research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{4-[(2-hy­dr­oxy-5-meth­­oxy-3-nitro­benzyl­­idene)amino]­phen­yl} ether

aDepartment of Chemistry, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh, bDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia, and cSchool of Chemical Sciences, Universiti Sains Malaysia, Penang 11800 USM, Malaysia
*Correspondence e-mail: arafath.usm@gmail.com, sohug44@gmail.com

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 9 December 2019; accepted 17 December 2019; online 1 January 2020)

The mol­ecule of the title compound, C28H22N4O9, exhibits crystallographically imposed twofold rotational symmetry, with a dihedral angle of 66.0 (2)° between the planes of the two central benzene rings bounded to the central oxygen atom. The dihedral angle between the planes of the central benzene ring and the terminal phenol ring is 4.9 (2)°. Each half of the mol­ecule exhibits an imine E configuration. An intra­molecular O—H⋯N hydrogen bond is present. In the crystal, the mol­ecules are linked into layers parallel to the ab plane via C—H⋯O hydrogen bonds. The crystal studied was refined as a two-component pseudomerohedral twin.

1. Chemical context

Bisthio­semicarbazones are formed by connecting separated thio­semicarbazone moieties through a pair of oxybisphenyl rings. These tetra­dentate ligands trap metals inside to form square-planar complexes (Alsop et al., 2005[Alsop, L., Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Peach, J. M. & Rider, J. T. (2005). Inorg. Chim. Acta, 358, 2770-2780.]; Blower et al., 2003[Blower, P. J., Castle, T. C., Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Labisbal, E., Sowrey, F. E., Teat, S. J. & Went, M. J. (2003). Dalton Trans. pp. 4416-4425.]; Jasinski et al., 2003[Jasinski, J. P., Bianchani, J. R., Cueva, J., El-Saied, F. A., El-Asmy, A. A. & West, D. X. (2003). Z. Anorg. Allg. Chem. 629, 202-206.]). The length of the C—C bond in the backbone affects the stability of the complexes. A higher number of C—C bonds obtained via alkyl­ation or aryl­ation allows metal ions to better fit inside the ligand cavity (Blower et al., 2003[Blower, P. J., Castle, T. C., Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Labisbal, E., Sowrey, F. E., Teat, S. J. & Went, M. J. (2003). Dalton Trans. pp. 4416-4425.]). These tetra­dentate ligands and transition-metal complexes exhibit promising anti­cancer and anti­bacterial activities (Lobana et al., 2009[Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977-1055.]). In view of this and our research inter­est in the synthesis of oxybis Schiff base compounds, we herein report the crystal structure, supra­molecular features and conformational comparison of the title compound.

[Scheme 1]

2. Structural commentary

In the title compound (Fig. 1[link]), the asymmetric unit comprises one half of the oxybisbenzenyl mol­ecule where the oxygen atom (O1) lies on a twofold rotation axis. The complete mol­ecule is generated through the symmetry operationx, y, [{1\over 2}] − z. The planes of the benzene rings bonded to the central oxygen atom form a dihedral angle of 66.0 (2)°. The dihedral angle between the benzene and 4-meth­oxy-2-nitro­phenol rings in the same half of the mol­ecules is 4.9 (2)°, indicating an almost coplanar arrangement of the benzene and phenol rings. The sp2-hybridized character of atoms N1 and C7 is confirmed by the N1—C7 [1.287 (6) Å] bond length and C7—N1—C8 [121.9 (4)°] and N1—C7—C6 [121.7 (4)°] bond angles (Arafath et al., 2018[Arafath, M. A., Kwong, H. C., Adam, F. & Razali, M. R. (2018). Acta Cryst. E74, 687-690.]). Each half of the mol­ecule exhibits an imine E configuration with a C6—C7—N1—C8 torsion angle of 177.7 (4)°. In the mol­ecule, atom N1 of the imine moiety acts as a hydrogen-bond acceptor for the adjacent phenol group, forming an intra­molecular O—H⋯N hydrogen bond with an S(6) ring motif (Fig. 1[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O3⋯N1 0.85 (9) 1.81 (10) 2.591 (6) 153 (7)
C7—H7A⋯O5i 0.95 2.54 3.470 (7) 167
C13—H13A⋯O5i 0.95 2.48 3.404 (7) 165
Symmetry code: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Intra­molecular hydrogen bonds are shown as dashed lines. Atoms with the label suffix A are generated by the symmetry operation −x, y, [{1\over 2}] − z.

3. Supra­molecular features

In the crystal, atom O5 acts as a bifurcated-hydrogen-bond acceptor, linking mol­ecules into layers parallel to the ab plane (Fig. 2[link]) through C7—H7A⋯O5 and C13—H13A⋯O5 hydrogen bonds (Table 1[link]). No C—H⋯π or ππ inter­actions are observed.

[Figure 2]
Figure 2
Partial packing diagram for the title compound, showing inter­molecular hydrogen bonds (cyan dotted lines). Hydrogen atoms not involved in hydrogen bonding are omitted for clarity. Symmetry codes: (i) −[{1\over 2}] + x, [{1\over 2}] + y, z; (ii) −1 + x, 1 + y, z.

4. Database survey

In a search of the Cambridge Structure Database (CSD, version 5.40, last update August 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), twelve structures containing the (1E,1′E)-N,N′-[oxybis(4,1-phenyl­ene)]bis­(1-phenyl­methanimine) moiety with different substituents were found. The reference moiety is illustrated in Fig. 3[link]. Details regarding different substituents (R1) together with the dihedral and torsion angles for oxybisbenzenyl moiety in these structures are tabulated in Table 2[link]. In analogy with the title mol­ecule, the planes of the central benzene ring bonded to the central oxygen atom are always V-shaped with dihedral angle 1 in the range of 54.6–84.8°. The dihedral angle between the planes of central and terminal benzene rings exists in two conformations, viz. non-coplanar [dihedral 2 = 18.0–73.5°] and nearly coplanar [dihedral 2 = 4.8–9.9°]. In all of these structures, the imine C=N double bond adopts an E configuration with torsion angles corresponding to C6—C7—N1—C8 in the range 172.9–180.0°.

Table 2
Selected dihedral and torsion angles (°)

Dihedral 1 is the dihedral angle between the planes of the central benzene rings. Dihedral 2 is the dihedral angle between the planes of the central and terminal benzene rings.

Compound R1 Dihedral 1 Dihedral 2 C6—C7—N1—C8
(I) 4-meth­oxy-2-nitro­phenol 66.0 (2) 4.9 (2), 4.9 (2) −177.7 (4), −177.7 (4)
DICKUW (Chu & Huang, 2007[Chu, Z. & Huang, W. (2007). J. Mol. Struct. 837, 15-22.]) 2,4-di-tert-butyl­phenol 73.8 4.8, 35.5 178.2, 177.2
DICLAD (Chu & Huang, 2007[Chu, Z. & Huang, W. (2007). J. Mol. Struct. 837, 15-22.]) 2-(tert-but­yl)-4-methyl­phenol 73.8 47.9, 46.3 175.2, −179.9
GIFCEG (Arafath et al., 2018[Arafath, M. A., Kwong, H. C., Adam, F. & Razali, M. R. (2018). Acta Cryst. E74, 687-690.]) 2-methyl­phenol 59.5 36.0, 31.5 178.3, 179.0
HUDJEW (Lee & Lee, 2009[Lee, H. K. & Lee, S. W. (2009). Acta Cryst. E65, o2263.]) 4-nitro­phen­yl 75.7 53.0, 18.0 −174.0, 179.2
NATWEM (Khalaji et al., 2012[Khalaji, A. D., Fejfarova, K. & Dusek, M. (2012). J. Chem. Crystallogr. 42, 263-266.]) 2,3,4-tri­meth­oxy­phen­yl 84.8 57.6, 73.1 −179.2, −175.7
PEHGOA (Kadu et al., 2013[Kadu, R., Singh, V. K., Verma, S. K., Raghavaiah, P. & Shaikh, M. M. (2013). J. Mol. Struct. 1033, 298-311.]) phen­yl 59.8 8.8, 6.0 −179.9, 179.8
PEHHAN (Kadu et al., 2013[Kadu, R., Singh, V. K., Verma, S. K., Raghavaiah, P. & Shaikh, M. M. (2013). J. Mol. Struct. 1033, 298-311.]) 4-meth­oxy­phen­yl 60.1 5.3, 5.3 −179.3, −179.3
RIZFEM (Xu et al., 2008[Xu, H.-W., Li, J.-X. & Li, Y.-H. (2008). Acta Cryst. E64, o1145.]) 2-meth­oxy­phenol 69.2 24.3, 24.3 −180.0, −180.0
TOWSOP (Kaabi et al., 2015[Kaabi, I., Sibous, L., Douadi, T. & Chafaa, S. (2015). J. Mol. Struct. 1084, 216-222.]) 3-(di­ethyl­amino)­phenol 65.7 41.4, 30.6 −173.1, −176.5
UNUFEP (Shahverdizadeh & Tiekink, 2011[Shahverdizadeh, G. H. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o798.]) phenol 54.6 51.6, 51.6 173.5, 173.4
WEFLUQ (Krishna et al., 2012[Krishna, V., Basavoju, S. & Ramachandraiah, A. (2012). Mol. Cryst. Liq. Cryst. 562, 265-290.]) naphthalen-2-ol 75.1/70.1 7.7, 9.9/6.1, 19.4 176.5, 177.6/-179.3, −172.9
WIGPOT (Haffar et al., 2013[Haffar, D., Daoud, D., Douadi, T., Bouzidi, L. & Chafaa, S. (2013). Acta Cryst. E69, o581-o582.]) naphthalen-2-ol 74.6/69.9 7.7. 9.9/19.6, 5.8 177.2, 176.3/ −172.9, −178.6
Note: there is more than one data set for compounds WEFLUQ and WIGPOT because there is more than one independent mol­ecule in their asymmetric units.
[Figure 3]
Figure 3
Structural fragment for the CSD search.

5. Synthesis and crystallization

To a sample of 2-hy­droxy-5-meth­oxy-3-nitro­benzaldehyde (0.98 g, 5.00 mmol) dissolved in 25.0 mL of methanol, 0.20 mL of glacial acetic acid were added, and the mixture was refluxed for 30 min. A solution of 4,4′-oxydianiline (0.50 g, 2.50 mmol) in 20.0 mL of methanol was added dropwise under stirring to the aldehyde solution. The resulting deep-red solution was refluxed for 4 h with stirring. The reaction scheme is shown in Fig. 4[link]. The deep-red precipitate that formed was filtered off and washed with 5.0 mL of methanol and 5.0 mL of n-hexane. The recovered product was dissolved in chloro­form for recrystallization. Purple single crystals suitable for X-ray diffraction were obtained by slow evaporation of the solvent, m.p. 547–548 K, yield 96%. Analysis calculated for C28H22N4O9 (f.w. 558.50 g mol−1) C, 60.16; H, 3.93; N, 10; found: C, 59.04; H, 3.85; N, 9.90%. 1H NMR (500 MHz, DMSO-d6, Me4Si ppm): δ 10.23 (s, OH), δ 9.12 (s, HC=N), δ 7.69–7.21 (multiplet, aromatic), δ 3.83 (s, Ph—OCH3). 13C NMR (DMSO-d6, Me4Si ppm): δ 161.69 (C=N), δ 156.21–114.96 (C-aromatic), δ 56.25 (OCH3). IR (KBr pellets υmax/cm−1): 3441 υ(OH), 3109 υ(C—H, sp2), 2956 υ(CH3), 1598 υ(C=N), 1529 υ(C=C, aromatic), 1497 υ(NO2, asym.), 1326 υ(NO2, sym.), 1257 υ(C—O, phenolic), 1194 υ(C—O, Ph—OCH3), 1056 υ(C—N), 979 υ(CH, bend. aromatic).

[Figure 4]
Figure 4
Reaction scheme for the synthesis of the title compound.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The phenolic hydrogen atom was located in a difference-Fourier map and refined freely. All other H atoms attached to C were positioned geometrically and refined using a riding model with C—H= 0.95–0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating model was used for the methyl group. The crystal investigated was refined as a two-component pseudomerohedral twin resulting from a 180° rotation about the [001] reciprocal lattice direction, with a twin ratio of 0.977 (3):0.023 (3).

Table 3
Experimental details

Crystal data
Chemical formula C28H22N4O9
Mr 558.49
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 15.954 (4), 5.4599 (12), 28.397 (6)
β (°) 92.299 (5)
V3) 2471.7 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.38 × 0.24 × 0.14
 
Data collection
Diffractometer Bruker APEX DUO CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.879, 0.956
No. of measured, independent and observed [I > 2σ(I)] reflections 35811, 2830, 2591
Rint 0.038
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.100, 0.353, 1.15
No. of reflections 2830
No. of parameters 192
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.31, −0.31
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXL2013 (Sheldrick, 2015) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015) and PLATON (Spek, 2009).

2-[N-(4-{4-[(2-Hydroxy-5-methoxy-3-nitrobenzylidene)amino]phenoxy}phenyl)carboximidoyl]-4-methoxy-6-nitrophenol top
Crystal data top
C28H22N4O9F(000) = 1160
Mr = 558.49Dx = 1.501 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 15.954 (4) ÅCell parameters from 9905 reflections
b = 5.4599 (12) Åθ = 3–31°
c = 28.397 (6) ŵ = 0.11 mm1
β = 92.299 (5)°T = 100 K
V = 2471.7 (10) Å3Block, purple
Z = 40.38 × 0.24 × 0.14 mm
Data collection top
Bruker APEX DUO CCD area detector
diffractometer
2830 independent reflections
Radiation source: fine-focus sealed tube2591 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
φ and ω scansθmax = 27.5°, θmin = 0.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 2020
Tmin = 0.879, Tmax = 0.956k = 77
35811 measured reflectionsl = 3636
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.100H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.353 w = 1/[σ2(Fo2) + (0.1539P)2 + 17.7934P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
2830 reflectionsΔρmax = 0.31 e Å3
192 parametersΔρmin = 0.31 e Å3
Special details top

Experimental. The following wavelength and cell were deduced by SADABS from the direction cosines etc. They are given here for emergency use only: CELL 0.71095 5.463 8.443 28.418 92.106 89.981 108.897

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0000000.2692 (9)0.2500000.0444 (13)
O20.4044 (2)0.9524 (8)0.47761 (16)0.0525 (11)
O30.4346 (3)0.1480 (8)0.36154 (14)0.0475 (10)
O40.6359 (2)0.4545 (9)0.43220 (19)0.0664 (14)
O50.5853 (3)0.1292 (9)0.4007 (2)0.0710 (15)
N10.2747 (2)0.1732 (8)0.34224 (14)0.0371 (9)
N20.5771 (3)0.3336 (9)0.41607 (16)0.0417 (10)
C10.3380 (3)0.6629 (9)0.42249 (18)0.0364 (10)
H1A0.2847460.7391360.4244320.044*
C20.4061 (3)0.7544 (9)0.44839 (17)0.0355 (10)
C30.4833 (3)0.6438 (9)0.44506 (17)0.0365 (10)
H3A0.5302720.7073940.4626530.044*
C40.4934 (3)0.4407 (9)0.41635 (16)0.0337 (10)
C50.4255 (3)0.3424 (9)0.38929 (16)0.0332 (10)
C60.3471 (3)0.4586 (9)0.39343 (16)0.0337 (10)
C70.2723 (3)0.3645 (9)0.36861 (17)0.0366 (10)
H7A0.2202890.4463150.3719660.044*
C80.2016 (3)0.0754 (9)0.31932 (16)0.0335 (10)
C90.2115 (3)0.1371 (9)0.29336 (17)0.0366 (10)
H9A0.2656460.2085220.2917090.044*
C100.1439 (3)0.2462 (9)0.26992 (16)0.0369 (10)
H10A0.1512480.3926460.2524980.044*
C110.0657 (3)0.1405 (9)0.27200 (16)0.0349 (10)
C120.0535 (3)0.0722 (9)0.29753 (18)0.0395 (11)
H12A0.0007350.1428410.2988890.047*
C130.1217 (3)0.1799 (9)0.32098 (17)0.0386 (11)
H13A0.1142090.3263030.3383860.046*
C140.3252 (3)1.0498 (11)0.4876 (2)0.0477 (13)
H14A0.3323691.1850960.5100950.072*
H14B0.2906470.9216820.5012630.072*
H14C0.2975451.1102640.4584510.072*
H1O30.386 (6)0.117 (15)0.350 (3)0.08 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.047 (3)0.029 (2)0.055 (3)0.0000.023 (2)0.000
O20.0300 (17)0.054 (2)0.073 (3)0.0037 (16)0.0050 (16)0.031 (2)
O30.0378 (19)0.054 (2)0.050 (2)0.0037 (16)0.0020 (15)0.0231 (18)
O40.0290 (18)0.074 (3)0.095 (3)0.0049 (19)0.013 (2)0.024 (3)
O50.044 (2)0.069 (3)0.099 (4)0.018 (2)0.008 (2)0.039 (3)
N10.0291 (18)0.043 (2)0.039 (2)0.0034 (16)0.0033 (15)0.0025 (17)
N20.0296 (19)0.052 (2)0.044 (2)0.0046 (18)0.0000 (16)0.0073 (19)
C10.027 (2)0.035 (2)0.047 (2)0.0005 (17)0.0033 (18)0.003 (2)
C20.030 (2)0.037 (2)0.039 (2)0.0011 (18)0.0016 (17)0.0075 (19)
C30.027 (2)0.041 (2)0.042 (2)0.0031 (18)0.0018 (17)0.006 (2)
C40.0241 (19)0.041 (2)0.036 (2)0.0020 (17)0.0006 (16)0.0026 (18)
C50.030 (2)0.037 (2)0.033 (2)0.0002 (18)0.0015 (16)0.0051 (18)
C60.028 (2)0.040 (2)0.033 (2)0.0040 (18)0.0020 (16)0.0031 (18)
C70.027 (2)0.043 (3)0.040 (2)0.0021 (18)0.0027 (17)0.003 (2)
C80.031 (2)0.037 (2)0.032 (2)0.0019 (18)0.0028 (16)0.0004 (18)
C90.034 (2)0.036 (2)0.039 (2)0.0035 (18)0.0025 (18)0.0007 (19)
C100.042 (2)0.033 (2)0.035 (2)0.0023 (19)0.0030 (18)0.0017 (18)
C110.039 (2)0.034 (2)0.032 (2)0.0052 (18)0.0086 (17)0.0028 (18)
C120.034 (2)0.037 (2)0.046 (3)0.0053 (19)0.0107 (19)0.004 (2)
C130.037 (2)0.038 (2)0.041 (2)0.0022 (19)0.0072 (18)0.011 (2)
C140.037 (2)0.046 (3)0.060 (3)0.007 (2)0.003 (2)0.017 (3)
Geometric parameters (Å, º) top
O1—C11i1.389 (5)C4—C51.409 (6)
O1—C111.389 (5)C5—C61.412 (6)
O2—C21.364 (6)C6—C71.456 (6)
O2—C141.410 (6)C7—H7A0.9500
O3—C51.333 (6)C8—C91.387 (7)
O3—H1O30.85 (9)C8—C131.398 (6)
O4—N21.221 (6)C9—C101.380 (7)
O5—N21.207 (6)C9—H9A0.9500
N1—C71.287 (6)C10—C111.379 (7)
N1—C81.418 (6)C10—H10A0.9500
N2—C41.458 (6)C11—C121.387 (7)
C1—C21.381 (6)C12—C131.384 (6)
C1—C61.398 (7)C12—H12A0.9500
C1—H1A0.9500C13—H13A0.9500
C2—C31.377 (6)C14—H14A0.9800
C3—C41.390 (7)C14—H14B0.9800
C3—H3A0.9500C14—H14C0.9800
C11i—O1—C11119.2 (5)N1—C7—H7A119.2
C2—O2—C14117.5 (4)C6—C7—H7A119.2
C5—O3—H1O3106 (6)C9—C8—C13118.9 (4)
C7—N1—C8121.9 (4)C9—C8—N1116.7 (4)
O5—N2—O4122.8 (5)C13—C8—N1124.4 (4)
O5—N2—C4119.0 (4)C10—C9—C8120.9 (4)
O4—N2—C4118.1 (4)C10—C9—H9A119.6
C2—C1—C6120.3 (4)C8—C9—H9A119.6
C2—C1—H1A119.8C11—C10—C9119.4 (4)
C6—C1—H1A119.8C11—C10—H10A120.3
O2—C2—C3115.4 (4)C9—C10—H10A120.3
O2—C2—C1125.2 (4)C10—C11—C12121.2 (4)
C3—C2—C1119.4 (4)C10—C11—O1115.9 (4)
C2—C3—C4121.0 (4)C12—C11—O1122.7 (4)
C2—C3—H3A119.5C13—C12—C11118.9 (4)
C4—C3—H3A119.5C13—C12—H12A120.5
C3—C4—C5121.3 (4)C11—C12—H12A120.5
C3—C4—N2116.8 (4)C12—C13—C8120.7 (4)
C5—C4—N2121.9 (4)C12—C13—H13A119.7
O3—C5—C4121.8 (4)C8—C13—H13A119.7
O3—C5—C6121.6 (4)O2—C14—H14A109.5
C4—C5—C6116.6 (4)O2—C14—H14B109.5
C1—C6—C5121.4 (4)H14A—C14—H14B109.5
C1—C6—C7117.7 (4)O2—C14—H14C109.5
C5—C6—C7120.9 (4)H14A—C14—H14C109.5
N1—C7—C6121.7 (4)H14B—C14—H14C109.5
C14—O2—C2—C3170.9 (5)O3—C5—C6—C72.1 (7)
C14—O2—C2—C19.8 (8)C4—C5—C6—C7177.2 (4)
C6—C1—C2—O2179.7 (5)C8—N1—C7—C6177.7 (4)
C6—C1—C2—C30.5 (8)C1—C6—C7—N1178.0 (5)
O2—C2—C3—C4179.8 (5)C5—C6—C7—N10.1 (7)
C1—C2—C3—C40.5 (8)C7—N1—C8—C9177.5 (4)
C2—C3—C4—C50.7 (7)C7—N1—C8—C133.2 (8)
C2—C3—C4—N2178.6 (5)C13—C8—C9—C100.7 (7)
O5—N2—C4—C3163.3 (5)N1—C8—C9—C10179.9 (4)
O4—N2—C4—C315.5 (7)C8—C9—C10—C110.7 (7)
O5—N2—C4—C516.1 (8)C9—C10—C11—C120.5 (7)
O4—N2—C4—C5165.1 (5)C9—C10—C11—O1176.1 (4)
C3—C4—C5—O3179.8 (5)C11i—O1—C11—C10145.5 (5)
N2—C4—C5—O30.9 (7)C11i—O1—C11—C1239.0 (4)
C3—C4—C5—C60.8 (7)C10—C11—C12—C130.4 (8)
N2—C4—C5—C6178.5 (4)O1—C11—C12—C13175.7 (4)
C2—C1—C6—C50.7 (7)C11—C12—C13—C80.5 (8)
C2—C1—C6—C7177.4 (5)C9—C8—C13—C120.6 (8)
O3—C5—C6—C1179.8 (5)N1—C8—C13—C12180.0 (5)
C4—C5—C6—C10.8 (7)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···N10.85 (9)1.81 (10)2.591 (6)153 (7)
C7—H7A···O5ii0.952.543.470 (7)167
C13—H13A···O5ii0.952.483.404 (7)165
Symmetry code: (ii) x1/2, y+1/2, z.
Selected dihedral and torsion angles (°) top
Dihedral 1 is the dihedral angle between the planes of the central benzene rings. Dihedral 2 is the dihedral angle between the planes of the central and terminal benzene rings.
CompoundR1Dihedral 1Dihedral 2C6—C7—N1—C8
(I)4-methoxy-2-nitrophenol66.0 (2)4.9 (2), 4.9 (2)-177.7 (4), -177.7 (4)
DICKUW (Chu & Huang, 2007)2,4-di-tert-butylphenol73.84.8, 35.5178.2, 177.2
DICLAD (Chu & Huang, 2007)2-(tert-butyl)-4-methylphenol73.847.9, 46.3175.2, -179.9
GIFCEG (Arafath et al., 2018)2-methylphenol59.536.0, 31.5178.3, 179.0
HUDJEW (Lee & Lee, 2009)4-nitrophenyl75.753.0, 18.0-174.0, 179.2
NATWEM (Khalaji et al., 2012)2,3,4-trimethoxyphenyl84.857.6, 73.1-179.2, -175.7
PEHGOA (Kadu et al., 2013)phenyl59.88.8, 6.0-179.9, 179.8
PEHHAN (Kadu et al., 2013)4-methoxyphenyl60.15.3, 5.3-179.3, -179.3
RIZFEM (Xu et al., 2008)2-methoxyphenol69.224.3, 24.3-180.0, -180.0
TOWSOP (Kaabi et al., 2015)3-(diethylamino)phenol65.741.4, 30.6-173.1, -176.5
UNUFEP (Shahverdizadeh & Tiekink, 2011)phenol54.651.6, 51.6173.5, 173.4
WEFLUQ (Krishna et al., 2012)naphthalen-2-ol75.1/70.17.7, 9.9/6.1, 19.4176.5, 177.6/-179.3, -172.9
WIGPOT (Haffar et al., 2013)naphthalen-2-ol74.6/69.97.7. 9.9/19.6, 5.8177.2, 176.3/ -172.9, -178.6
Note: there is more than one data set for compounds WEFLUQ and WIGPOT because there is more than one independent molecule in their asymmetric units.
 

Funding information

The authors wish to thank Universiti Sains Malaysia and The World Academy of Sciences for a USM–TWAS fellowship to Md. Azharul Arafath. The research was supported financially by the RU grant 1001/PKIMIA/811269 from Universiti Sains Malaysia.

References

First citationAlsop, L., Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Peach, J. M. & Rider, J. T. (2005). Inorg. Chim. Acta, 358, 2770–2780.  Web of Science CSD CrossRef CAS Google Scholar
First citationArafath, M. A., Kwong, H. C., Adam, F. & Razali, M. R. (2018). Acta Cryst. E74, 687–690.  CSD CrossRef IUCr Journals Google Scholar
First citationBlower, P. J., Castle, T. C., Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Labisbal, E., Sowrey, F. E., Teat, S. J. & Went, M. J. (2003). Dalton Trans. pp. 4416–4425.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChu, Z. & Huang, W. (2007). J. Mol. Struct. 837, 15–22.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHaffar, D., Daoud, D., Douadi, T., Bouzidi, L. & Chafaa, S. (2013). Acta Cryst. E69, o581–o582.  CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Bianchani, J. R., Cueva, J., El-Saied, F. A., El-Asmy, A. A. & West, D. X. (2003). Z. Anorg. Allg. Chem. 629, 202–206.  Web of Science CSD CrossRef CAS Google Scholar
First citationKaabi, I., Sibous, L., Douadi, T. & Chafaa, S. (2015). J. Mol. Struct. 1084, 216–222.  CSD CrossRef CAS Google Scholar
First citationKadu, R., Singh, V. K., Verma, S. K., Raghavaiah, P. & Shaikh, M. M. (2013). J. Mol. Struct. 1033, 298–311.  CSD CrossRef CAS Google Scholar
First citationKhalaji, A. D., Fejfarova, K. & Dusek, M. (2012). J. Chem. Crystallogr. 42, 263–266.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrishna, V., Basavoju, S. & Ramachandraiah, A. (2012). Mol. Cryst. Liq. Cryst. 562, 265–290.  CSD CrossRef CAS Google Scholar
First citationLee, H. K. & Lee, S. W. (2009). Acta Cryst. E65, o2263.  CSD CrossRef IUCr Journals Google Scholar
First citationLobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShahverdizadeh, G. H. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o798.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, H.-W., Li, J.-X. & Li, Y.-H. (2008). Acta Cryst. E64, o1145.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds