research communications
Bis{4-[(2-hydroxy-5-methoxy-3-nitrobenzylidene)amino]phenyl} ether
aDepartment of Chemistry, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh, bDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia, and cSchool of Chemical Sciences, Universiti Sains Malaysia, Penang 11800 USM, Malaysia
*Correspondence e-mail: arafath.usm@gmail.com, sohug44@gmail.com
The molecule of the title compound, C28H22N4O9, exhibits crystallographically imposed twofold rotational symmetry, with a dihedral angle of 66.0 (2)° between the planes of the two central benzene rings bounded to the central oxygen atom. The dihedral angle between the planes of the central benzene ring and the terminal phenol ring is 4.9 (2)°. Each half of the molecule exhibits an imine E configuration. An intramolecular O—H⋯N hydrogen bond is present. In the crystal, the molecules are linked into layers parallel to the ab plane via C—H⋯O hydrogen bonds. The crystal studied was refined as a two-component pseudomerohedral twin.
CCDC reference: 1445336
1. Chemical context
Bisthiosemicarbazones are formed by connecting separated thiosemicarbazone moieties through a pair of oxybisphenyl rings. These tetradentate ligands trap metals inside to form square-planar complexes (Alsop et al., 2005; Blower et al., 2003; Jasinski et al., 2003). The length of the C—C bond in the backbone affects the stability of the complexes. A higher number of C—C bonds obtained via alkylation or arylation allows metal ions to better fit inside the ligand cavity (Blower et al., 2003). These tetradentate ligands and transition-metal complexes exhibit promising anticancer and antibacterial activities (Lobana et al., 2009). In view of this and our research interest in the synthesis of oxybis Schiff base compounds, we herein report the supramolecular features and conformational comparison of the title compound.
2. Structural commentary
In the title compound (Fig. 1), the comprises one half of the oxybisbenzenyl molecule where the oxygen atom (O1) lies on a twofold rotation axis. The complete molecule is generated through the −x, y, − z. The planes of the benzene rings bonded to the central oxygen atom form a dihedral angle of 66.0 (2)°. The dihedral angle between the benzene and 4-methoxy-2-nitrophenol rings in the same half of the molecules is 4.9 (2)°, indicating an almost coplanar arrangement of the benzene and phenol rings. The sp2-hybridized character of atoms N1 and C7 is confirmed by the N1—C7 [1.287 (6) Å] bond length and C7—N1—C8 [121.9 (4)°] and N1—C7—C6 [121.7 (4)°] bond angles (Arafath et al., 2018). Each half of the molecule exhibits an imine E configuration with a C6—C7—N1—C8 torsion angle of 177.7 (4)°. In the molecule, atom N1 of the imine moiety acts as a hydrogen-bond acceptor for the adjacent phenol group, forming an intramolecular O—H⋯N hydrogen bond with an S(6) ring motif (Fig. 1, Table 1).
3. Supramolecular features
In the crystal, atom O5 acts as a bifurcated-hydrogen-bond acceptor, linking molecules into layers parallel to the ab plane (Fig. 2) through C7—H7A⋯O5 and C13—H13A⋯O5 hydrogen bonds (Table 1). No C—H⋯π or π–π interactions are observed.
4. Database survey
In a search of the Cambridge Structure Database (CSD, version 5.40, last update August 2019; Groom et al., 2016), twelve structures containing the (1E,1′E)-N,N′-[oxybis(4,1-phenylene)]bis(1-phenylmethanimine) moiety with different substituents were found. The reference moiety is illustrated in Fig. 3. Details regarding different substituents (R1) together with the dihedral and torsion angles for oxybisbenzenyl moiety in these structures are tabulated in Table 2. In analogy with the title molecule, the planes of the central benzene ring bonded to the central oxygen atom are always V-shaped with dihedral angle 1 in the range of 54.6–84.8°. The dihedral angle between the planes of central and terminal benzene rings exists in two conformations, viz. non-coplanar [dihedral 2 = 18.0–73.5°] and nearly coplanar [dihedral 2 = 4.8–9.9°]. In all of these structures, the imine C=N double bond adopts an E configuration with torsion angles corresponding to C6—C7—N1—C8 in the range 172.9–180.0°.
5. Synthesis and crystallization
To a sample of 2-hydroxy-5-methoxy-3-nitrobenzaldehyde (0.98 g, 5.00 mmol) dissolved in 25.0 mL of methanol, 0.20 mL of glacial acetic acid were added, and the mixture was refluxed for 30 min. A solution of 4,4′-oxydianiline (0.50 g, 2.50 mmol) in 20.0 mL of methanol was added dropwise under stirring to the aldehyde solution. The resulting deep-red solution was refluxed for 4 h with stirring. The reaction scheme is shown in Fig. 4. The deep-red precipitate that formed was filtered off and washed with 5.0 mL of methanol and 5.0 mL of n-hexane. The recovered product was dissolved in chloroform for recrystallization. Purple single crystals suitable for X-ray diffraction were obtained by slow evaporation of the solvent, m.p. 547–548 K, yield 96%. Analysis calculated for C28H22N4O9 (f.w. 558.50 g mol−1) C, 60.16; H, 3.93; N, 10; found: C, 59.04; H, 3.85; N, 9.90%. 1H NMR (500 MHz, DMSO-d6, Me4Si ppm): δ 10.23 (s, OH), δ 9.12 (s, HC=N), δ 7.69–7.21 (multiplet, aromatic), δ 3.83 (s, Ph—OCH3). 13C NMR (DMSO-d6, Me4Si ppm): δ 161.69 (C=N), δ 156.21–114.96 (C-aromatic), δ 56.25 (OCH3). IR (KBr pellets υmax/cm−1): 3441 υ(OH), 3109 υ(C—H, sp2), 2956 υ(CH3), 1598 υ(C=N), 1529 υ(C=C, aromatic), 1497 υ(NO2, asym.), 1326 υ(NO2, sym.), 1257 υ(C—O, phenolic), 1194 υ(C—O, Ph—OCH3), 1056 υ(C—N), 979 υ(CH, bend. aromatic).
6. Refinement
Crystal data, data collection and structure . The phenolic hydrogen atom was located in a difference-Fourier map and refined freely. All other H atoms attached to C were positioned geometrically and refined using a riding model with C—H= 0.95–0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating model was used for the methyl group. The crystal investigated was refined as a two-component pseudomerohedral twin resulting from a 180° rotation about the [001] direction, with a twin ratio of 0.977 (3):0.023 (3).
details are summarized in Table 3
|
Supporting information
CCDC reference: 1445336
https://doi.org/10.1107/S2056989019016852/rz5267sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019016852/rz5267Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019016852/rz5267Isup3.cml
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXL2013 (Sheldrick, 2015) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015) and PLATON (Spek, 2009).C28H22N4O9 | F(000) = 1160 |
Mr = 558.49 | Dx = 1.501 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 15.954 (4) Å | Cell parameters from 9905 reflections |
b = 5.4599 (12) Å | θ = 3–31° |
c = 28.397 (6) Å | µ = 0.11 mm−1 |
β = 92.299 (5)° | T = 100 K |
V = 2471.7 (10) Å3 | Block, purple |
Z = 4 | 0.38 × 0.24 × 0.14 mm |
Bruker APEX DUO CCD area detector diffractometer | 2830 independent reflections |
Radiation source: fine-focus sealed tube | 2591 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
φ and ω scans | θmax = 27.5°, θmin = 0.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −20→20 |
Tmin = 0.879, Tmax = 0.956 | k = −7→7 |
35811 measured reflections | l = −36→36 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.100 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.353 | w = 1/[σ2(Fo2) + (0.1539P)2 + 17.7934P] where P = (Fo2 + 2Fc2)/3 |
S = 1.15 | (Δ/σ)max < 0.001 |
2830 reflections | Δρmax = 0.31 e Å−3 |
192 parameters | Δρmin = −0.31 e Å−3 |
Experimental. The following wavelength and cell were deduced by SADABS from the direction cosines etc. They are given here for emergency use only: CELL 0.71095 5.463 8.443 28.418 92.106 89.981 108.897 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.000000 | −0.2692 (9) | 0.250000 | 0.0444 (13) | |
O2 | 0.4044 (2) | 0.9524 (8) | 0.47761 (16) | 0.0525 (11) | |
O3 | 0.4346 (3) | 0.1480 (8) | 0.36154 (14) | 0.0475 (10) | |
O4 | 0.6359 (2) | 0.4545 (9) | 0.43220 (19) | 0.0664 (14) | |
O5 | 0.5853 (3) | 0.1292 (9) | 0.4007 (2) | 0.0710 (15) | |
N1 | 0.2747 (2) | 0.1732 (8) | 0.34224 (14) | 0.0371 (9) | |
N2 | 0.5771 (3) | 0.3336 (9) | 0.41607 (16) | 0.0417 (10) | |
C1 | 0.3380 (3) | 0.6629 (9) | 0.42249 (18) | 0.0364 (10) | |
H1A | 0.284746 | 0.739136 | 0.424432 | 0.044* | |
C2 | 0.4061 (3) | 0.7544 (9) | 0.44839 (17) | 0.0355 (10) | |
C3 | 0.4833 (3) | 0.6438 (9) | 0.44506 (17) | 0.0365 (10) | |
H3A | 0.530272 | 0.707394 | 0.462653 | 0.044* | |
C4 | 0.4934 (3) | 0.4407 (9) | 0.41635 (16) | 0.0337 (10) | |
C5 | 0.4255 (3) | 0.3424 (9) | 0.38929 (16) | 0.0332 (10) | |
C6 | 0.3471 (3) | 0.4586 (9) | 0.39343 (16) | 0.0337 (10) | |
C7 | 0.2723 (3) | 0.3645 (9) | 0.36861 (17) | 0.0366 (10) | |
H7A | 0.220289 | 0.446315 | 0.371966 | 0.044* | |
C8 | 0.2016 (3) | 0.0754 (9) | 0.31932 (16) | 0.0335 (10) | |
C9 | 0.2115 (3) | −0.1371 (9) | 0.29336 (17) | 0.0366 (10) | |
H9A | 0.265646 | −0.208522 | 0.291709 | 0.044* | |
C10 | 0.1439 (3) | −0.2462 (9) | 0.26992 (16) | 0.0369 (10) | |
H10A | 0.151248 | −0.392646 | 0.252498 | 0.044* | |
C11 | 0.0657 (3) | −0.1405 (9) | 0.27200 (16) | 0.0349 (10) | |
C12 | 0.0535 (3) | 0.0722 (9) | 0.29753 (18) | 0.0395 (11) | |
H12A | −0.000735 | 0.142841 | 0.298889 | 0.047* | |
C13 | 0.1217 (3) | 0.1799 (9) | 0.32098 (17) | 0.0386 (11) | |
H13A | 0.114209 | 0.326303 | 0.338386 | 0.046* | |
C14 | 0.3252 (3) | 1.0498 (11) | 0.4876 (2) | 0.0477 (13) | |
H14A | 0.332369 | 1.185096 | 0.510095 | 0.072* | |
H14B | 0.290647 | 0.921682 | 0.501263 | 0.072* | |
H14C | 0.297545 | 1.110264 | 0.458451 | 0.072* | |
H1O3 | 0.386 (6) | 0.117 (15) | 0.350 (3) | 0.08 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.047 (3) | 0.029 (2) | 0.055 (3) | 0.000 | −0.023 (2) | 0.000 |
O2 | 0.0300 (17) | 0.054 (2) | 0.073 (3) | 0.0037 (16) | −0.0050 (16) | −0.031 (2) |
O3 | 0.0378 (19) | 0.054 (2) | 0.050 (2) | 0.0037 (16) | −0.0020 (15) | −0.0231 (18) |
O4 | 0.0290 (18) | 0.074 (3) | 0.095 (3) | 0.0049 (19) | −0.013 (2) | −0.024 (3) |
O5 | 0.044 (2) | 0.069 (3) | 0.099 (4) | 0.018 (2) | −0.008 (2) | −0.039 (3) |
N1 | 0.0291 (18) | 0.043 (2) | 0.039 (2) | −0.0034 (16) | −0.0033 (15) | −0.0025 (17) |
N2 | 0.0296 (19) | 0.052 (2) | 0.044 (2) | 0.0046 (18) | 0.0000 (16) | −0.0073 (19) |
C1 | 0.027 (2) | 0.035 (2) | 0.047 (2) | 0.0005 (17) | −0.0033 (18) | −0.003 (2) |
C2 | 0.030 (2) | 0.037 (2) | 0.039 (2) | −0.0011 (18) | 0.0016 (17) | −0.0075 (19) |
C3 | 0.027 (2) | 0.041 (2) | 0.042 (2) | −0.0031 (18) | −0.0018 (17) | −0.006 (2) |
C4 | 0.0241 (19) | 0.041 (2) | 0.036 (2) | 0.0020 (17) | −0.0006 (16) | −0.0026 (18) |
C5 | 0.030 (2) | 0.037 (2) | 0.033 (2) | −0.0002 (18) | 0.0015 (16) | −0.0051 (18) |
C6 | 0.028 (2) | 0.040 (2) | 0.033 (2) | −0.0040 (18) | −0.0020 (16) | −0.0031 (18) |
C7 | 0.027 (2) | 0.043 (3) | 0.040 (2) | −0.0021 (18) | −0.0027 (17) | −0.003 (2) |
C8 | 0.031 (2) | 0.037 (2) | 0.032 (2) | −0.0019 (18) | −0.0028 (16) | 0.0004 (18) |
C9 | 0.034 (2) | 0.036 (2) | 0.039 (2) | 0.0035 (18) | −0.0025 (18) | −0.0007 (19) |
C10 | 0.042 (2) | 0.033 (2) | 0.035 (2) | 0.0023 (19) | −0.0030 (18) | −0.0017 (18) |
C11 | 0.039 (2) | 0.034 (2) | 0.032 (2) | −0.0052 (18) | −0.0086 (17) | 0.0028 (18) |
C12 | 0.034 (2) | 0.037 (2) | 0.046 (3) | 0.0053 (19) | −0.0107 (19) | −0.004 (2) |
C13 | 0.037 (2) | 0.038 (2) | 0.041 (2) | 0.0022 (19) | −0.0072 (18) | −0.011 (2) |
C14 | 0.037 (2) | 0.046 (3) | 0.060 (3) | 0.007 (2) | 0.003 (2) | −0.017 (3) |
O1—C11i | 1.389 (5) | C4—C5 | 1.409 (6) |
O1—C11 | 1.389 (5) | C5—C6 | 1.412 (6) |
O2—C2 | 1.364 (6) | C6—C7 | 1.456 (6) |
O2—C14 | 1.410 (6) | C7—H7A | 0.9500 |
O3—C5 | 1.333 (6) | C8—C9 | 1.387 (7) |
O3—H1O3 | 0.85 (9) | C8—C13 | 1.398 (6) |
O4—N2 | 1.221 (6) | C9—C10 | 1.380 (7) |
O5—N2 | 1.207 (6) | C9—H9A | 0.9500 |
N1—C7 | 1.287 (6) | C10—C11 | 1.379 (7) |
N1—C8 | 1.418 (6) | C10—H10A | 0.9500 |
N2—C4 | 1.458 (6) | C11—C12 | 1.387 (7) |
C1—C2 | 1.381 (6) | C12—C13 | 1.384 (6) |
C1—C6 | 1.398 (7) | C12—H12A | 0.9500 |
C1—H1A | 0.9500 | C13—H13A | 0.9500 |
C2—C3 | 1.377 (6) | C14—H14A | 0.9800 |
C3—C4 | 1.390 (7) | C14—H14B | 0.9800 |
C3—H3A | 0.9500 | C14—H14C | 0.9800 |
C11i—O1—C11 | 119.2 (5) | N1—C7—H7A | 119.2 |
C2—O2—C14 | 117.5 (4) | C6—C7—H7A | 119.2 |
C5—O3—H1O3 | 106 (6) | C9—C8—C13 | 118.9 (4) |
C7—N1—C8 | 121.9 (4) | C9—C8—N1 | 116.7 (4) |
O5—N2—O4 | 122.8 (5) | C13—C8—N1 | 124.4 (4) |
O5—N2—C4 | 119.0 (4) | C10—C9—C8 | 120.9 (4) |
O4—N2—C4 | 118.1 (4) | C10—C9—H9A | 119.6 |
C2—C1—C6 | 120.3 (4) | C8—C9—H9A | 119.6 |
C2—C1—H1A | 119.8 | C11—C10—C9 | 119.4 (4) |
C6—C1—H1A | 119.8 | C11—C10—H10A | 120.3 |
O2—C2—C3 | 115.4 (4) | C9—C10—H10A | 120.3 |
O2—C2—C1 | 125.2 (4) | C10—C11—C12 | 121.2 (4) |
C3—C2—C1 | 119.4 (4) | C10—C11—O1 | 115.9 (4) |
C2—C3—C4 | 121.0 (4) | C12—C11—O1 | 122.7 (4) |
C2—C3—H3A | 119.5 | C13—C12—C11 | 118.9 (4) |
C4—C3—H3A | 119.5 | C13—C12—H12A | 120.5 |
C3—C4—C5 | 121.3 (4) | C11—C12—H12A | 120.5 |
C3—C4—N2 | 116.8 (4) | C12—C13—C8 | 120.7 (4) |
C5—C4—N2 | 121.9 (4) | C12—C13—H13A | 119.7 |
O3—C5—C4 | 121.8 (4) | C8—C13—H13A | 119.7 |
O3—C5—C6 | 121.6 (4) | O2—C14—H14A | 109.5 |
C4—C5—C6 | 116.6 (4) | O2—C14—H14B | 109.5 |
C1—C6—C5 | 121.4 (4) | H14A—C14—H14B | 109.5 |
C1—C6—C7 | 117.7 (4) | O2—C14—H14C | 109.5 |
C5—C6—C7 | 120.9 (4) | H14A—C14—H14C | 109.5 |
N1—C7—C6 | 121.7 (4) | H14B—C14—H14C | 109.5 |
C14—O2—C2—C3 | −170.9 (5) | O3—C5—C6—C7 | 2.1 (7) |
C14—O2—C2—C1 | 9.8 (8) | C4—C5—C6—C7 | −177.2 (4) |
C6—C1—C2—O2 | 179.7 (5) | C8—N1—C7—C6 | 177.7 (4) |
C6—C1—C2—C3 | 0.5 (8) | C1—C6—C7—N1 | −178.0 (5) |
O2—C2—C3—C4 | −179.8 (5) | C5—C6—C7—N1 | 0.1 (7) |
C1—C2—C3—C4 | −0.5 (8) | C7—N1—C8—C9 | −177.5 (4) |
C2—C3—C4—C5 | 0.7 (7) | C7—N1—C8—C13 | 3.2 (8) |
C2—C3—C4—N2 | −178.6 (5) | C13—C8—C9—C10 | −0.7 (7) |
O5—N2—C4—C3 | 163.3 (5) | N1—C8—C9—C10 | 179.9 (4) |
O4—N2—C4—C3 | −15.5 (7) | C8—C9—C10—C11 | 0.7 (7) |
O5—N2—C4—C5 | −16.1 (8) | C9—C10—C11—C12 | −0.5 (7) |
O4—N2—C4—C5 | 165.1 (5) | C9—C10—C11—O1 | −176.1 (4) |
C3—C4—C5—O3 | 179.8 (5) | C11i—O1—C11—C10 | −145.5 (5) |
N2—C4—C5—O3 | −0.9 (7) | C11i—O1—C11—C12 | 39.0 (4) |
C3—C4—C5—C6 | −0.8 (7) | C10—C11—C12—C13 | 0.4 (8) |
N2—C4—C5—C6 | 178.5 (4) | O1—C11—C12—C13 | 175.7 (4) |
C2—C1—C6—C5 | −0.7 (7) | C11—C12—C13—C8 | −0.5 (8) |
C2—C1—C6—C7 | 177.4 (5) | C9—C8—C13—C12 | 0.6 (8) |
O3—C5—C6—C1 | −179.8 (5) | N1—C8—C13—C12 | 180.0 (5) |
C4—C5—C6—C1 | 0.8 (7) |
Symmetry code: (i) −x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1O3···N1 | 0.85 (9) | 1.81 (10) | 2.591 (6) | 153 (7) |
C7—H7A···O5ii | 0.95 | 2.54 | 3.470 (7) | 167 |
C13—H13A···O5ii | 0.95 | 2.48 | 3.404 (7) | 165 |
Symmetry code: (ii) x−1/2, y+1/2, z. |
Dihedral 1 is the dihedral angle between the planes of the central benzene rings. Dihedral 2 is the dihedral angle between the planes of the central and terminal benzene rings. |
Compound | R1 | Dihedral 1 | Dihedral 2 | C6—C7—N1—C8 |
(I) | 4-methoxy-2-nitrophenol | 66.0 (2) | 4.9 (2), 4.9 (2) | -177.7 (4), -177.7 (4) |
DICKUW (Chu & Huang, 2007) | 2,4-di-tert-butylphenol | 73.8 | 4.8, 35.5 | 178.2, 177.2 |
DICLAD (Chu & Huang, 2007) | 2-(tert-butyl)-4-methylphenol | 73.8 | 47.9, 46.3 | 175.2, -179.9 |
GIFCEG (Arafath et al., 2018) | 2-methylphenol | 59.5 | 36.0, 31.5 | 178.3, 179.0 |
HUDJEW (Lee & Lee, 2009) | 4-nitrophenyl | 75.7 | 53.0, 18.0 | -174.0, 179.2 |
NATWEM (Khalaji et al., 2012) | 2,3,4-trimethoxyphenyl | 84.8 | 57.6, 73.1 | -179.2, -175.7 |
PEHGOA (Kadu et al., 2013) | phenyl | 59.8 | 8.8, 6.0 | -179.9, 179.8 |
PEHHAN (Kadu et al., 2013) | 4-methoxyphenyl | 60.1 | 5.3, 5.3 | -179.3, -179.3 |
RIZFEM (Xu et al., 2008) | 2-methoxyphenol | 69.2 | 24.3, 24.3 | -180.0, -180.0 |
TOWSOP (Kaabi et al., 2015) | 3-(diethylamino)phenol | 65.7 | 41.4, 30.6 | -173.1, -176.5 |
UNUFEP (Shahverdizadeh & Tiekink, 2011) | phenol | 54.6 | 51.6, 51.6 | 173.5, 173.4 |
WEFLUQ (Krishna et al., 2012) | naphthalen-2-ol | 75.1/70.1 | 7.7, 9.9/6.1, 19.4 | 176.5, 177.6/-179.3, -172.9 |
WIGPOT (Haffar et al., 2013) | naphthalen-2-ol | 74.6/69.9 | 7.7. 9.9/19.6, 5.8 | 177.2, 176.3/ -172.9, -178.6 |
Note: there is more than one data set for compounds WEFLUQ and WIGPOT because there is more than one independent molecule in their asymmetric units. |
Funding information
The authors wish to thank Universiti Sains Malaysia and The World Academy of Sciences for a USM–TWAS fellowship to Md. Azharul Arafath. The research was supported financially by the RU grant 1001/PKIMIA/811269 from Universiti Sains Malaysia.
References
Alsop, L., Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Peach, J. M. & Rider, J. T. (2005). Inorg. Chim. Acta, 358, 2770–2780. Web of Science CSD CrossRef CAS Google Scholar
Arafath, M. A., Kwong, H. C., Adam, F. & Razali, M. R. (2018). Acta Cryst. E74, 687–690. CSD CrossRef IUCr Journals Google Scholar
Blower, P. J., Castle, T. C., Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Labisbal, E., Sowrey, F. E., Teat, S. J. & Went, M. J. (2003). Dalton Trans. pp. 4416–4425. Web of Science CSD CrossRef Google Scholar
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chu, Z. & Huang, W. (2007). J. Mol. Struct. 837, 15–22. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Haffar, D., Daoud, D., Douadi, T., Bouzidi, L. & Chafaa, S. (2013). Acta Cryst. E69, o581–o582. CSD CrossRef IUCr Journals Google Scholar
Jasinski, J. P., Bianchani, J. R., Cueva, J., El-Saied, F. A., El-Asmy, A. A. & West, D. X. (2003). Z. Anorg. Allg. Chem. 629, 202–206. Web of Science CSD CrossRef CAS Google Scholar
Kaabi, I., Sibous, L., Douadi, T. & Chafaa, S. (2015). J. Mol. Struct. 1084, 216–222. CSD CrossRef CAS Google Scholar
Kadu, R., Singh, V. K., Verma, S. K., Raghavaiah, P. & Shaikh, M. M. (2013). J. Mol. Struct. 1033, 298–311. CSD CrossRef CAS Google Scholar
Khalaji, A. D., Fejfarova, K. & Dusek, M. (2012). J. Chem. Crystallogr. 42, 263–266. Web of Science CSD CrossRef CAS Google Scholar
Krishna, V., Basavoju, S. & Ramachandraiah, A. (2012). Mol. Cryst. Liq. Cryst. 562, 265–290. CSD CrossRef CAS Google Scholar
Lee, H. K. & Lee, S. W. (2009). Acta Cryst. E65, o2263. CSD CrossRef IUCr Journals Google Scholar
Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shahverdizadeh, G. H. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o798. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, H.-W., Li, J.-X. & Li, Y.-H. (2008). Acta Cryst. E64, o1145. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.