10)
C11—O6—C12—O755.71 (10)C29—O14—C28—O1355.94 (10)
C11—O6—C12—C15169.06 (8)C29—O14—C28—C32169.37 (8)
C11—O6—C12—C1669.02 (11)C29—O14—C28—C3168.96 (11)
C13—O7—C12—O656.53 (11)C27—O13—C28—O1455.42 (10)
C13—O7—C12—C15170.01 (8)C27—O13—C28—C32168.54 (8)
C13—O7—C12—C1668.31 (10)C27—O13—C28—C3169.66 (11)
C12—O7—C13—C1057.49 (11)C28—O14—C29—C2657.59 (10)
C11—C10—C13—O754.30 (10)C25—C26—C29—O14171.68 (8)
C9—C10—C13—O767.63 (10)C30—C26—C29—O1466.78 (11)
C14—C10—C13—O7173.69 (8)C27—C26—C29—O1454.79 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O10i0.992.543.5043 (16)164
C5—H5A···O9ii0.992.543.4723 (18)156
C11—H11B···O10i0.992.573.5152 (17)161
C14—H14A···O12iii0.982.563.531 (2)171
C16—H16C···O3iv0.982.533.4973 (16)170
C19—H19A···O70.992.533.5095 (17)168
C27—H27A···O70.992.523.5035 (16)170
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+1; (iv) x+1, y, z.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

Funding information

Funding for this research was provided by: American Chemical Society Petroleum Research Fund (scholarship No. 53890-ND7 to J. A. Giesen).

References

First citationAndrén, O. C. J., Fernandes, A. P. & Malkoch, M. (2017). J. Am. Chem. Soc. 139, 17660–17666.  PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Madison, Wisconsin, USA.  Google Scholar
First citationBuhleier, E., Wehner, W. & Vögtle, F. (1978). Synthesis, 155–158.  CrossRef Google Scholar
First citationEvans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGao, M., Wang, Y.-C., Yang, K.-R., He, W., Yang, X.-L. & Yao, Z.-J. (2018). Angew. Chem. Int. Ed. 57, 13313–13318.  CSD CrossRef CAS Google Scholar
First citationGarcía-Gallego, S., Hult, D., Olsson, J. V. & Malkoch, M. (2015). Angew. Chem. Int. Ed. 54, 2416–2419.  Google Scholar
First citationGarmendia, S., Mantione, D., Alonso-de Castro, S., Jehanno, C., Lezama, L., Hedrick, J. L., Mecerreyes, D., Salassa, L. & Sardon, H. (2017). Polym. Chem. 8, 2693–2701.  CSD CrossRef CAS Google Scholar
First citationGiesen, J. A., Diament, B. J. & Grayson, S. M. (2018). J. Am. Soc. Mass Spectrom. 29, 490–500.  CrossRef CAS PubMed Google Scholar
First citationGillies, E. R. & Fréchet, J. M. J. (2002). J. Am. Chem. Soc. 124, 14137–14146.  CrossRef PubMed CAS Google Scholar
First citationGrayson, S. M., Myers, B. K., Bengtsson, J. & Malkoch, M. (2014). J. Am. Soc. Mass Spectrom. 25, 303–309.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHawker, C. J. & Fréchet, J. M. J. (1992). J. Am. Chem. Soc. 114, 8405–8413.  CrossRef CAS Google Scholar
First citationIhre, H., Hult, A., Fréchet, J. M. J. & Gitsov, I. (1998). Macromolecules, 31, 4061–4068.  CrossRef CAS Google Scholar
First citationIhre, H., Hult, A. & Söderlind, E. (1996b). J. Am. Chem. Soc. 118, 6388–6395.  CrossRef CAS Google Scholar
First citationIhre, H., Johansson, M., Malmström, E. & Hult, A. (1996a). Adv. Dendritic Macromol 3, 1–25.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMalkoch, M., Malmström, E. & Hult, A. (2002). Macromolecules, 35, 8307–8314.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSimmons, T. R., Pickett, C. J. & Wright, J. A. (2011). Acta Cryst. C67, o1–o5.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationStenström, P., Andrén, O. C. J. & Malkoch, M. (2016). Molecules, 21, 366, https://doi.org/10.3390/molecules21030366.  Google Scholar
First citationTomalia, D. A., Baker, H., Dewald, J., Hall, M., Kallos, G., Martin, S., Roeck, J., Ryder, J. & Smith, P. (1985). Polym. J. 17, 117–132.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds