research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of three 6-aryl-2-(4-chloro­benz­yl)-5-[(1H-indol-3-yl)meth­yl]imidazo[2,1-b][1,3,4]thia­diazo­les

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany, and cSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: yathirajan@hotmail.com

Edited by H. Ishida, Okayama University, Japan (Received 21 November 2019; accepted 28 November 2019; online 1 January 2020)

Three title compounds, namely, 2-(4-chloro­benz­yl)-5-[(1H-indol-3-yl)meth­yl]-6-phenyl­imidazo[2,1-b][1,3,4]thia­diazole, C26H19ClN4S, (I), 2-(4-chloro­benz­yl)-6-(4-fluoro­phen­yl)-5-[(1H-indol-3-yl)meth­yl]imidazo[2,1-b][1,3,4]thia­diazole, C26H18ClFN4S, (II), and 6-(4-bromo­phen­yl)-2-(4-chloro­benz­yl)-5-[(1H-indol-3-yl)meth­yl]imidazo[2,1-b][1,3,4]thia­diazole, C26H18BrClN4S, (III), have been prepared using a reductive condensation of indole with the corresponding 6-aryl-2-(4-chloro­benz­yl)imidazo[2,1-b][1,3,4]thia­diazole-5-carbaldehydes (aryl = phenyl, 4-fluoro­phenyl or 4-bromo­phen­yl), and their crystal structures have been determined. The asymmetric unit of compound (I) consists of two independent mol­ecules and one of the mol­ecules exhibits disorder of the 4-chloro­benzyl substituent with occupancies 0.6289 (17) and 0.3711 (17). Each type of mol­ecule forms a C(8) chain motif built from N—H⋯N hydrogen bonds, which for the fully ordered mol­ecule is reinforced by C—H⋯π inter­actions. In compound (II), the chloro­benzyl unit is again disordered, with occupancies 0.822 (6) and 0.178 (6), and the mol­ecules form C(8) chains similar to those in (I), reinforced by C—H⋯π inter­actions involving only the major disorder component. The chloro­benzyl unit in compound (III) is also disordered with occupancies of 0.839 (5) and 0.161 (5). The mol­ecules are linked by a combination of one N—H⋯N hydrogen bond and four C—H⋯π inter­actions, forming a three-dimensional framework.

1. Chemical context

Imidazo[2,1-b][1,3,4]thia­diazole is a versatile nucleus for the elaboration of novel heterocyclic compounds as it can readily be substituted at any position of 2, 5 or 6 (Khazi et al., 2011[Khazi, I. A. M., Gadad, A. K., Lamani, R. S. & Bhongade, B. A. (2011). Tetrahedron, 67, 3289-3316.]). A wide range of such derivatives have been evaluated for their biological activities, which encompass anti-cancer, anti-convulsant, anti-fungal, anti-inflammatory and anti-microbial activity, as well as analgesic and anaesthetic properties (Bhongade et al., 2016[Bhongade, B. A., Talath, S., Gadad, R. A. & Gadad, A. K. (2016). J. Saudi Chem. Soc. 20, S463-S475.]). The recently reported indolinone derivative, 6-(4-bromo­phen­yl)-2-(4-chloro­benz­yl)-5-[(1H-ind­o­lin-2-one-3-yl)methyl­idene]imidazo[2,1-b][1,3,4]thia­diazole (disarib), has been shown to act as a powerful inhibitor of the anti-apoptotic protein BCL2, and to cause significant tumour regression without any significant side effects (Iyer et al., 2016[Iyer, D., Vartak, S. V., Mishra, A., Goldsmith, G., Kumar, S., Srivastava, M., Hegde, M., Gopalakrishnan, V., Glenn, M., Velusamy, M., Choudhary, B., Kalakonda, N., Karki, S. S., Surolia, A. & Raghavan, S. C. (2016). FEBS J. 283, 3408-3437.]; Vartak et al., 2016[Vartak, S. V., Hegde, M., Iyer, D., Gaikwad, S., Gopalakrishnan, V., Srivastava, M., Karki, S. S., Choudhary, B., Ray, P., Santhoshkumar, T. R. & Raghavan, S. C. (2016). Biochem. Pharmacol. 122, 10-22.]). With these observations in mind, we have synthesized analogues of disarib, replacing the indolinone substituent with an indolylmethyl unit, while at the same time varying the substituent in the 6-aryl ring, and here we report the preparation, and the mol­ecular and supra­molecular structures of the title three compounds (I)–(III) as shown in Figs. 1[link]–3[link][link].

[Scheme 1]
[Figure 1]
Figure 1
The structures of the two independent mol­ecules of compound (I)[link], showing the atom-labelling scheme and the disorder in one of the mol­ecules. Displacement ellipsoids are drawn at the 30% probability level, and in the disordered fragment, the major disorder component is drawn using full lines and the minor disorder component is drawn using broken lines.
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link], showing the atom-labelling scheme and the disorder. Displacement ellipsoids are drawn at the 30% probability level, and in the disordered fragment, the major disorder component is drawn using full lines and the minor disorder component is drawn using broken lines.
[Figure 3]
Figure 3
The mol­ecular structure of compound (III)[link], showing the atom-labelling scheme and the disorder. Displacement ellipsoids are drawn at the 30% probability level, and in the disordered fragment, the major disorder component is drawn using full lines and the minor disorder component is drawn using broken lines.

2. Structural commentary

Although compounds (I)[link] and (II)[link] crystallize in the same space group (P21/c) with Z′ = 2 and 1, respectively, compound (III)[link] crystallizes in the non-centrosymmetric space group (P212121). Despite the close similarity in the chemical constitution of compounds (I)–(III), no two of these compounds are isomorphous. None of the mol­ecules exhibits any inter­nal symmetry, so that all of them are conformationally chiral. The centrosymmetric space group for the compounds (I)[link] and (II)[link] show that these have crystallized as conformational racemates. On the other hand, all of the mol­ecules in the crystal of compound (III)[link] in the Sohncke space group have the same conformation; there is no reason to suppose that the crystallization of (III)[link] has involved conformational resolution so that this compound has probably crystallized as a conformational conglomerate (Bernal et al., 1996[Bernal, I., Cetrullo, J., Somoza, F., Ricci, J. S., Lewis, R. & Massoud, S. S. (1996). J. Coord. Chem. 38, 41-53.]). In this conformational enanti­omer, the torsion angle of C5—C6—C61—C62 is −41.3 (6)°, and the reference mol­ecules in (I)[link] and (II)[link] have the same negative sign for this torsion angle (Table 1[link]).

Table 1
Selected torsion angles (°) for compounds (I)–(III)

Parameter (I) type 1 (I) type 2 (II) (III)
  x = 1 x = 2 x = nul x = nul
Sx1—Cx2—Cx27—Cx21 −4.1 (6) −26.9 (4) −23.4 (5) −89.6 (7)
Sx1—Cx2—Cx37—Cx31 −9.7 (11)   −19.8 (17) −98 (2)
Cx2—Cx27—Cx21—Cx22 82.4 (18) 111.2 (3) 91.7 (4) 87 (2)
Cx2—Cx37—Cx31—Cx32 71 (3)   96.2 (17) 63 (10)
Nx4—Cx5—Cx51—Cx53 −83.8 (3) −84.2 (3) −86.4 (3) 66.0 (5)
Cx5—Cx51—Cx53—Cx52 21.5 (4) 14.9 (3) 27.4 (4) −133.1 (4)
Cx5—Cx6—Cx61—Cx62 −24.7 (4) −33.7 (3) −27.0 (4) −41.3 (6)

The asymmetric unit of compound (I)[link] consists of two independent mol­ecules, types 1 and 2, containing atoms S11 and S21, respectively. In the type 1 mol­ecule of compound (I)[link] and in compounds (II)[link] and (III)[link], the 4-chloro­benzyl substituents are each disordered over two sets of atomic sites (Figs. 1[link]–3[link][link]), having occupancies 0.6289 (17) and 0.3711 (17) for (I)[link], 0.822 (6) and 0.178 (6) for (II)[link], and 0.839 (5) and 0.161 (5) for (III)[link].

The orientation of the chloro­benzyl unit relative to that of the central imidazo[2,1-b][1,3,4]thia­diazole ring system differs quite significantly between compounds (I)[link] and (II)[link] on the one hand and with that in compound (III)[link] on the other, as indicated by the torsion angles Sx1—Cx2—Cx27—Cx21/Cx31 (Table 1[link]). This may be associated with the observation that this unit in (I)[link] and (II)[link] acts as a hydrogen-bond donor but not as an acceptor, while in (III)[link] as an acceptor but not a donor (Table 2[link]). Similarly, the orientation of the indole­methyl­ene group relative to the imidazo[2,1-b][1,3,4]thia­diazole unit shows considerable differences between compounds (I)[link] and (II)[link] on the one hand and compound (III)[link] on the other, as shown by the torsion angles Nx4—Cx5—Cx51—Cx53 and Cx5—Cx51—Cx53—Cx52 (Table 1[link]), although the indole unit acts as both a donor and an acceptor of hydrogen bonds in all three compounds (Table 2[link]). A small change in a single mono-atomic substituent thus effects significant changes in both the crystallization characteristics and the mol­ecular conformations in compounds (I)–(III).

Table 2
Hydrogen bond geometries (Å, °) for compounds (I)–(III)

Cg1–Cg7 represent the centroids of the C15A/C154–C157/C15B, C25A/C254–C257/C25B, C261–C266, C53A/C54–C57/C57A, N51/C52/C53/C53AC54/C57A, C21–C26 and C31–C36 rings, respectively.

Compound D—H⋯A D—H H⋯A DA D—H⋯A
(I) N151—H151⋯N17i 0.83 (3) 2.11 (3) 2.912 (3) 162 (3)
  N251—H251⋯N27ii 0.83 (3) 2.27 (3) 3.087 (3) 167 (3)
  C135—H135⋯Cg1i 0.93 2.52 3.272 (11) 138
  C225—H225⋯Cg2ii 0.93 2.87 3.568 (4) 133
  C252—H252⋯Cg3ii 0.93 2.77 3.568 (3) 134
(II) N51—H51⋯N7i 0.86 (3) 2.27 (3) 3.102 (3) 165 (3)
  C25—H25⋯Cg4i 0.93 2.75 3.637 (5) 161
(III) N51—H51⋯N7iii 0.99 (5) 1.97 (5) 2.941 (5) 166 (4)
  C51—H51ACg4iv 0.97 2.97 3.699 (5) 133
  C62—H62⋯Cg5iv 0.93 2.91 3.757 (5) 152
  C65—H65⋯Cg6v 0.93 2.82 3.412 (7) 123
  C62—H62⋯Cg7v 0.93 2.91 3.60 (3) 131
Symmetry codes: (i) 1 − x, −[{1\over 2}] + y, [{3\over 2}] − z; (ii) 2 − x, −[{1\over 2}] + y, [{1\over 2}] − z; (iii) x, 1 + y, z; (iv) −[{1\over 2}] + x, [{3\over 2}] − y, 1 − z; (v) [{3\over 2}] − x, 1 − y, −[{1\over 2}] + z.

3. Supra­molecular features

In the crystal of compound (I)[link], the mol­ecules of type 1, which are related by a 21 screw axis, are linked by N—H⋯N hydrogen bonds, forming a C(8) chain motif running along [010] (Fig. 4[link]). Similarly, the type 2 mol­ecules, which are related by another 21 screw axis, form a second C(8) chain along [010]. These chains differ in that the second chain is reinforced by two C—H⋯π inter­actions, whereas in the first chain, only the minor disorder component takes part in such an inter­action; in the major disorder component, the shortest inter­molecular H⋯Cg distance exceeds 3.3 Å [H126⋯Cg1i = 3.33 Å; Cg1 is the centroid of the ring C15A/C154–C157/C15B; symmetry code: (i) 1 − x, −[{1\over 2}] + y, [{3\over 2}] − z] .

[Figure 4]
Figure 4
Part of the crystal structure of compound (I)[link], showing two C(8) chains running along the [010] direction, one built from N—H⋯N hydrogen bonds and the other from N—H⋯N and C—H⋯π inter­actions shown as dashed lines. For the sake of clarity, the minor disorder component and the H atoms not involved in the inter­actions have been omitted.

In the crystal of compound (II)[link], there are an N—H⋯N hydrogen bond and a C—H⋯π inter­action (Table 2[link]); the C—H⋯π inter­action is present only for the major disorder component. The N—H⋯N hydrogen bond links the mol­ecules, which are related by a 21 screw axis, into a C(8) chain running along [010]. This hydrogen bond is augmented by the C—H⋯π inter­action (Fig. 5[link]). There are no direction-specific inter­actions between adjacent chains, so that the supra­molecular aggregation is one-dimensional.

[Figure 5]
Figure 5
Part of the crystal structure of compound (II)[link], showing a mol­ecular chain running along the [010] direction formed via N—H⋯N and C—H⋯π inter­actions (dashed lines). The minor disorder component and the H atoms not involved in the inter­actions have been omitted.

The supra­molecular structure of compound (III)[link] contains an N—H⋯N hydrogen bond, as in (I)[link] and (II)[link], along with four C—H⋯π inter­actions, which have rather long H⋯Cg distances (Table 2[link]). The N—H⋯N hydrogen bond links mol­ecules, which are related by translation, to form a C(8) chain along [010] (Fig. 6[link]). Two C—H⋯π inter­actions, involving atoms C51 and C62 (Table 2[link]), cooperatively link mol­ecules, which are related by a 21 screw axis along the x axis, to form a chain along the [100] direction (Fig. 7[link]). Finally, two C—H⋯π inter­actions involving atoms C65 and C62 form similar contacts to the aryl rings of both disorder components, generating a chain of mol­ecules related by a 21 screw axis running along [001] (Fig. 8[link]). The combination of chains running along the [100], [010] and [001] directions suffices to link all of the mol­ecules into a three-dimensional framework structure. As with the crystallization characteristics and the mol­ecular conformations, simple changes of substituent between (I)[link], (II)[link] and (III)[link] effect marked changes in the supra­molecular aggregation.

[Figure 6]
Figure 6
Part of the crystal structure of compound (III)[link], showing a C(8) chain running along the [010] direction built from N—H⋯N hydrogen bonds (dashed lines). The minor disorder component and the H atoms bonded to C atoms have been omitted.
[Figure 7]
Figure 7
Part of the crystal structure of compound (III)[link], showing a chain running along the [100] direction built from C—H⋯π inter­actions (dashed lines). The minor disorder component and the H atoms not involved in the motif have been omitted.
[Figure 8]
Figure 8
Part of the crystal structure of compound (III)[link], showing a chain running along the [001] direction built from C—H⋯π inter­actions (dashed lines). The minor disorder component and the H atoms not involved in the motif have been omitted.

4. Database survey

The structures of a number of analogues of the inter­mediates, (B) in Fig. 9[link], have been reported. These include 2-(4-fluoro­benz­yl)-6-(4-nitro­phen­yl)imidazo[2,1-b][1,3,4]thia­diazole (Banu et al., 2010b[Banu, A., Lamani, R. S., Khazi, I. M. & Shahina Begum, N. (2010b). Mol. Cryst. Liq. Cryst. 533, 162-171.]), 2-6-(4-bromo­phen­yl)-(4-fluoro­benz­yl)imidazo[2,1-b][1,3,4]thia­diazole (Banu, Begum et al., 2011[Banu, A., Begum, N. S., Lamani, R. S. & Khazi, I. M. (2011). Acta Cryst. E67, o779.]), 2-(4-fluoro­benz­yl)-6-(4-meth­oxy­phen­yl)imidazo[2,1-b][1,3,4]thia­diazole (Banu et al., 2013[Banu, A., Vasundhara, D. E., Lamani, R. S., Khazi, I. M. & Shahina Begum, N. (2013). J. Saudi Chem. Soc. 17, 211-217.]), 2-(4-fluoro­benz­yl)-6-phenyl­imidazo[2,1-b][1,3,4]thia­diazole (Banu et al., 2014[Banu, A., Lamani, R. S., Khazi, I. M. & Shahina Begum, N. (2014). J. Saudi Chem. Soc. 18, 371-378.]), 6-(4-chloro­phen­yl)-(4-fluoro­benz­yl)imidazo[2,1-b][1,3,4]thia­diazole (Banu et al., 2014[Banu, A., Lamani, R. S., Khazi, I. M. & Shahina Begum, N. (2014). J. Saudi Chem. Soc. 18, 371-378.]), which is isostructural with the 6-(4-bromo­phen­yl) analogue (Banu et al., 2011[Banu, A., Begum, N. S., Lamani, R. S. & Khazi, I. M. (2011). Acta Cryst. E67, o779.]) and 2-benzyl-6-(4-chloro­phen­yl)imidazo[2,1-b][1,3,4]thia­diazole (Anil Kumar & Kokila, 2016[Anil Kumar, G. N. & Kokila, M. K. (2016). Private Communication (refcode HAKCIL). CCDC, Cambridge, England.]). The structures of two 5-carbaldehyde derivatives have also been reported, which are analogues of the inter­mediates, (C) in Fig. 9[link], namely, 2-cyclo­hexyl-6-(4-bro­mo­phenyl)imidazo[2,1-b][1,3,4]thia­diazole-5-carbaldehyde (Shahina Begum et al., 2008[Shahina Begum, N., Vasundhara, D. E., Kolavi, G. D., Gowda, K. V. A. & Khazi, I. M. (2008). J. Chem. Res. Synopses, pp. 193-194.]) and 2-(4-fluoro­benz­yl)-6-phenyl­imidazo[2,1-b][1,3,4]thia­diazole-5-cabaldehyde (Banu et al., 2010a[Banu, A., Lamani, R. S., Khazi, I. M. & Shahina Begum, N. (2010a). Mol. Cryst. Liq. Cryst. 533, 141-151.]). The reported structures for analogues of the products (I)–(III) carrying heterocyclic substituents at position 5 are few, but they include 5-(morpholin-4-ylmeth­yl)-2-(phen­oxy­meth­yl)-6-phenyl­imidazo[2,1-b][1,3,4]thia­diazole (Da et al., 2012[Da, Y.-X., Zhu, J.-H., Zhang, Z., Jia, X.-D., Yang, C.-X. & Quan, Z.-J. (2012). J. Heterocycl. Chem. 49, 102-105.]) and 2-(4-fluoro­benz­yl)-6-(4-meth­oxy­phen­yl)-5-(morpholin-4-ylmeth­yl)imidazo[2,1-b][1,3,4]thia­diazole (Banu et al., 2013[Banu, A., Vasundhara, D. E., Lamani, R. S., Khazi, I. M. & Shahina Begum, N. (2013). J. Saudi Chem. Soc. 17, 211-217.]). Finally, we note an isostructural pair of compounds carrying 1,2-benzoxazole substituents at position 2 of the imidazo[2,1-b][1,3,4]thia­diazole unit, namely, 3-{[6-(4-chloro­phen­yl)imid­azo[2,1-b][1,3,4]thia­diazol-2-yl]meth­yl}-1,2-benzoxazole (Banu, Ziaulla et al., 2011b[Banu, A., Ziaulla, M., Begum, N. S., Lamani, R. S. & Khazi, I. M. (2011b). Acta Cryst. E67, o617-o618.]) and its 6-(4-bromo­phen­yl) analogue (Banu, Ziaulla et al., 2011a[Banu, A., Ziaulla, M., Begum, N. S., Lamani, R. S. & Khazi, I. M. (2011a). Acta Cryst. E67, o154.]).

[Figure 9]
Figure 9
The reaction sequence used for the synthesis of compounds (I)–(III).

5. Synthesis and crystallization

The title compounds, C26H18ClXN4S (X = H, F, Br), were prepared in a three-step sequence, as shown in Fig. 9[link], from the readily accessible precursor 2-amino-5-(4-chloro­benz­yl)-[1,3,4]thia­diazole, (A), using an established methodology (Appleton et al., 1993[Appleton, J. E., Dack, K. N., Green, A. D. & Steele, J. (1993). Tetrahedron Lett. 34, 1529-1532.]; Karki et al., 2011[Karki, S. S., Panjamurthy, K., Kumar, S., Nambiar, M., Ramareddy, S. A., Chiruvella, K. K. & Raghavan, S. C. (2011). Eur. J. Med. Chem. 46, 2109-2116.]; Iyer et al., 2016[Iyer, D., Vartak, S. V., Mishra, A., Goldsmith, G., Kumar, S., Srivastava, M., Hegde, M., Gopalakrishnan, V., Glenn, M., Velusamy, M., Choudhary, B., Kalakonda, N., Karki, S. S., Surolia, A. & Raghavan, S. C. (2016). FEBS J. 283, 3408-3437.]) by means of successive condensation with a substituted phenacyl bromide to form the 2,5-disubstituted imidazo[2,1-b][1,3,4]thia­diazo­les, (B), followed by Vilsmeier–Haack formyl­ation to give the corresponding 5-carbaldehydes, (C), and finally reductive condensation with indole in the presence of tri­ethyl­silane and tri­fluoro­acetic acid (Appleton et al., 1993[Appleton, J. E., Dack, K. N., Green, A. D. & Steele, J. (1993). Tetrahedron Lett. 34, 1529-1532.]) to form the products (I)–(III). We have also prepared the 4-chloro­phenyl analogue (X = Cl), but unfortunately no crystals of this compound have yet been obtained, only a viscous gum.

Compound (I)[link], X = H: yield 58%, m.p. 493–495 K; HRMS found 455.0000. C26H1935ClN4S requires for (M + H)+ 455.1019. Compound (II)[link], X = F: yield 48%, m.p. 483–485 K; HRMS found 473.0620, C26H1835ClFN4S requires for (M + H)+ 473. 0925. Compound (III)[link], X = Br: yield 52%, m.p. 393–395 K; HRMS found 532.8687, C26H1879Br35ClN4S requires for (M + H)+ 533.0124. Crystals of (I)–(III) suitable for single-crystal X-ray diffraction were grown by slow evaporation in the presence of air of solutions in ethyl acetate at ambient temperature. 4-Chloro­phenyl analogue (X = Cl): yield 48%, m.p. 503–505 K; HRMS found 488.914, C26H1835Cl2N4S requires for (M + H)+ 489.0629.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. In each compound, the chloro­benzyl unit was disordered over two sets of atomic sites having unequal occupancies. In each case, the bond lengths and the 1,3-distances in the minor disorder component were restrained to be the same as the equivalent distances in the major disorder component, subject to s.u. values of 0.01 and 0.02 Å, respectively, and the anisotropic displacement parameters for pairs of partial-occupancy atoms occupying essentially the same physical space were constrained to be equal. In addition, it was found necessary to constrain the minor component of the disordered chloro­benzyl group in (II)[link] to be planar. Apart from those in the minor disorder components, all H atoms were located in difference maps. The H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions with C—H distances 0.93 Å (aromatic and heteroaromatic) or 0.97 Å (CH2), and with Uiso(H) = 1.2Ueq(C). For the H atoms bonded to N atoms, the atomic coordinates were refined with Uiso(H) = 1.2Ueq(N), giving refined N—H distances of 0.83 (3)–0.99 (5) Å. On this basis, the refined occupancies of the disorder components were 0.6289 (17) and 0.3711 (17) for (I)[link], 0.822 (6) and 0.178 (6) for (II)[link], and 0.839 (5) and 0.161 (5) for (III)[link].

Table 3
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C26H19ClN4S C26H18ClFN4S C26H18BrClN4S
Mr 454.96 472.95 533.85
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c Orthorhombic, P212121
Temperature (K) 302 296 296
a, b, c (Å) 16.456 (7), 10.420 (2), 26.391 (7) 15.340 (1), 11.1619 (7), 15.385 (1) 9.5735 (8), 9.6860 (9), 25.644 (2)
α, β, γ (°) 90, 90.031 (12), 90 90, 119.48 (1), 90 90, 90, 90
V3) 4525 (2) 2293.2 (3) 2377.9 (4)
Z 8 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.28 0.29 1.95
Crystal size (mm) 0.33 × 0.31 × 0.28 0.46 × 0.44 × 0.20 0.48 × 0.44 × 0.44
 
Data collection
Diffractometer Bruker SMART X2S benchtop Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD
Absorption correction Multi-scan (SADABS; Bruker, 2017[Bruker (2017). SADABS and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.845, 0.924 0.768, 0.944 0.368, 0.424
No. of measured, independent and observed [I > 2σ(I)] reflections 55921, 10420, 7091 16612, 5041, 3161 10501, 4645, 3140
Rint 0.036 0.025 0.030
(sin θ/λ)max−1) 0.651 0.651 0.658
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.177, 1.02 0.050, 0.131, 1.01 0.045, 0.100, 1.02
No. of reflections 10420 5041 4645
No. of parameters 605 323 323
No. of restraints 18 23 18
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.77, −0.60 0.26, −0.24 0.40, −0.51
Absolute structure Flack x determined using 943 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.014 (5)
Computer programs: APEX2 (Bruker, 2012[Bruker (2012). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2017[Bruker (2017). SADABS and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.]), CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012) for (I); CrysAlis CCD (Oxford Diffraction, 2009) for (II), (III). Cell refinement: SAINT (Bruker, 2017) for (I); CrysAlis RED (Oxford Diffraction, 2009) for (II), (III). Data reduction: SAINT (Bruker, 2017) for (I); CrysAlis RED (Oxford Diffraction, 2009) for (II), (III). For all structures, program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009). Software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) for (I); SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2009) for (II), (III).

2-(4-Chlorobenzyl)-5-[(1H-indol-3-yl)methyl]-6-phenylimidazo[2,1-b][1,3,4]thiadiazole (I) top
Crystal data top
C26H19ClN4SF(000) = 1888
Mr = 454.96Dx = 1.336 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.456 (7) ÅCell parameters from 12458 reflections
b = 10.420 (2) Åθ = 2.1–29.5°
c = 26.391 (7) ŵ = 0.28 mm1
β = 90.031 (12)°T = 302 K
V = 4525 (2) Å3Block, colourless
Z = 80.33 × 0.31 × 0.28 mm
Data collection top
Bruker SMART X2S benchtop
diffractometer
10420 independent reflections
Radiation source: fine-focus sealed tube7091 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 7.3910 pixels mm-1θmax = 27.6°, θmin = 2.1°
φ and ω scansh = 2121
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
k = 1213
Tmin = 0.845, Tmax = 0.924l = 3434
55921 measured reflections
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.060H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.177 w = 1/[σ2(Fo2) + (0.0741P)2 + 2.5289P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
10420 reflectionsΔρmax = 0.77 e Å3
605 parametersΔρmin = 0.59 e Å3
18 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S110.31032 (5)0.27517 (7)0.84740 (2)0.0673 (2)
C120.30411 (19)0.1424 (2)0.80654 (10)0.0657 (7)
N130.31605 (14)0.16395 (19)0.75885 (8)0.0592 (5)
N140.33131 (12)0.29274 (18)0.75295 (7)0.0500 (4)
C150.35023 (13)0.3678 (2)0.71151 (8)0.0479 (5)
C160.36495 (13)0.4871 (2)0.73223 (8)0.0481 (5)
N170.35301 (12)0.48713 (18)0.78480 (7)0.0516 (4)
C17A0.33304 (14)0.3679 (2)0.79516 (8)0.0514 (5)
C1270.2866 (3)0.0098 (3)0.82642 (12)0.1004 (12)0.6289 (17)
H12A0.32900.04850.81540.121*0.6289 (17)
H12B0.23540.02030.81260.121*0.6289 (17)
C1210.2822 (7)0.009 (2)0.88341 (16)0.0601 (19)0.6289 (17)
C1220.2095 (4)0.0462 (10)0.90440 (18)0.0712 (12)0.6289 (17)
H1220.16720.06980.88300.085*0.6289 (17)
C1230.1973 (4)0.0495 (6)0.95558 (18)0.0795 (15)0.6289 (17)
H1230.14800.07760.96870.095*0.6289 (17)
C1240.2583 (4)0.0110 (5)0.98740 (18)0.0750 (16)0.6289 (17)
Cl140.23860 (15)0.0201 (2)1.05325 (5)0.1395 (8)0.6289 (17)
C1250.3307 (5)0.0285 (9)0.9695 (3)0.098 (2)0.6289 (17)
H1250.37240.05080.99160.118*0.6289 (17)
C1260.3419 (5)0.0352 (11)0.9164 (2)0.0913 (19)0.6289 (17)
H1260.38970.06960.90340.110*0.6289 (17)
C1370.2866 (3)0.0098 (3)0.82642 (12)0.1004 (12)0.3711 (17)
H13A0.23340.01540.81410.121*0.3711 (17)
H13B0.32580.04840.81150.121*0.3711 (17)
C1310.2878 (12)0.010 (4)0.8818 (3)0.0601 (19)0.3711 (17)
C1320.2312 (7)0.0348 (19)0.9149 (3)0.0712 (12)0.3711 (17)
H1320.18530.07610.90230.085*0.3711 (17)
C1330.2404 (7)0.0206 (11)0.9664 (3)0.0795 (15)0.3711 (17)
H1330.20120.04850.98920.095*0.3711 (17)
C1340.3110 (8)0.0370 (14)0.9822 (3)0.0750 (16)0.3711 (17)
Cl340.3237 (3)0.0678 (4)1.04645 (9)0.1395 (8)0.3711 (17)
C1350.3710 (6)0.0735 (11)0.9502 (4)0.098 (2)0.3711 (17)
H1350.41770.11220.96300.118*0.3711 (17)
C1360.3629 (8)0.053 (2)0.8992 (4)0.0913 (19)0.3711 (17)
H1360.40590.06790.87700.110*0.3711 (17)
C1510.34906 (14)0.3156 (2)0.65887 (8)0.0530 (5)
H15A0.33980.38560.63540.064*
H15B0.30400.25620.65570.064*
N1510.54541 (16)0.1450 (2)0.64974 (10)0.0714 (6)
H1510.582 (2)0.102 (3)0.6632 (12)0.086*
C1520.48211 (17)0.1970 (3)0.67633 (10)0.0632 (6)
H1520.47800.19750.71150.076*
C1530.42624 (15)0.2478 (2)0.64434 (9)0.0511 (5)
C15A0.45586 (16)0.2239 (2)0.59416 (9)0.0556 (6)
C1540.4266 (2)0.2512 (3)0.54534 (10)0.0778 (8)
H1540.37780.29460.54090.093*
C1550.4714 (3)0.2129 (5)0.50439 (13)0.1129 (14)
H1550.45220.23000.47190.135*
C1560.5450 (3)0.1491 (5)0.51017 (15)0.1260 (16)
H1560.57380.12430.48150.151*
C1570.5760 (2)0.1219 (4)0.55721 (15)0.0997 (11)
H1570.62560.08000.56090.120*
C15B0.53082 (18)0.1590 (3)0.59925 (11)0.0659 (7)
C1610.39381 (14)0.6037 (2)0.70655 (9)0.0523 (5)
C1620.43854 (18)0.5967 (3)0.66191 (11)0.0734 (8)
H1620.44980.51720.64760.088*
C1630.4663 (2)0.7074 (4)0.63880 (14)0.0967 (11)
H1630.49490.70160.60850.116*
C1640.4523 (2)0.8252 (3)0.65985 (14)0.0920 (10)
H1640.47140.89910.64400.110*
C1650.41005 (19)0.8339 (3)0.70429 (13)0.0774 (8)
H1650.40130.91360.71910.093*
C1660.38022 (16)0.7241 (2)0.72725 (11)0.0613 (6)
H1660.35050.73120.75710.074*
S210.81319 (5)0.26550 (6)0.36890 (2)0.06146 (19)
C220.79667 (16)0.1410 (2)0.32528 (9)0.0556 (6)
N230.80388 (12)0.16982 (18)0.27773 (7)0.0521 (5)
N240.82302 (11)0.29774 (17)0.27438 (7)0.0464 (4)
C250.83901 (13)0.3782 (2)0.23401 (8)0.0454 (5)
C260.85977 (13)0.4923 (2)0.25691 (9)0.0471 (5)
N270.85510 (12)0.48486 (17)0.30993 (7)0.0510 (4)
C27A0.83258 (14)0.3658 (2)0.31816 (8)0.0488 (5)
C2270.7712 (2)0.0096 (3)0.34268 (10)0.0756 (8)
H27A0.79340.05360.31950.091*
H27B0.71240.00380.34090.091*
C2210.79792 (17)0.0234 (2)0.39582 (9)0.0581 (6)
C2220.7412 (2)0.0349 (3)0.43409 (12)0.0789 (8)
H2220.68650.02140.42700.095*
C2230.7651 (2)0.0666 (3)0.48308 (12)0.0879 (10)
H2230.72650.07580.50860.105*
C2240.8451 (2)0.0840 (3)0.49320 (11)0.0752 (8)
Cl240.87453 (9)0.12121 (10)0.55515 (3)0.1245 (4)
C2250.9020 (2)0.0732 (3)0.45637 (12)0.0780 (8)
H2250.95670.08580.46380.094*
C2260.87801 (19)0.0434 (3)0.40794 (11)0.0699 (7)
H2260.91710.03660.38270.084*
C2510.82542 (14)0.3397 (2)0.18012 (8)0.0495 (5)
H25A0.81600.41660.16020.059*
H25B0.77650.28800.17840.059*
N2511.00742 (14)0.1509 (2)0.14489 (9)0.0629 (6)
H2511.0492 (18)0.111 (3)0.1531 (11)0.075*
C2520.95708 (15)0.2074 (2)0.17995 (9)0.0544 (6)
H2520.96520.20600.21480.065*
C2530.89371 (14)0.2656 (2)0.15627 (8)0.0465 (5)
C25A0.90401 (16)0.2437 (2)0.10308 (9)0.0514 (5)
C2540.8607 (2)0.2795 (3)0.05983 (10)0.0694 (7)
H2540.81290.32680.06250.083*
C2550.8900 (3)0.2433 (3)0.01311 (11)0.0889 (11)
H2550.86180.26750.01590.107*
C2560.9603 (3)0.1721 (3)0.00835 (12)0.0948 (12)
H2560.97820.14880.02380.114*
C2571.0041 (2)0.1350 (3)0.04969 (12)0.0810 (9)
H2571.05120.08670.04620.097*
C25B0.97612 (17)0.1717 (2)0.09748 (10)0.0589 (6)
C2610.88792 (14)0.6111 (2)0.23229 (9)0.0517 (5)
C2620.93528 (16)0.6056 (3)0.18874 (10)0.0625 (6)
H2620.94760.52640.17440.075*
C2630.96429 (19)0.7166 (3)0.16649 (12)0.0762 (8)
H2630.99530.71150.13710.091*
C2640.9476 (2)0.8343 (3)0.18741 (14)0.0822 (9)
H2640.96760.90880.17250.099*
C2650.9009 (2)0.8412 (3)0.23078 (14)0.0802 (9)
H2650.88960.92060.24520.096*
C2660.87069 (16)0.7304 (2)0.25296 (11)0.0631 (7)
H2660.83870.73610.28190.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S110.1014 (5)0.0572 (4)0.0434 (3)0.0198 (3)0.0077 (3)0.0023 (3)
C120.094 (2)0.0527 (14)0.0504 (14)0.0186 (13)0.0030 (13)0.0018 (11)
N130.0783 (14)0.0487 (11)0.0505 (11)0.0157 (10)0.0016 (10)0.0024 (9)
N140.0599 (11)0.0476 (10)0.0425 (10)0.0103 (9)0.0012 (8)0.0028 (8)
C150.0486 (12)0.0510 (12)0.0440 (11)0.0023 (10)0.0021 (9)0.0002 (9)
C160.0457 (11)0.0505 (12)0.0480 (12)0.0026 (9)0.0028 (9)0.0013 (9)
N170.0580 (11)0.0484 (10)0.0482 (10)0.0080 (9)0.0040 (8)0.0035 (8)
C17A0.0587 (13)0.0510 (13)0.0445 (12)0.0105 (10)0.0028 (10)0.0044 (10)
C1270.178 (4)0.0584 (18)0.0645 (19)0.034 (2)0.018 (2)0.0031 (14)
C1210.086 (2)0.035 (7)0.0592 (15)0.0090 (16)0.0037 (14)0.0072 (15)
C1220.066 (4)0.082 (3)0.065 (3)0.003 (3)0.018 (2)0.023 (3)
C1230.087 (4)0.095 (4)0.056 (3)0.020 (3)0.001 (3)0.024 (2)
C1240.104 (5)0.070 (3)0.052 (2)0.031 (3)0.022 (3)0.022 (2)
Cl140.213 (2)0.1510 (16)0.0543 (6)0.0869 (14)0.0184 (10)0.0230 (8)
C1250.115 (7)0.078 (4)0.102 (6)0.000 (4)0.035 (4)0.024 (4)
C1260.076 (4)0.076 (4)0.121 (5)0.015 (3)0.005 (4)0.022 (5)
C1370.178 (4)0.0584 (18)0.0645 (19)0.034 (2)0.018 (2)0.0031 (14)
C1310.086 (2)0.035 (7)0.0592 (15)0.0090 (16)0.0037 (14)0.0072 (15)
C1320.066 (4)0.082 (3)0.065 (3)0.003 (3)0.018 (2)0.023 (3)
C1330.087 (4)0.095 (4)0.056 (3)0.020 (3)0.001 (3)0.024 (2)
C1340.104 (5)0.070 (3)0.052 (2)0.031 (3)0.022 (3)0.022 (2)
Cl340.213 (2)0.1510 (16)0.0543 (6)0.0869 (14)0.0184 (10)0.0230 (8)
C1350.115 (7)0.078 (4)0.102 (6)0.000 (4)0.035 (4)0.024 (4)
C1360.076 (4)0.076 (4)0.121 (5)0.015 (3)0.005 (4)0.022 (5)
C1510.0577 (13)0.0603 (14)0.0409 (11)0.0030 (11)0.0025 (10)0.0014 (10)
N1510.0752 (16)0.0659 (14)0.0733 (16)0.0193 (12)0.0010 (12)0.0093 (12)
C1520.0718 (16)0.0667 (16)0.0511 (14)0.0077 (13)0.0001 (12)0.0065 (12)
C1530.0605 (14)0.0484 (12)0.0445 (12)0.0014 (10)0.0005 (10)0.0005 (9)
C15A0.0670 (15)0.0509 (13)0.0488 (13)0.0002 (11)0.0047 (11)0.0002 (10)
C1540.094 (2)0.093 (2)0.0467 (14)0.0082 (17)0.0049 (14)0.0025 (14)
C1550.130 (3)0.156 (4)0.0524 (18)0.025 (3)0.015 (2)0.001 (2)
C1560.142 (4)0.161 (4)0.075 (2)0.040 (3)0.035 (3)0.016 (3)
C1570.100 (3)0.105 (3)0.094 (3)0.031 (2)0.024 (2)0.015 (2)
C15B0.0782 (18)0.0537 (14)0.0657 (16)0.0070 (13)0.0097 (14)0.0016 (12)
C1610.0487 (12)0.0536 (13)0.0546 (13)0.0038 (10)0.0002 (10)0.0062 (10)
C1620.0811 (19)0.0667 (17)0.0724 (18)0.0116 (14)0.0222 (15)0.0034 (14)
C1630.116 (3)0.092 (3)0.082 (2)0.021 (2)0.035 (2)0.0145 (19)
C1640.107 (3)0.070 (2)0.099 (3)0.0243 (18)0.007 (2)0.0288 (19)
C1650.088 (2)0.0534 (16)0.091 (2)0.0062 (14)0.0023 (17)0.0095 (15)
C1660.0637 (15)0.0519 (14)0.0682 (16)0.0022 (11)0.0015 (12)0.0043 (12)
S210.0877 (5)0.0533 (3)0.0434 (3)0.0120 (3)0.0005 (3)0.0058 (2)
C220.0720 (16)0.0473 (12)0.0476 (13)0.0083 (11)0.0047 (11)0.0031 (10)
N230.0657 (12)0.0418 (10)0.0489 (11)0.0065 (9)0.0043 (9)0.0037 (8)
N240.0547 (10)0.0406 (9)0.0438 (10)0.0061 (8)0.0006 (8)0.0058 (7)
C250.0476 (12)0.0429 (11)0.0457 (11)0.0008 (9)0.0009 (9)0.0029 (9)
C260.0456 (11)0.0432 (11)0.0524 (12)0.0004 (9)0.0006 (9)0.0034 (9)
N270.0597 (11)0.0442 (10)0.0490 (10)0.0041 (8)0.0002 (9)0.0089 (8)
C27A0.0570 (13)0.0468 (12)0.0424 (11)0.0033 (10)0.0019 (9)0.0066 (9)
C2270.114 (2)0.0543 (15)0.0585 (16)0.0228 (15)0.0099 (15)0.0050 (12)
C2210.0779 (17)0.0439 (12)0.0524 (13)0.0079 (11)0.0025 (12)0.0008 (10)
C2220.0716 (18)0.089 (2)0.0762 (19)0.0084 (16)0.0064 (15)0.0005 (16)
C2230.110 (3)0.093 (2)0.0607 (18)0.013 (2)0.0310 (18)0.0006 (16)
C2240.116 (3)0.0518 (15)0.0579 (16)0.0069 (16)0.0052 (17)0.0053 (12)
Cl240.2214 (13)0.0858 (6)0.0662 (5)0.0033 (7)0.0249 (6)0.0174 (4)
C2250.089 (2)0.0626 (17)0.083 (2)0.0063 (15)0.0084 (17)0.0093 (15)
C2260.0783 (19)0.0632 (16)0.0682 (17)0.0017 (14)0.0153 (14)0.0066 (13)
C2510.0540 (12)0.0501 (12)0.0446 (11)0.0001 (10)0.0048 (9)0.0019 (9)
N2510.0663 (13)0.0551 (12)0.0671 (14)0.0146 (10)0.0065 (11)0.0045 (10)
C2520.0621 (14)0.0533 (13)0.0480 (12)0.0060 (11)0.0009 (11)0.0044 (10)
C2530.0586 (13)0.0399 (11)0.0411 (11)0.0010 (9)0.0007 (9)0.0005 (8)
C25A0.0741 (15)0.0360 (11)0.0442 (12)0.0035 (10)0.0008 (11)0.0020 (9)
C2540.105 (2)0.0556 (15)0.0473 (14)0.0033 (14)0.0139 (14)0.0021 (11)
C2550.153 (3)0.0666 (19)0.0467 (15)0.014 (2)0.0099 (18)0.0047 (13)
C2560.165 (4)0.0663 (19)0.0535 (17)0.023 (2)0.025 (2)0.0167 (15)
C2570.116 (3)0.0515 (15)0.075 (2)0.0059 (16)0.0346 (18)0.0122 (14)
C25B0.0802 (17)0.0389 (12)0.0576 (14)0.0028 (11)0.0119 (12)0.0022 (10)
C2610.0474 (12)0.0454 (12)0.0622 (14)0.0030 (10)0.0060 (10)0.0011 (10)
C2620.0636 (15)0.0569 (14)0.0669 (16)0.0066 (12)0.0022 (12)0.0014 (12)
C2630.0725 (18)0.076 (2)0.080 (2)0.0145 (15)0.0040 (15)0.0146 (16)
C2640.0770 (19)0.0629 (18)0.107 (3)0.0158 (15)0.0132 (18)0.0284 (17)
C2650.083 (2)0.0448 (14)0.113 (3)0.0007 (13)0.0102 (19)0.0030 (15)
C2660.0616 (15)0.0455 (13)0.0822 (18)0.0015 (11)0.0001 (13)0.0013 (12)
Geometric parameters (Å, º) top
S11—C17A1.725 (2)C164—C1651.366 (5)
S11—C121.757 (3)C164—H1640.9300
C12—N131.293 (3)C165—C1661.384 (4)
C12—C1271.505 (4)C165—H1650.9300
N13—N141.374 (3)C166—H1660.9300
N14—C17A1.362 (3)S21—C27A1.728 (2)
N14—C151.380 (3)S21—C221.755 (2)
C15—C161.379 (3)C22—N231.296 (3)
C15—C1511.492 (3)C22—C2271.504 (3)
C16—N171.401 (3)N23—N241.372 (2)
C16—C1611.471 (3)N24—C27A1.364 (3)
N17—C17A1.314 (3)N24—C251.381 (3)
C127—C1211.506 (5)C25—C261.376 (3)
C127—H12A0.9700C25—C2511.494 (3)
C127—H12B0.9700C26—N271.403 (3)
C121—C1221.373 (6)C26—C2611.473 (3)
C121—C1261.392 (6)N27—C27A1.313 (3)
C122—C1231.366 (6)C227—C2211.509 (4)
C122—H1220.9300C227—H27A0.9700
C123—C1241.368 (7)C227—H27B0.9700
C123—H1230.9300C221—C2261.372 (4)
C124—C1251.345 (10)C221—C2221.380 (4)
C124—Cl141.771 (5)C222—C2231.391 (4)
C125—C1261.416 (8)C222—H2220.9300
C125—H1250.9300C223—C2241.356 (5)
C126—H1260.9300C223—H2230.9300
C131—C1321.360 (9)C224—C2251.355 (5)
C131—C1361.392 (8)C224—Cl241.748 (3)
C132—C1331.377 (8)C225—C2261.373 (4)
C132—H1320.9300C225—H2250.9300
C133—C1341.371 (11)C226—H2260.9300
C133—H1330.9300C251—C2531.502 (3)
C134—C1351.353 (13)C251—H25A0.9700
C134—Cl341.739 (8)C251—H25B0.9700
C135—C1361.371 (10)N251—C25B1.370 (3)
C135—H1350.9300N251—C2521.374 (3)
C136—H1360.9300N251—H2510.83 (3)
C151—C1531.503 (3)C252—C2531.358 (3)
C151—H15A0.9700C252—H2520.9300
C151—H15B0.9700C253—C25A1.432 (3)
N151—C15B1.362 (4)C25A—C2541.397 (3)
N151—C1521.368 (4)C25A—C25B1.411 (4)
N151—H1510.82 (3)C254—C2551.377 (4)
C152—C1531.355 (3)C254—H2540.9300
C152—H1520.9300C255—C2561.380 (5)
C153—C15A1.433 (3)C255—H2550.9300
C15A—C1541.404 (4)C256—C2571.363 (5)
C15A—C15B1.413 (4)C256—H2560.9300
C154—C1551.368 (4)C257—C25B1.396 (4)
C154—H1540.9300C257—H2570.9300
C155—C1561.389 (6)C261—C2661.387 (3)
C155—H1550.9300C261—C2621.390 (4)
C156—C1571.372 (5)C262—C2631.382 (4)
C156—H1560.9300C262—H2620.9300
C157—C15B1.391 (4)C263—C2641.373 (5)
C157—H1570.9300C263—H2630.9300
C161—C1661.386 (4)C264—C2651.381 (5)
C161—C1621.391 (4)C264—H2640.9300
C162—C1631.382 (4)C265—C2661.386 (4)
C162—H1620.9300C265—H2650.9300
C163—C1641.367 (5)C266—H2660.9300
C163—H1630.9300
C17A—S11—C1287.89 (12)C165—C164—H164120.2
N13—C12—C127121.8 (2)C163—C164—H164120.2
N13—C12—S11116.85 (19)C164—C165—C166120.1 (3)
C127—C12—S11121.3 (2)C164—C165—H165119.9
C12—N13—N14107.92 (19)C166—C165—H165119.9
C17A—N14—N13118.21 (18)C165—C166—C161121.2 (3)
C17A—N14—C15108.51 (19)C165—C166—H166119.4
N13—N14—C15133.20 (19)C161—C166—H166119.4
C16—C15—N14103.65 (19)C27A—S21—C2288.11 (11)
C16—C15—C151134.4 (2)N23—C22—C227122.2 (2)
N14—C15—C151121.9 (2)N23—C22—S21116.74 (18)
C15—C16—N17111.61 (19)C227—C22—S21121.03 (18)
C15—C16—C161128.2 (2)C22—N23—N24107.96 (18)
N17—C16—C161120.1 (2)C27A—N24—N23118.44 (18)
C17A—N17—C16103.93 (18)C27A—N24—C25108.43 (18)
N17—C17A—N14112.3 (2)N23—N24—C25133.07 (18)
N17—C17A—S11138.63 (18)C26—C25—N24103.45 (18)
N14—C17A—S11109.09 (17)C26—C25—C251133.4 (2)
C12—C127—C121111.2 (9)N24—C25—C251122.88 (19)
C12—C127—H12A109.4C25—C26—N27112.13 (19)
C121—C127—H12A109.4C25—C26—C261127.6 (2)
C12—C127—H12B109.4N27—C26—C261120.22 (19)
C121—C127—H12B109.4C27A—N27—C26103.44 (17)
H12A—C127—H12B108.0N27—C27A—N24112.5 (2)
C122—C121—C126117.1 (4)N27—C27A—S21138.73 (17)
C122—C121—C127116.4 (5)N24—C27A—S21108.72 (16)
C126—C121—C127126.3 (5)C22—C227—C221114.2 (2)
C123—C122—C121122.3 (5)C22—C227—H27A108.7
C123—C122—H122118.8C221—C227—H27A108.7
C121—C122—H122118.8C22—C227—H27B108.7
C122—C123—C124119.4 (5)C221—C227—H27B108.7
C122—C123—H123120.3H27A—C227—H27B107.6
C124—C123—H123120.3C226—C221—C222117.8 (3)
C125—C124—C123121.6 (6)C226—C221—C227122.1 (3)
C125—C124—Cl14121.6 (5)C222—C221—C227120.2 (3)
C123—C124—Cl14116.9 (5)C221—C222—C223120.7 (3)
C124—C125—C126118.6 (6)C221—C222—H222119.6
C124—C125—H125120.7C223—C222—H222119.6
C126—C125—H125120.7C224—C223—C222119.2 (3)
C121—C126—C125120.7 (6)C224—C223—H223120.4
C121—C126—H126119.7C222—C223—H223120.4
C125—C126—H126119.7C225—C224—C223121.3 (3)
C132—C131—C136120.7 (9)C225—C224—Cl24119.9 (3)
C131—C132—C133121.4 (8)C223—C224—Cl24118.9 (3)
C131—C132—H132119.3C224—C225—C226119.2 (3)
C133—C132—H132119.3C224—C225—H225120.4
C134—C133—C132116.1 (8)C226—C225—H225120.4
C134—C133—H133122.0C221—C226—C225121.8 (3)
C132—C133—H133122.0C221—C226—H226119.1
C135—C134—C133123.5 (8)C225—C226—H226119.1
C135—C134—Cl34117.9 (9)C25—C251—C253115.17 (18)
C133—C134—Cl34118.5 (8)C25—C251—H25A108.5
C134—C135—C136119.9 (9)C253—C251—H25A108.5
C134—C135—H135120.0C25—C251—H25B108.5
C136—C135—H135120.0C253—C251—H25B108.5
C135—C136—C131117.2 (9)H25A—C251—H25B107.5
C135—C136—H136121.4C25B—N251—C252108.7 (2)
C131—C136—H136121.4C25B—N251—H251129 (2)
C15—C151—C153113.48 (19)C252—N251—H251123 (2)
C15—C151—H15A108.9C253—C252—N251110.1 (2)
C153—C151—H15A108.9C253—C252—H252124.9
C15—C151—H15B108.9N251—C252—H252124.9
C153—C151—H15B108.9C252—C253—C25A106.8 (2)
H15A—C151—H15B107.7C252—C253—C251127.7 (2)
C15B—N151—C152109.0 (2)C25A—C253—C251125.6 (2)
C15B—N151—H151127 (2)C254—C25A—C25B119.0 (2)
C152—N151—H151123 (2)C254—C25A—C253134.3 (2)
C153—C152—N151110.6 (2)C25B—C25A—C253106.7 (2)
C153—C152—H152124.7C255—C254—C25A118.6 (3)
N151—C152—H152124.7C255—C254—H254120.7
C152—C153—C15A106.1 (2)C25A—C254—H254120.7
C152—C153—C151126.7 (2)C254—C255—C256121.6 (3)
C15A—C153—C151127.2 (2)C254—C255—H255119.2
C154—C15A—C15B118.9 (2)C256—C255—H255119.2
C154—C15A—C153134.1 (3)C257—C256—C255121.5 (3)
C15B—C15A—C153107.0 (2)C257—C256—H256119.3
C155—C154—C15A118.8 (3)C255—C256—H256119.3
C155—C154—H154120.6C256—C257—C25B118.1 (3)
C15A—C154—H154120.6C256—C257—H257120.9
C154—C155—C156121.5 (4)C25B—C257—H257120.9
C154—C155—H155119.2N251—C25B—C257131.1 (3)
C156—C155—H155119.2N251—C25B—C25A107.7 (2)
C157—C156—C155121.5 (3)C257—C25B—C25A121.2 (3)
C157—C156—H156119.3C266—C261—C262118.5 (2)
C155—C156—H156119.3C266—C261—C26121.0 (2)
C156—C157—C15B117.7 (3)C262—C261—C26120.4 (2)
C156—C157—H157121.1C263—C262—C261120.7 (3)
C15B—C157—H157121.1C263—C262—H262119.7
N151—C15B—C157131.0 (3)C261—C262—H262119.7
N151—C15B—C15A107.3 (2)C264—C263—C262120.5 (3)
C157—C15B—C15A121.6 (3)C264—C263—H263119.7
C166—C161—C162117.8 (2)C262—C263—H263119.7
C166—C161—C16120.9 (2)C263—C264—C265119.4 (3)
C162—C161—C16121.2 (2)C263—C264—H264120.3
C163—C162—C161120.3 (3)C265—C264—H264120.3
C163—C162—H162119.9C264—C265—C266120.4 (3)
C161—C162—H162119.9C264—C265—H265119.8
C164—C163—C162121.0 (3)C266—C265—H265119.8
C164—C163—H163119.5C265—C266—C261120.5 (3)
C162—C163—H163119.5C265—C266—H266119.8
C165—C164—C163119.6 (3)C261—C266—H266119.8
C17A—S11—C12—N131.1 (2)C163—C164—C165—C1661.4 (5)
C17A—S11—C12—C127178.2 (3)C164—C165—C166—C1611.4 (5)
C127—C12—N13—N14179.3 (3)C162—C161—C166—C1650.1 (4)
S11—C12—N13—N140.0 (3)C16—C161—C166—C165177.4 (2)
C12—N13—N14—C17A1.5 (3)C27A—S21—C22—N230.6 (2)
C12—N13—N14—C15177.8 (3)C27A—S21—C22—C227177.5 (2)
C17A—N14—C15—C161.7 (2)C227—C22—N23—N24176.4 (2)
N13—N14—C15—C16174.9 (2)S21—C22—N23—N240.5 (3)
C17A—N14—C15—C151176.6 (2)C22—N23—N24—C27A1.7 (3)
N13—N14—C15—C1516.9 (4)C22—N23—N24—C25178.6 (2)
N14—C15—C16—N171.8 (2)C27A—N24—C25—C261.5 (2)
C151—C15—C16—N17176.1 (2)N23—N24—C25—C26175.6 (2)
N14—C15—C16—C161175.0 (2)C27A—N24—C25—C251173.0 (2)
C151—C15—C16—C1617.1 (4)N23—N24—C25—C2519.9 (4)
C15—C16—N17—C17A1.3 (3)N24—C25—C26—N271.4 (2)
C161—C16—N17—C17A175.9 (2)C251—C25—C26—N27172.2 (2)
C16—N17—C17A—N140.2 (3)N24—C25—C26—C261175.8 (2)
C16—N17—C17A—S11177.7 (2)C251—C25—C26—C26110.6 (4)
N13—N14—C17A—N17176.1 (2)C25—C26—N27—C27A0.8 (2)
C15—N14—C17A—N171.0 (3)C261—C26—N27—C27A176.7 (2)
N13—N14—C17A—S112.4 (3)C26—N27—C27A—N240.2 (3)
C15—N14—C17A—S11179.52 (16)C26—N27—C27A—S21178.2 (2)
C12—S11—C17A—N17176.1 (3)N23—N24—C27A—N27176.49 (19)
C12—S11—C17A—N141.82 (19)C25—N24—C27A—N271.1 (3)
N13—C12—C127—C121175.2 (4)N23—N24—C27A—S212.1 (3)
S11—C12—C127—C1214.1 (6)C25—N24—C27A—S21179.69 (15)
C12—C127—C121—C12282.4 (18)C22—S21—C27A—N27176.7 (3)
C12—C127—C121—C126103.3 (19)C22—S21—C27A—N241.38 (18)
C126—C121—C122—C1235 (3)N23—C22—C227—C221156.4 (3)
C127—C121—C122—C123179.8 (11)S21—C22—C227—C22126.9 (4)
C121—C122—C123—C1242.1 (17)C22—C227—C221—C22669.1 (4)
C122—C123—C124—C1250.9 (10)C22—C227—C221—C222111.2 (3)
C122—C123—C124—Cl14179.1 (6)C226—C221—C222—C2230.4 (4)
C123—C124—C125—C1262.8 (11)C227—C221—C222—C223179.3 (3)
Cl14—C124—C125—C126179.1 (7)C221—C222—C223—C2241.2 (5)
C122—C121—C126—C1257 (3)C222—C223—C224—C2251.1 (5)
C127—C121—C126—C125178.9 (15)C222—C223—C224—Cl24179.0 (3)
C124—C125—C126—C1215.8 (18)C223—C224—C225—C2260.4 (5)
C136—C131—C132—C13311 (5)Cl24—C224—C225—C226179.8 (2)
C131—C132—C133—C1342 (3)C222—C221—C226—C2250.4 (4)
C132—C133—C134—C1353 (2)C227—C221—C226—C225179.9 (3)
C132—C133—C134—Cl34175.7 (12)C224—C225—C226—C2210.4 (5)
C133—C134—C135—C1360 (2)C26—C25—C251—C253103.2 (3)
Cl34—C134—C135—C136178.8 (14)N24—C25—C251—C25384.2 (3)
C134—C135—C136—C1318 (3)C25B—N251—C252—C2530.5 (3)
C132—C131—C136—C13513 (5)N251—C252—C253—C25A0.6 (3)
C16—C15—C151—C15398.6 (3)N251—C252—C253—C251179.1 (2)
N14—C15—C151—C15383.8 (3)C25—C251—C253—C25214.9 (3)
C15B—N151—C152—C1531.2 (3)C25—C251—C253—C25A164.8 (2)
N151—C152—C153—C15A1.1 (3)C252—C253—C25A—C254179.0 (3)
N151—C152—C153—C151178.8 (2)C251—C253—C25A—C2540.7 (4)
C15—C151—C153—C15221.5 (4)C252—C253—C25A—C25B0.5 (3)
C15—C151—C153—C15A158.3 (2)C251—C253—C25A—C25B179.2 (2)
C152—C153—C15A—C154179.7 (3)C25B—C25A—C254—C2550.1 (4)
C151—C153—C15A—C1540.5 (5)C253—C25A—C254—C255178.3 (3)
C152—C153—C15A—C15B0.6 (3)C25A—C254—C255—C2560.6 (5)
C151—C153—C15A—C15B179.3 (2)C254—C255—C256—C2570.5 (5)
C15B—C15A—C154—C1550.6 (5)C255—C256—C257—C25B0.3 (5)
C153—C15A—C154—C155179.6 (3)C252—N251—C25B—C257179.8 (3)
C15A—C154—C155—C1560.6 (7)C252—N251—C25B—C25A0.1 (3)
C154—C155—C156—C1570.1 (8)C256—C257—C25B—N251178.8 (3)
C155—C156—C157—C15B0.8 (7)C256—C257—C25B—C25A0.8 (4)
C152—N151—C15B—C157179.6 (3)C254—C25A—C25B—N251179.0 (2)
C152—N151—C15B—C15A0.8 (3)C253—C25A—C25B—N2510.2 (3)
C156—C157—C15B—N151179.7 (4)C254—C25A—C25B—C2570.6 (4)
C156—C157—C15B—C15A0.7 (6)C253—C25A—C25B—C257179.4 (2)
C154—C15A—C15B—N151179.7 (3)C25—C26—C261—C266148.9 (2)
C153—C15A—C15B—N1510.1 (3)N27—C26—C261—C26634.0 (3)
C154—C15A—C15B—C1570.0 (4)C25—C26—C261—C26233.7 (3)
C153—C15A—C15B—C157179.8 (3)N27—C26—C261—C262143.4 (2)
C15—C16—C161—C166158.1 (2)C266—C261—C262—C2630.2 (4)
N17—C16—C161—C16625.3 (3)C26—C261—C262—C263177.7 (2)
C15—C16—C161—C16224.7 (4)C261—C262—C263—C2640.8 (4)
N17—C16—C161—C162151.9 (2)C262—C263—C264—C2650.5 (5)
C166—C161—C162—C1631.6 (4)C263—C264—C265—C2660.3 (5)
C16—C161—C162—C163178.9 (3)C264—C265—C266—C2610.9 (4)
C161—C162—C163—C1641.7 (6)C262—C261—C266—C2650.6 (4)
C162—C163—C164—C1650.2 (6)C26—C261—C266—C265176.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N151—H151···N17i0.83 (3)2.11 (3)2.912 (3)162 (3)
N251—H251···N27ii0.83 (3)2.27 (3)3.087 (3)167 (3)
C135—H135···Cg1i0.932.523.272 (11)138
C225—H225···Cg2ii0.932.873.568 (4)133
C252—H252···Cg3ii0.932.773.568 (3)144
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+2, y1/2, z+1/2.
2-(4-Chlorobenzyl)-6-(4-fluorophenyl)-5-[(1H-indol-3-yl)methyl]imidazo[2,1-b][1,3,4]thiadiazole (II) top
Crystal data top
C26H18ClFN4SF(000) = 976
Mr = 472.95Dx = 1.370 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.340 (1) ÅCell parameters from 5068 reflections
b = 11.1619 (7) Åθ = 2.7–27.9°
c = 15.385 (1) ŵ = 0.29 mm1
β = 119.48 (1)°T = 296 K
V = 2293.2 (3) Å3Plate, yellow
Z = 40.46 × 0.44 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
5041 independent reflections
Radiation source: Enhance (Mo) X-ray Source3161 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1919
Tmin = 0.768, Tmax = 0.944k = 1313
16612 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.052P)2 + 0.9215P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
5041 reflectionsΔρmax = 0.26 e Å3
323 parametersΔρmin = 0.24 e Å3
23 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.29020 (4)0.26704 (6)0.45226 (5)0.0598 (2)
C20.37289 (17)0.1507 (2)0.46549 (19)0.0570 (6)
N30.46687 (13)0.17314 (16)0.51939 (14)0.0535 (5)
N40.47701 (12)0.28832 (15)0.55296 (13)0.0454 (4)
C50.55903 (15)0.35639 (19)0.61424 (15)0.0451 (5)
C60.51834 (16)0.46116 (19)0.62492 (15)0.0458 (5)
N70.41374 (13)0.45963 (16)0.57021 (13)0.0491 (4)
C7A0.39325 (15)0.3533 (2)0.52847 (16)0.0474 (5)
C270.33592 (19)0.0335 (2)0.4129 (3)0.0840 (9)0.822 (6)
H27A0.37970.02950.45540.101*0.822 (6)
H27B0.34080.03480.35240.101*0.822 (6)
C210.2299 (2)0.0027 (3)0.3856 (3)0.0569 (7)0.822 (6)
C220.1533 (3)0.0360 (6)0.2954 (3)0.0736 (11)0.822 (6)
H220.16660.08160.25260.088*0.822 (6)
C230.0569 (3)0.0035 (7)0.2665 (4)0.0869 (12)0.822 (6)
H230.00540.02410.20340.104*0.822 (6)
C240.0368 (3)0.0584 (5)0.3295 (4)0.0727 (12)0.822 (6)
Cl240.08535 (12)0.1013 (2)0.2922 (3)0.1368 (11)0.822 (6)
C250.1119 (3)0.0917 (4)0.4210 (4)0.0811 (12)0.822 (6)
H250.09790.13440.46460.097*0.822 (6)
C260.2088 (3)0.0614 (5)0.4481 (3)0.0722 (12)0.822 (6)
H260.26070.08510.51010.087*0.822 (6)
C370.33592 (19)0.0335 (2)0.4129 (3)0.0840 (9)0.178 (6)
H37A0.37660.03000.45760.101*0.178 (6)
H37B0.34600.03240.35550.101*0.178 (6)
C310.2272 (6)0.0060 (10)0.3779 (12)0.0569 (7)0.178 (6)
C320.1626 (10)0.034 (3)0.2808 (14)0.0736 (11)0.178 (6)
H320.18740.06040.23990.088*0.178 (6)
C330.0623 (10)0.023 (4)0.2433 (17)0.0869 (12)0.178 (6)
H330.01840.05670.18190.104*0.178 (6)
C340.0261 (9)0.037 (3)0.2944 (16)0.0727 (12)0.178 (6)
Cl340.1018 (5)0.0635 (9)0.2309 (12)0.1368 (11)0.178 (6)
C350.0864 (11)0.060 (2)0.3928 (15)0.0811 (12)0.178 (6)
H350.06030.08990.43170.097*0.178 (6)
C360.1883 (10)0.037 (3)0.4342 (15)0.0722 (12)0.178 (6)
H360.23060.05210.50170.087*0.178 (6)
C510.66292 (15)0.3124 (2)0.65056 (16)0.0490 (5)
H51A0.70670.38060.66300.059*
H51B0.66420.26430.59870.059*
N510.70786 (17)0.11914 (19)0.86245 (17)0.0647 (6)
H510.685 (2)0.074 (3)0.892 (2)0.078*
C520.64764 (17)0.1730 (2)0.77329 (18)0.0552 (6)
H520.57830.16550.73750.066*
C530.70247 (15)0.23931 (18)0.74375 (16)0.0454 (5)
C53A0.80430 (16)0.22541 (19)0.81938 (17)0.0505 (5)
C540.89531 (18)0.2699 (2)0.8328 (2)0.0675 (7)
H540.89710.32080.78580.081*
C550.9821 (2)0.2368 (3)0.9171 (3)0.0870 (10)
H551.04320.26620.92730.104*
C560.9801 (2)0.1607 (3)0.9869 (3)0.0915 (10)
H561.04010.13931.04280.110*
C570.8927 (2)0.1159 (3)0.9764 (2)0.0808 (9)
H570.89230.06481.02400.097*
C57A0.80467 (18)0.1494 (2)0.89221 (18)0.0581 (6)
C610.57262 (17)0.56426 (19)0.68713 (17)0.0488 (5)
C620.66559 (18)0.5491 (2)0.77200 (18)0.0600 (6)
H620.69190.47230.79060.072*
C630.7196 (2)0.6456 (2)0.8292 (2)0.0684 (7)
H630.78230.63480.88510.082*
C640.6791 (2)0.7564 (2)0.8021 (2)0.0660 (7)
F640.73381 (13)0.85184 (14)0.85653 (14)0.0915 (5)
C650.5862 (2)0.7756 (2)0.7227 (2)0.0687 (7)
H650.55880.85220.70800.082*
C660.53332 (19)0.6786 (2)0.66408 (19)0.0582 (6)
H660.47060.69070.60860.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0409 (3)0.0612 (4)0.0683 (4)0.0045 (3)0.0199 (3)0.0128 (3)
C20.0489 (13)0.0515 (13)0.0685 (15)0.0016 (10)0.0272 (12)0.0117 (12)
N30.0446 (10)0.0464 (11)0.0648 (12)0.0021 (8)0.0234 (9)0.0089 (9)
N40.0415 (9)0.0444 (10)0.0483 (10)0.0047 (8)0.0205 (8)0.0039 (8)
C50.0462 (11)0.0457 (12)0.0417 (11)0.0006 (9)0.0202 (10)0.0016 (9)
C60.0496 (12)0.0450 (12)0.0434 (12)0.0024 (10)0.0233 (10)0.0029 (10)
N70.0499 (11)0.0460 (11)0.0505 (11)0.0056 (8)0.0241 (9)0.0014 (9)
C7A0.0436 (11)0.0510 (13)0.0463 (12)0.0066 (10)0.0211 (10)0.0002 (10)
C270.0577 (16)0.0643 (17)0.127 (3)0.0081 (13)0.0428 (17)0.0350 (17)
C210.0526 (14)0.0478 (13)0.0664 (17)0.0039 (11)0.0264 (13)0.0159 (12)
C220.0705 (19)0.100 (2)0.057 (2)0.0097 (18)0.0358 (16)0.0005 (19)
C230.069 (2)0.107 (4)0.056 (3)0.004 (2)0.0089 (18)0.001 (2)
C240.0492 (17)0.064 (3)0.097 (4)0.0151 (18)0.030 (2)0.018 (3)
Cl240.0644 (7)0.1099 (12)0.221 (3)0.0290 (7)0.0590 (12)0.0207 (14)
C250.090 (3)0.066 (3)0.099 (3)0.005 (2)0.056 (3)0.020 (2)
C260.068 (2)0.064 (3)0.064 (2)0.008 (2)0.0168 (18)0.0131 (16)
C370.0577 (16)0.0643 (17)0.127 (3)0.0081 (13)0.0428 (17)0.0350 (17)
C310.0526 (14)0.0478 (13)0.0664 (17)0.0039 (11)0.0264 (13)0.0159 (12)
C320.0705 (19)0.100 (2)0.057 (2)0.0097 (18)0.0358 (16)0.0005 (19)
C330.069 (2)0.107 (4)0.056 (3)0.004 (2)0.0089 (18)0.001 (2)
C340.0492 (17)0.064 (3)0.097 (4)0.0151 (18)0.030 (2)0.018 (3)
Cl340.0644 (7)0.1099 (12)0.221 (3)0.0290 (7)0.0590 (12)0.0207 (14)
C350.090 (3)0.066 (3)0.099 (3)0.005 (2)0.056 (3)0.020 (2)
C360.068 (2)0.064 (3)0.064 (2)0.008 (2)0.0168 (18)0.0131 (16)
C510.0426 (11)0.0523 (13)0.0526 (13)0.0012 (10)0.0237 (10)0.0027 (10)
N510.0671 (14)0.0548 (13)0.0692 (14)0.0010 (10)0.0313 (12)0.0142 (11)
C520.0492 (13)0.0519 (13)0.0596 (15)0.0005 (11)0.0230 (12)0.0035 (11)
C530.0407 (11)0.0408 (12)0.0533 (13)0.0018 (9)0.0221 (10)0.0020 (10)
C53A0.0463 (12)0.0391 (12)0.0608 (14)0.0049 (9)0.0223 (11)0.0029 (11)
C540.0469 (13)0.0648 (16)0.0834 (18)0.0001 (12)0.0265 (13)0.0016 (14)
C550.0450 (14)0.086 (2)0.108 (3)0.0014 (14)0.0204 (16)0.011 (2)
C560.0654 (19)0.078 (2)0.088 (2)0.0222 (16)0.0051 (17)0.0004 (18)
C570.078 (2)0.0622 (17)0.0742 (19)0.0153 (15)0.0164 (16)0.0118 (14)
C57A0.0590 (15)0.0406 (13)0.0632 (15)0.0081 (11)0.0213 (12)0.0019 (11)
C610.0595 (14)0.0441 (12)0.0518 (13)0.0012 (10)0.0343 (12)0.0004 (10)
C620.0647 (15)0.0517 (14)0.0577 (14)0.0010 (12)0.0255 (13)0.0039 (12)
C630.0678 (16)0.0641 (17)0.0685 (17)0.0094 (13)0.0298 (14)0.0132 (14)
C640.0787 (18)0.0556 (16)0.0814 (18)0.0219 (14)0.0530 (16)0.0191 (14)
F640.1081 (13)0.0656 (10)0.1202 (14)0.0371 (9)0.0711 (11)0.0366 (9)
C650.089 (2)0.0401 (13)0.098 (2)0.0016 (13)0.0619 (18)0.0014 (14)
C660.0650 (15)0.0508 (14)0.0680 (16)0.0028 (11)0.0399 (13)0.0035 (12)
Geometric parameters (Å, º) top
S1—C7A1.725 (2)C35—C361.390 (9)
S1—C21.756 (2)C35—H350.9300
C2—N31.285 (3)C36—H360.9300
C2—C271.495 (3)C51—C531.494 (3)
N3—N41.365 (2)C51—H51A0.9700
N4—C7A1.357 (3)C51—H51B0.9700
N4—C51.372 (3)N51—C521.360 (3)
C5—C61.373 (3)N51—C57A1.364 (3)
C5—C511.489 (3)N51—H510.86 (3)
C6—N71.398 (3)C52—C531.355 (3)
C6—C611.466 (3)C52—H520.9300
N7—C7A1.312 (3)C53—C53A1.424 (3)
C27—C211.506 (4)C53A—C541.398 (3)
C27—H27A0.9700C53A—C57A1.403 (3)
C27—H27B0.9700C54—C551.376 (4)
C21—C221.356 (4)C54—H540.9300
C21—C261.359 (4)C55—C561.383 (5)
C22—C231.368 (5)C55—H550.9300
C22—H220.9300C56—C571.363 (4)
C23—C241.343 (5)C56—H560.9300
C23—H230.9300C57—C57A1.386 (3)
C24—C251.361 (5)C57—H570.9300
C24—Cl241.735 (3)C61—C661.381 (3)
C25—C261.374 (5)C61—C621.391 (3)
C25—H250.9300C62—C631.380 (3)
C26—H260.9300C62—H620.9300
C31—C361.360 (9)C63—C641.355 (4)
C31—C321.361 (9)C63—H630.9300
C32—C331.358 (9)C64—F641.360 (3)
C32—H320.9300C64—C651.363 (4)
C33—C341.343 (10)C65—C661.387 (3)
C33—H330.9300C65—H650.9300
C34—C351.353 (10)C66—H660.9300
C34—Cl341.733 (8)
C7A—S1—C288.03 (11)C31—C36—C35121.3 (11)
N3—C2—C27121.7 (2)C31—C36—H36119.3
N3—C2—S1116.61 (17)C35—C36—H36119.3
C27—C2—S1121.61 (18)C5—C51—C53113.22 (18)
C2—N3—N4108.07 (17)C5—C51—H51A108.9
C7A—N4—N3118.80 (17)C53—C51—H51A108.9
C7A—N4—C5108.52 (17)C5—C51—H51B108.9
N3—N4—C5132.59 (17)C53—C51—H51B108.9
N4—C5—C6103.70 (18)H51A—C51—H51B107.7
N4—C5—C51121.71 (19)C52—N51—C57A108.4 (2)
C6—C5—C51134.6 (2)C52—N51—H51123.0 (18)
C5—C6—N7111.86 (18)C57A—N51—H51128.6 (18)
C5—C6—C61126.9 (2)C53—C52—N51110.7 (2)
N7—C6—C61121.16 (19)C53—C52—H52124.6
C7A—N7—C6103.48 (17)N51—C52—H52124.6
N7—C7A—N4112.42 (18)C52—C53—C53A106.2 (2)
N7—C7A—S1139.12 (17)C52—C53—C51126.42 (19)
N4—C7A—S1108.44 (15)C53A—C53—C51127.4 (2)
C2—C27—C21114.9 (2)C54—C53A—C57A119.1 (2)
C2—C27—H27A108.5C54—C53A—C53134.1 (2)
C21—C27—H27A108.5C57A—C53A—C53106.9 (2)
C2—C27—H27B108.5C55—C54—C53A118.4 (3)
C21—C27—H27B108.5C55—C54—H54120.8
H27A—C27—H27B107.5C53A—C54—H54120.8
C22—C21—C26118.8 (3)C54—C55—C56121.1 (3)
C22—C21—C27119.7 (3)C54—C55—H55119.5
C26—C21—C27121.5 (3)C56—C55—H55119.5
C21—C22—C23120.8 (4)C57—C56—C55122.0 (3)
C21—C22—H22119.6C57—C56—H56119.0
C23—C22—H22119.6C55—C56—H56119.0
C24—C23—C22119.9 (3)C56—C57—C57A117.4 (3)
C24—C23—H23120.0C56—C57—H57121.3
C22—C23—H23120.0C57A—C57—H57121.3
C23—C24—C25120.5 (3)N51—C57A—C57130.3 (3)
C23—C24—Cl24119.8 (3)N51—C57A—C53A107.8 (2)
C25—C24—Cl24119.6 (3)C57—C57A—C53A121.9 (3)
C24—C25—C26119.0 (3)C66—C61—C62118.0 (2)
C24—C25—H25120.5C66—C61—C6121.5 (2)
C26—C25—H25120.5C62—C61—C6120.5 (2)
C21—C26—C25120.9 (3)C63—C62—C61121.4 (2)
C21—C26—H26119.6C63—C62—H62119.3
C25—C26—H26119.6C61—C62—H62119.3
C36—C31—C32118.0 (9)C64—C63—C62118.4 (3)
C33—C32—C31120.4 (11)C64—C63—H63120.8
C33—C32—H32119.8C62—C63—H63120.8
C31—C32—H32119.8C63—C64—F64118.4 (3)
C34—C33—C32120.4 (12)C63—C64—C65122.6 (2)
C34—C33—H33119.8F64—C64—C65119.0 (2)
C32—C33—H33119.8C64—C65—C66118.6 (2)
C33—C34—C35119.7 (10)C64—C65—H65120.7
C33—C34—Cl34115.7 (11)C66—C65—H65120.7
C35—C34—Cl34124.1 (11)C61—C66—C65120.9 (2)
C34—C35—C36118.3 (11)C61—C66—H66119.6
C34—C35—H35120.8C65—C66—H66119.6
C36—C35—H35120.8
C7A—S1—C2—N30.8 (2)C33—C34—C35—C3610 (5)
C7A—S1—C2—C27178.1 (3)Cl34—C34—C35—C36179 (2)
C27—C2—N3—N4176.9 (2)C32—C31—C36—C354 (3)
S1—C2—N3—N40.4 (3)C34—C35—C36—C310 (4)
C2—N3—N4—C7A1.9 (3)N4—C5—C51—C5386.5 (2)
C2—N3—N4—C5178.1 (2)C6—C5—C51—C5395.9 (3)
C7A—N4—C5—C61.1 (2)C57A—N51—C52—C530.6 (3)
N3—N4—C5—C6175.4 (2)N51—C52—C53—C53A0.4 (3)
C7A—N4—C5—C51177.14 (19)N51—C52—C53—C51179.3 (2)
N3—N4—C5—C516.3 (4)C5—C51—C53—C5227.7 (3)
N4—C5—C6—N71.2 (2)C5—C51—C53—C53A151.9 (2)
C51—C5—C6—N7176.8 (2)C52—C53—C53A—C54180.0 (3)
N4—C5—C6—C61176.9 (2)C51—C53—C53A—C540.3 (4)
C51—C5—C6—C615.2 (4)C52—C53—C53A—C57A0.1 (2)
C5—C6—N7—C7A0.7 (2)C51—C53—C53A—C57A179.6 (2)
C61—C6—N7—C7A177.5 (2)C57A—C53A—C54—C550.3 (4)
C6—N7—C7A—N40.0 (2)C53—C53A—C54—C55179.8 (2)
C6—N7—C7A—S1178.2 (2)C53A—C54—C55—C560.4 (4)
N3—N4—C7A—N7176.32 (19)C54—C55—C56—C570.7 (5)
C5—N4—C7A—N70.8 (3)C55—C56—C57—C57A0.1 (5)
N3—N4—C7A—S12.4 (2)C52—N51—C57A—C57178.9 (3)
C5—N4—C7A—S1179.50 (14)C52—N51—C57A—C53A0.5 (3)
C2—S1—C7A—N7176.6 (3)C56—C57—C57A—N51180.0 (3)
C2—S1—C7A—N41.65 (17)C56—C57—C57A—C53A0.7 (4)
N3—C2—C27—C21158.5 (3)C54—C53A—C57A—N51179.7 (2)
S1—C2—C27—C2124.3 (4)C53—C53A—C57A—N510.2 (3)
C2—C27—C21—C2290.8 (5)C54—C53A—C57A—C570.9 (4)
C2—C27—C21—C2691.3 (5)C53—C53A—C57A—C57179.2 (2)
C26—C21—C22—C231.6 (7)C5—C6—C61—C66153.4 (2)
C27—C21—C22—C23176.4 (5)N7—C6—C61—C6628.7 (3)
C21—C22—C23—C242.6 (9)C5—C6—C61—C6227.0 (4)
C22—C23—C24—C251.6 (10)N7—C6—C61—C62150.8 (2)
C22—C23—C24—Cl24179.2 (5)C66—C61—C62—C633.0 (4)
C23—C24—C25—C260.2 (9)C6—C61—C62—C63177.3 (2)
Cl24—C24—C25—C26177.4 (4)C61—C62—C63—C641.3 (4)
C22—C21—C26—C250.3 (7)C62—C63—C64—F64177.8 (2)
C27—C21—C26—C25178.2 (4)C62—C63—C64—C652.1 (4)
C24—C25—C26—C211.1 (8)C63—C64—C65—C663.6 (4)
C36—C31—C32—C333 (3)F64—C64—C65—C66176.3 (2)
C31—C32—C33—C3413 (5)C62—C61—C66—C651.5 (3)
C32—C33—C34—C3517 (6)C6—C61—C66—C65178.9 (2)
C32—C33—C34—Cl34171 (2)C64—C65—C66—C611.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N51—H51···N7i0.86 (3)2.27 (3)3.102 (3)165 (3)
C25—H25···Cg1i0.932.753.637 (5)161
C35—H35···Cg1i0.933.324.062 (5)139
Symmetry code: (i) x+1, y1/2, z+3/2.
6-(4-Bromophenyl)-2-(4-chlorobenzyl)-5-[(1H-indol-3-yl)methyl]imidazo[2,1-b][1,3,4]thiadiazole (III) top
Crystal data top
C26H18BrClN4SDx = 1.491 Mg m3
Mr = 533.85Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 4645 reflections
a = 9.5735 (8) Åθ = 2.6–27.9°
b = 9.6860 (9) ŵ = 1.95 mm1
c = 25.644 (2) ÅT = 296 K
V = 2377.9 (4) Å3Block, yellow
Z = 40.48 × 0.44 × 0.44 mm
F(000) = 1080
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
4645 independent reflections
Radiation source: Enhance (Mo) X-ray Source3140 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 27.9°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1112
Tmin = 0.368, Tmax = 0.424k = 1112
10501 measured reflectionsl = 3227
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.0488P)2 + 0.2472P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.100(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.40 e Å3
4645 reflectionsΔρmin = 0.51 e Å3
323 parametersAbsolute structure: Flack x determined using 943 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
18 restraintsAbsolute structure parameter: 0.014 (5)
Primary atom site location: difference Fourier map
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.83700 (15)0.41040 (12)0.58869 (4)0.0607 (4)
C20.8115 (5)0.5817 (5)0.60822 (16)0.0521 (11)
N30.7295 (4)0.6558 (4)0.58024 (14)0.0484 (9)
N40.6814 (4)0.5756 (3)0.53971 (12)0.0420 (8)
C50.5916 (4)0.5991 (4)0.49850 (14)0.0398 (9)
C60.5915 (5)0.4749 (4)0.47243 (16)0.0421 (10)
N70.6775 (4)0.3777 (3)0.49620 (12)0.0463 (8)
C7A0.7273 (5)0.4426 (4)0.53667 (16)0.0442 (11)
C270.8805 (6)0.6365 (6)0.65587 (17)0.0659 (14)0.839 (5)
H27A0.89880.73420.65120.079*0.839 (5)
H27B0.96950.59030.66060.079*0.839 (5)
C210.792 (3)0.6161 (7)0.7041 (7)0.0583 (16)0.839 (5)
C220.8012 (8)0.4946 (7)0.7315 (2)0.072 (2)0.839 (5)
H220.86100.42530.72010.086*0.839 (5)
C230.7217 (8)0.4742 (8)0.7761 (2)0.078 (2)0.839 (5)
H230.72630.39120.79420.094*0.839 (5)
C240.6363 (7)0.5786 (10)0.7928 (3)0.072 (2)0.839 (5)
Cl240.5446 (3)0.5544 (4)0.85097 (8)0.1052 (12)0.839 (5)
C250.6247 (11)0.6984 (10)0.7669 (4)0.093 (3)0.839 (5)
H250.56610.76790.77900.111*0.839 (5)
C260.7030 (9)0.7164 (8)0.7212 (4)0.081 (3)0.839 (5)
H260.69400.79780.70230.097*0.839 (5)
C370.8805 (6)0.6365 (6)0.65587 (17)0.0659 (14)0.161 (5)
H37A0.91040.73060.64940.079*0.161 (5)
H37B0.96310.58180.66320.079*0.161 (5)
C310.786 (13)0.635 (3)0.703 (4)0.0583 (16)0.161 (5)
C320.733 (4)0.515 (3)0.7245 (12)0.072 (2)0.161 (5)
H320.75580.43070.70960.086*0.161 (5)
C330.646 (4)0.519 (3)0.7682 (12)0.078 (2)0.161 (5)
H330.62130.43860.78530.094*0.161 (5)
C340.599 (6)0.645 (3)0.7853 (16)0.072 (2)0.161 (5)
Cl340.4934 (14)0.653 (2)0.8408 (5)0.1052 (12)0.161 (5)
C350.644 (6)0.763 (3)0.7640 (19)0.093 (3)0.161 (5)
H350.61350.84730.77680.111*0.161 (5)
C360.739 (6)0.758 (3)0.7223 (18)0.081 (3)0.161 (5)
H360.76940.83980.70740.097*0.161 (5)
C510.5177 (5)0.7330 (4)0.49086 (18)0.0491 (11)
H51A0.46480.75230.52230.059*
H51B0.45080.72090.46280.059*
N510.6774 (5)1.0775 (4)0.47897 (15)0.0592 (10)
H510.669 (5)1.175 (5)0.4903 (17)0.071*
C520.5912 (5)0.9832 (5)0.50168 (18)0.0517 (11)
H520.53161.00240.52940.062*
C530.6035 (4)0.8576 (4)0.47868 (16)0.0441 (11)
C53A0.7043 (5)0.8739 (5)0.43823 (15)0.0455 (10)
C540.7624 (5)0.7861 (5)0.40072 (18)0.0572 (12)
H540.73350.69460.39820.069*
C550.8628 (6)0.8371 (6)0.3677 (2)0.0751 (16)
H550.90150.77910.34270.090*
C560.9083 (7)0.9735 (7)0.3707 (2)0.0797 (18)
H560.97771.00460.34820.096*
C570.8518 (6)1.0620 (6)0.4065 (2)0.0687 (15)
H570.88131.15340.40840.082*
C57A0.7497 (5)1.0127 (5)0.43978 (18)0.0523 (12)
C610.5199 (4)0.4425 (4)0.42318 (15)0.0407 (10)
C620.3870 (5)0.4889 (5)0.41314 (17)0.0540 (12)
H620.33770.53450.43920.065*
C630.3253 (5)0.4693 (5)0.36521 (18)0.0591 (13)
H630.23610.50320.35870.071*
C640.3972 (5)0.3988 (6)0.32711 (16)0.0573 (13)
Br640.31651 (7)0.38367 (7)0.25942 (2)0.0898 (3)
C650.5256 (5)0.3449 (5)0.33654 (17)0.0593 (13)
H650.57170.29370.31110.071*
C660.5865 (5)0.3678 (5)0.38478 (16)0.0524 (12)
H660.67480.33180.39140.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0771 (8)0.0558 (7)0.0490 (6)0.0067 (8)0.0131 (6)0.0130 (6)
C20.057 (3)0.061 (3)0.038 (2)0.007 (3)0.001 (2)0.007 (2)
N30.059 (2)0.046 (2)0.0407 (19)0.0101 (19)0.0035 (18)0.0027 (17)
N40.055 (2)0.034 (2)0.0360 (17)0.000 (2)0.0029 (17)0.0021 (14)
C50.046 (2)0.037 (2)0.037 (2)0.003 (2)0.0002 (19)0.009 (2)
C60.046 (2)0.037 (3)0.043 (2)0.007 (2)0.004 (2)0.003 (2)
N70.062 (2)0.0325 (18)0.0440 (18)0.004 (2)0.0054 (19)0.0006 (16)
C7A0.057 (3)0.036 (3)0.040 (2)0.001 (2)0.002 (2)0.0116 (19)
C270.072 (3)0.080 (4)0.046 (3)0.021 (3)0.007 (2)0.004 (3)
C210.070 (4)0.064 (4)0.041 (2)0.015 (5)0.016 (3)0.004 (4)
C220.088 (6)0.061 (4)0.066 (4)0.002 (4)0.020 (4)0.001 (3)
C230.095 (6)0.074 (5)0.066 (4)0.011 (4)0.019 (4)0.006 (4)
C240.057 (5)0.103 (7)0.056 (4)0.020 (5)0.005 (3)0.017 (4)
Cl240.0763 (14)0.165 (3)0.0743 (12)0.0284 (17)0.0220 (11)0.0164 (15)
C250.086 (6)0.113 (7)0.079 (5)0.017 (8)0.001 (4)0.012 (7)
C260.091 (7)0.083 (5)0.070 (4)0.008 (5)0.010 (4)0.008 (4)
C370.072 (3)0.080 (4)0.046 (3)0.021 (3)0.007 (2)0.004 (3)
C310.070 (4)0.064 (4)0.041 (2)0.015 (5)0.016 (3)0.004 (4)
C320.088 (6)0.061 (4)0.066 (4)0.002 (4)0.020 (4)0.001 (3)
C330.095 (6)0.074 (5)0.066 (4)0.011 (4)0.019 (4)0.006 (4)
C340.057 (5)0.103 (7)0.056 (4)0.020 (5)0.005 (3)0.017 (4)
Cl340.0763 (14)0.165 (3)0.0743 (12)0.0284 (17)0.0220 (11)0.0164 (15)
C350.086 (6)0.113 (7)0.079 (5)0.017 (8)0.001 (4)0.012 (7)
C360.091 (7)0.083 (5)0.070 (4)0.008 (5)0.010 (4)0.008 (4)
C510.052 (3)0.042 (3)0.053 (3)0.004 (2)0.006 (2)0.001 (2)
N510.079 (3)0.038 (2)0.060 (2)0.008 (3)0.017 (2)0.001 (2)
C520.061 (3)0.044 (3)0.050 (3)0.008 (3)0.006 (2)0.000 (2)
C530.051 (2)0.040 (3)0.041 (2)0.007 (2)0.015 (2)0.004 (2)
C53A0.055 (3)0.039 (2)0.042 (2)0.004 (2)0.010 (2)0.005 (2)
C540.065 (3)0.055 (3)0.051 (3)0.003 (3)0.006 (2)0.004 (3)
C550.083 (4)0.083 (4)0.060 (3)0.009 (4)0.004 (3)0.002 (3)
C560.076 (4)0.087 (5)0.076 (4)0.001 (4)0.005 (3)0.027 (4)
C570.073 (4)0.051 (3)0.082 (4)0.005 (3)0.006 (3)0.026 (3)
C57A0.062 (3)0.039 (3)0.057 (3)0.001 (2)0.016 (2)0.011 (2)
C610.042 (2)0.042 (3)0.038 (2)0.013 (2)0.0017 (19)0.0045 (19)
C620.053 (3)0.063 (3)0.047 (3)0.010 (3)0.006 (2)0.004 (2)
C630.045 (3)0.074 (3)0.058 (3)0.004 (3)0.005 (3)0.003 (3)
C640.059 (3)0.072 (3)0.040 (2)0.019 (3)0.008 (2)0.003 (3)
Br640.0976 (4)0.1173 (5)0.0545 (3)0.0123 (4)0.0222 (3)0.0103 (3)
C650.064 (3)0.072 (4)0.042 (2)0.008 (3)0.001 (2)0.012 (2)
C660.050 (3)0.058 (3)0.049 (2)0.002 (3)0.001 (2)0.004 (2)
Geometric parameters (Å, º) top
S1—C7A1.726 (4)C35—C361.399 (14)
S1—C21.750 (5)C35—H350.9300
C2—N31.283 (5)C36—H360.9300
C2—C271.487 (6)C51—C531.493 (6)
N3—N41.376 (5)C51—H51A0.9700
N4—C7A1.363 (5)C51—H51B0.9700
N4—C51.381 (5)N51—C521.362 (6)
C5—C61.376 (6)N51—C57A1.373 (6)
C5—C511.490 (6)N51—H510.99 (5)
C6—N71.391 (5)C52—C531.357 (6)
C6—C611.471 (6)C52—H520.9300
N7—C7A1.304 (5)C53—C53A1.426 (6)
C27—C211.511 (7)C53A—C541.400 (6)
C27—H27A0.9700C53A—C57A1.413 (7)
C27—H27B0.9700C54—C551.373 (7)
C21—C261.367 (11)C54—H540.9300
C21—C221.373 (12)C55—C561.393 (8)
C22—C231.387 (8)C55—H550.9300
C22—H220.9300C56—C571.367 (8)
C23—C241.369 (11)C56—H560.9300
C23—H230.9300C57—C57A1.383 (7)
C24—C251.341 (11)C57—H570.9300
C24—Cl241.746 (6)C61—C621.374 (6)
C25—C261.402 (10)C61—C661.378 (6)
C25—H250.9300C62—C631.377 (6)
C26—H260.9300C62—H620.9300
C31—C361.369 (14)C63—C641.376 (7)
C31—C321.373 (17)C63—H630.9300
C32—C331.395 (13)C64—C651.358 (7)
C32—H320.9300C64—Br641.906 (4)
C33—C341.368 (16)C65—C661.385 (6)
C33—H330.9300C65—H650.9300
C34—C351.340 (16)C66—H660.9300
C34—Cl341.746 (12)
C7A—S1—C288.0 (2)C31—C36—C35121.1 (16)
N3—C2—C27122.1 (5)C31—C36—H36119.4
N3—C2—S1117.1 (3)C35—C36—H36119.4
C27—C2—S1120.8 (4)C5—C51—C53118.0 (3)
C2—N3—N4108.1 (4)C5—C51—H51A107.8
C7A—N4—N3117.9 (3)C53—C51—H51A107.8
C7A—N4—C5108.2 (3)C5—C51—H51B107.8
N3—N4—C5133.9 (3)C53—C51—H51B107.8
C6—C5—N4103.2 (3)H51A—C51—H51B107.1
C6—C5—C51134.1 (4)C52—N51—C57A108.2 (4)
N4—C5—C51122.7 (4)C52—N51—H51117 (3)
C5—C6—N7112.2 (4)C57A—N51—H51134 (3)
C5—C6—C61127.2 (4)C53—C52—N51111.3 (4)
N7—C6—C61120.5 (4)C53—C52—H52124.4
C7A—N7—C6103.8 (3)N51—C52—H52124.4
N7—C7A—N4112.6 (4)C52—C53—C53A106.0 (4)
N7—C7A—S1138.6 (3)C52—C53—C51125.9 (4)
N4—C7A—S1108.8 (3)C53A—C53—C51127.9 (4)
C2—C27—C21112.2 (11)C54—C53A—C57A118.4 (4)
C2—C27—H27A109.2C54—C53A—C53134.5 (4)
C21—C27—H27A109.2C57A—C53A—C53107.1 (4)
C2—C27—H27B109.2C55—C54—C53A118.9 (5)
C21—C27—H27B109.2C55—C54—H54120.6
H27A—C27—H27B107.9C53A—C54—H54120.6
C26—C21—C22118.9 (6)C54—C55—C56121.8 (5)
C26—C21—C27121.3 (8)C54—C55—H55119.1
C22—C21—C27119.8 (8)C56—C55—H55119.1
C21—C22—C23120.7 (6)C57—C56—C55120.5 (6)
C21—C22—H22119.7C57—C56—H56119.7
C23—C22—H22119.7C55—C56—H56119.7
C24—C23—C22118.7 (6)C56—C57—C57A118.5 (5)
C24—C23—H23120.6C56—C57—H57120.7
C22—C23—H23120.6C57A—C57—H57120.7
C25—C24—C23122.2 (6)N51—C57A—C57130.6 (5)
C25—C24—Cl24119.9 (7)N51—C57A—C53A107.5 (4)
C23—C24—Cl24118.0 (7)C57—C57A—C53A121.9 (5)
C24—C25—C26118.5 (8)C62—C61—C66117.8 (4)
C24—C25—H25120.7C62—C61—C6121.5 (4)
C26—C25—H25120.7C66—C61—C6120.7 (4)
C21—C26—C25120.9 (8)C61—C62—C63121.3 (5)
C21—C26—H26119.5C61—C62—H62119.4
C25—C26—H26119.5C63—C62—H62119.4
C36—C31—C32118.0 (16)C64—C63—C62119.2 (5)
C31—C32—C33120.9 (15)C64—C63—H63120.4
C31—C32—H32119.5C62—C63—H63120.4
C33—C32—H32119.5C65—C64—C63121.1 (4)
C34—C33—C32118.8 (16)C65—C64—Br64120.0 (4)
C34—C33—H33120.6C63—C64—Br64118.9 (4)
C32—C33—H33120.6C64—C65—C66118.6 (5)
C35—C34—C33121.2 (15)C64—C65—H65120.7
C35—C34—Cl34118.7 (16)C66—C65—H65120.7
C33—C34—Cl34119.7 (16)C61—C66—C65121.8 (4)
C34—C35—C36119.5 (16)C61—C66—H66119.1
C34—C35—H35120.3C65—C66—H66119.1
C36—C35—H35120.3
C7A—S1—C2—N30.9 (4)C33—C34—C35—C362 (12)
C7A—S1—C2—C27179.7 (4)Cl34—C34—C35—C36175 (5)
C27—C2—N3—N4179.2 (4)C32—C31—C36—C353 (17)
S1—C2—N3—N40.4 (5)C34—C35—C36—C311 (13)
C2—N3—N4—C7A0.5 (5)C6—C5—C51—C53116.0 (5)
C2—N3—N4—C5179.4 (4)N4—C5—C51—C5366.0 (5)
C7A—N4—C5—C60.8 (4)C57A—N51—C52—C530.3 (5)
N3—N4—C5—C6179.2 (4)N51—C52—C53—C53A0.3 (5)
C7A—N4—C5—C51177.7 (4)N51—C52—C53—C51175.2 (4)
N3—N4—C5—C512.3 (6)C5—C51—C53—C52133.1 (4)
N4—C5—C6—N70.0 (4)C5—C51—C53—C53A53.1 (6)
C51—C5—C6—N7178.3 (4)C52—C53—C53A—C54179.6 (5)
N4—C5—C6—C61176.0 (4)C51—C53—C53A—C544.8 (8)
C51—C5—C6—C615.7 (8)C52—C53—C53A—C57A0.8 (5)
C5—C6—N7—C7A0.8 (5)C51—C53—C53A—C57A175.5 (4)
C61—C6—N7—C7A177.2 (4)C57A—C53A—C54—C551.3 (6)
C6—N7—C7A—N41.4 (5)C53—C53A—C54—C55178.3 (4)
C6—N7—C7A—S1179.0 (4)C53A—C54—C55—C560.2 (7)
N3—N4—C7A—N7178.6 (4)C54—C55—C56—C571.1 (8)
C5—N4—C7A—N71.5 (5)C55—C56—C57—C57A0.5 (8)
N3—N4—C7A—S11.2 (5)C52—N51—C57A—C57177.9 (5)
C5—N4—C7A—S1178.8 (3)C52—N51—C57A—C53A0.8 (5)
C2—S1—C7A—N7178.6 (5)C56—C57—C57A—N51179.4 (5)
C2—S1—C7A—N41.1 (3)C56—C57—C57A—C53A0.9 (7)
N3—C2—C27—C2189.1 (8)C54—C53A—C57A—N51179.3 (4)
S1—C2—C27—C2189.6 (7)C53—C53A—C57A—N510.9 (5)
C2—C27—C21—C2693.1 (19)C54—C53A—C57A—C571.9 (6)
C2—C27—C21—C2287 (2)C53—C53A—C57A—C57177.8 (4)
C26—C21—C22—C231 (3)C5—C6—C61—C6241.3 (6)
C27—C21—C22—C23179.7 (13)N7—C6—C61—C62142.9 (4)
C21—C22—C23—C241.3 (16)C5—C6—C61—C66136.5 (5)
C22—C23—C24—C251.6 (11)N7—C6—C61—C6639.2 (6)
C22—C23—C24—Cl24176.5 (5)C66—C61—C62—C634.0 (7)
C23—C24—C25—C260.0 (13)C6—C61—C62—C63173.9 (4)
Cl24—C24—C25—C26178.0 (7)C61—C62—C63—C641.6 (7)
C22—C21—C26—C252 (3)C62—C63—C64—C652.1 (8)
C27—C21—C26—C25178.1 (14)C62—C63—C64—Br64175.6 (4)
C24—C25—C26—C211.9 (19)C63—C64—C65—C663.0 (8)
C36—C31—C32—C337 (16)Br64—C64—C65—C66174.6 (4)
C31—C32—C33—C349 (10)C62—C61—C66—C653.0 (7)
C32—C33—C34—C356 (9)C6—C61—C66—C65174.9 (4)
C32—C33—C34—Cl34178 (4)C64—C65—C66—C610.5 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N51—H51···N7i0.99 (5)1.97 (5)2.941 (5)166 (4)
C51—H51A···Cg1ii0.972.973.699 (5)133
C62—H62···Cg2ii0.932.913.757 (5)152
C65—H65···Cg3iii0.932.823.412 (7)123
C65—H65···Cg4iii0.932.913.60 (3)131
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+3/2, z+1; (iii) x+3/2, y+1, z1/2.
Selected torsion angles (°) for compounds (I)–(III) top
Parameter(I) type 1(I) type 2(II)(III)
x = 1x = 2x = nulx = nul
Sx1—Cx2—Cx27—Cx21-4.1 (6)-26.9 (4)-23.4 (5)-89.6 (7)
Sx1—Cx2—Cx37—Cx31-9.7 (11)-19.8 (17)-98 (2)
Cx2—Cx27—Cx21—Cx2282.4 (18)111.2 (3)91.7 (4)87 (2)
Cx2—Cx37—Cx31—Cx3271 (3)96.2 (17)63 (10)
Nx4—Cx5—Cx51—Cx53-83.8 (3)-84.2 (3)-86.4 (3)66.0 (5)
Cx5—Cx51—Cx53—Cx5221.5 (4)14.9 (3)27.4 (4)-133.1 (4)
Cx5—Cx6—Cx61—Cx62-24.7 (4)-33.7 (3)-27.0 (4)-41.3 (6)
Hydrogen bond geometries (Å, °) for compounds (I)–(III) top
Cg1–Cg7 represent the centroids of the C15A/C154–C157/C15B, C25A/C254–C257/C25B, C261–C266, C53A/C54–C57/C57A, N51/C52/C53/C53A/C57A, C21–C26 and C31–C36 rings, respectively.
CompoundD—H···AD—HH···AD···AD—H···A
(I)N151—H151···N17i0.83 (3)2.11 (3)2.912 (3)162 (3)
N251—H251···N27ii0.83 (3)2.27 (3)3.087 (3)167 (3)
C135—H135···Cg1i0.932.523.272 (11)138
C225—H225···Cg2ii0.932.873.568 (4)133
C252—H252···Cg3ii0.932.773.568 (3)134
(II)N51—H51···N7i0.86 (3)2.27 (3)3.102 (3)165 (3)
C25—H25···Cg4i0.932.753.637 (5)161
(III)N51—H51···N7iii0.99 (5)1.97 (5)2.941 (5)166 (4)
C51—H51A···Cg4iv0.972.973.699 (5)133
C62—H62···Cg5iv0.932.913.757 (5)152
C65—H65···Cg6v0.932.823.412 (7)123
C62—H62···Cg7v0.932.913.60 (3)131
Symmetry codes: (i) 1 - x, -1/2 + y, 3/2 - z; (ii) 2 - x, -1/2 + y, 1/2 - z; (iii) x, 1 + y, z; (iv) -1/2 +x, 3/2 - y, 1 - z; (v) 3/2 - x, 1 - y, -1/2 + z.
 

Acknowledgements

SS thanks the University of Mysore for research facilities. HSY thanks Professor S. Kabilan and Dr. Elancheran, Annamalai University, TN, for the X-ray data collection for compound (I)[link].

Funding information

HSY thanks the University Grants Commission, New Delhi for the award of a BSR Faculty Fellowship for three years.

References

First citationAnil Kumar, G. N. & Kokila, M. K. (2016). Private Communication (refcode HAKCIL). CCDC, Cambridge, England.  Google Scholar
First citationAppleton, J. E., Dack, K. N., Green, A. D. & Steele, J. (1993). Tetrahedron Lett. 34, 1529–1532.  CrossRef CAS Web of Science Google Scholar
First citationBanu, A., Begum, N. S., Lamani, R. S. & Khazi, I. M. (2011). Acta Cryst. E67, o779.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBanu, A., Lamani, R. S., Khazi, I. M. & Shahina Begum, N. (2010a). Mol. Cryst. Liq. Cryst. 533, 141–151.  Web of Science CSD CrossRef CAS Google Scholar
First citationBanu, A., Lamani, R. S., Khazi, I. M. & Shahina Begum, N. (2010b). Mol. Cryst. Liq. Cryst. 533, 162–171.  Web of Science CSD CrossRef CAS Google Scholar
First citationBanu, A., Lamani, R. S., Khazi, I. M. & Shahina Begum, N. (2014). J. Saudi Chem. Soc. 18, 371–378.  Web of Science CSD CrossRef CAS Google Scholar
First citationBanu, A., Vasundhara, D. E., Lamani, R. S., Khazi, I. M. & Shahina Begum, N. (2013). J. Saudi Chem. Soc. 17, 211–217.  Web of Science CSD CrossRef CAS Google Scholar
First citationBanu, A., Ziaulla, M., Begum, N. S., Lamani, R. S. & Khazi, I. M. (2011a). Acta Cryst. E67, o154.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBanu, A., Ziaulla, M., Begum, N. S., Lamani, R. S. & Khazi, I. M. (2011b). Acta Cryst. E67, o617–o618.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernal, I., Cetrullo, J., Somoza, F., Ricci, J. S., Lewis, R. & Massoud, S. S. (1996). J. Coord. Chem. 38, 41–53.  CrossRef CAS Web of Science Google Scholar
First citationBhongade, B. A., Talath, S., Gadad, R. A. & Gadad, A. K. (2016). J. Saudi Chem. Soc. 20, S463–S475.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2012). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2017). SADABS and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDa, Y.-X., Zhu, J.-H., Zhang, Z., Jia, X.-D., Yang, C.-X. & Quan, Z.-J. (2012). J. Heterocycl. Chem. 49, 102–105.  Web of Science CSD CrossRef CAS Google Scholar
First citationIyer, D., Vartak, S. V., Mishra, A., Goldsmith, G., Kumar, S., Srivastava, M., Hegde, M., Gopalakrishnan, V., Glenn, M., Velusamy, M., Choudhary, B., Kalakonda, N., Karki, S. S., Surolia, A. & Raghavan, S. C. (2016). FEBS J. 283, 3408–3437.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKarki, S. S., Panjamurthy, K., Kumar, S., Nambiar, M., Ramareddy, S. A., Chiruvella, K. K. & Raghavan, S. C. (2011). Eur. J. Med. Chem. 46, 2109–2116.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKhazi, I. A. M., Gadad, A. K., Lamani, R. S. & Bhongade, B. A. (2011). Tetrahedron, 67, 3289–3316.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShahina Begum, N., Vasundhara, D. E., Kolavi, G. D., Gowda, K. V. A. & Khazi, I. M. (2008). J. Chem. Res. Synopses, pp. 193–194.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVartak, S. V., Hegde, M., Iyer, D., Gaikwad, S., Gopalakrishnan, V., Srivastava, M., Karki, S. S., Choudhary, B., Ray, P., Santhoshkumar, T. R. & Raghavan, S. C. (2016). Biochem. Pharmacol. 122, 10–22.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds