research communications
catena-poly[[[(acetonitrile-κN)copper(I)]-μ3-1,3-dithiolane-κ3S:S:S′] hexafluoridophosphate]
of the coordination polymeraAnorganische Chemie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany, and bInstitut UTINAM UMR 6213 CNRS, Université Bourgogne Franche-Comté, 16 Route de Gray, 25030 Besançon Cedex, France
*Correspondence e-mail: michael.knorr@univ-fcomte.fr, carsten-strohmann@tu-dortmund.de
The polymeric title compound, [Cu2(C2H3N)2(C3H6S2)2](PF6)2, represents an example of a one-dimensional coordination polymer resulting from the reaction of [Cu(MeCN)4][PF6] with 1,3-dithiolane. The cationic one-dimensional ribbon consists of two copper(I) centers each ligated by one acetonitrile molecule and interconnected through two bridging 1,3-dithiolane ligands. One S-donor site of each ligand is κ1-bound to Cu, whereas the second S atom acts as a four-electron donor, bridging two Cu atoms in a κ4-bonding mode. The positive charge of each copper cation is compensated for by a hexafluoridophosphate counter-ion. In the crystal, the polymer chains are linked by a series of C—H⋯F hydrogen bonds, forming a supramolecular framework.
Keywords: crystal structure; copper complex; coordination polymer; thioether; C—H⋯F hydrogen bonding.
CCDC reference: 1969688
1. Chemical context
The five-membered heterocyclic ligand tetrahydrothiophene (THT) is known to form a great variety of molecular complexes and coordination polymers (CPs) with various transition metals. Notably, for the soft coinage metal ions copper(I), silver(I) and gold(I), numerous structurally characterized examples coordinated by terminal or bridging THT ligands have been documented (Ahrland et al., 1993; Dembo et al., 2010; Norén & Oskarsson, 1985; Mälger et al., 1992; Usón et al., 1984). Even mixed-valence (CuI–CuII) compounds such as polymeric penta-μ-chloro-tris-μ-tetrahydrothiophenetetracopper(I,II) have been prepared (Ainscough et al., 1985). In the case of the five-membered heterocycle 1,2-dithiolane, in which one CH2 unit is replaced by a second sulfur atom, there is one report on its coordination to Hg2(NO3)2 yielding the HgI adduct 1,2-dithiolane·Hg2(NO3)2 (Brodersen & Rölz, 1977). Furthermore, the dinuclear organometallic species [η5-CpMn(CO)2(μ2-1,2-dithiolane)]2 has been characterized crystallographically (Braunwarth et al., 1991). The fluxional complexes [M(CO)5(1,3-dithiolane)] (M = Cr, Mo, W) ligated by the isomeric heterocycle 1,3-dithiolane (1,3-dithiacyclopentane) have been investigated by NMR spectroscopy (Abel et al., 1990).
In a comparative study with respect to our previous work on the coordination chemistry of the open-chain dithioether analogues RS-CH2-SR (Chaabéne et al., 2016; Knorr et al., 2014; Peindy et al., 2007) and in part to fill the gap between the versatile coordination chemistry of THT (see above) and the almost unexplored coordination chemistry of 1,3-dithiolane, we recently described in detail the construction and structural features of molecular clusters and coordination networks, with dimensionalities varying from 0D–2D by reacting 1,3-dithiolane and its ferrocenyl derivative substituted at the 2-position with CuX salts (X = Cl, Br, I) (Raghuvanshi et al., 2017). However, surprisingly, a survey of the Cambridge Structural Database (Groom et al., 2016), reveals that apart from our CuX–1,3-dithiolane compounds, no other unsubstituted 1,3-dithiolane complexes have been structurally characterized. We have now extended our project on the coordination chemistry of this cyclic dithioether using [Cu(MeCN)4][PF6] as reactant to obtain the title polymeric ionic salt-like material, which could be interesting for electrochemical investigations.
2. Structural commentary
We have previously described (Raghuvanshi et al., 2017), the structural features of the ribbon-like structures of compounds [{Cu(μ2-Br)}(μ2-L1)]n and [{Cu(μ2-Cl)}(μ2-L1)]n, formed upon treatment of CuBr and CuCl with 1,3-dithiolane (L1). The title complex salt, a ribbon of composition [Cu(1,3-dithiane)(MeCN)]n+ (CP1) also results from the reaction of [Cu(MeCN)4][PF6] with L1, but its architecture is quite different.
The molecular structure of the , and selected bond lengths and bond angles are given in Table 1. The ribbon-like structure is built upon individual CuI atoms, each ligated by a datively bound MeCN ligand and interconnected to the neighbouring metal centers by two bridging dithiolane ligands (Fig. 2). Overall, the architecture of CP1 is quite reminiscent of that of the 1D polymeric tetrafluoridoborate salt [Cu(1,3-dithiane)(MeCN)]n+ (Knaust & Keller, 2003). Nevertheless, there is one difference. Whereas the of the latter salt (crystallizing in the orthorhombic Sohncke P212121) contains three unique copper(I) centers, that of CP1 (crystallizing in the orthorhombic non-centrosymmetric Pna21) contains only two unique CuI atoms. Each displays a CuNS3 four-coordinate environment; see Table 1 [L—Cu—L angles: 99.97 (7) to 119.47 (11)° for Cu1, and 99.29 (11) to 118.69 (4)° for Cu2]. The τ4 descriptor for fourfold coordination is = 0.89 for both atoms Cu1 and Cu2, indicating that each have a trigonal-pyramidal geometry (τ4 = 1 for a perfect tetrahedral geometry, = 0 for a perfect square planar geometry and = 0.85 for a perfect trigonal-pyramidal geometry; Yang et al., 2007).
of the title complex is illustrated in Fig. 1The coordination environment for each of the CuI centers includes three bridging dithiolane ligands and one terminal acetonitrile ligand. All Cu—S bond lengths are in the range 2.2630 (10)–2.3367 (11) Å, the mean Cu—S bond length of 2.314 (12) Å is quite similar to that in [Cu(1,3-dithiane)(MeCN)]n+. In addition, the mean Cu—N bond distance matches well with that of [Cu(1,3-dithiane)(MeCN)]n [1.979 (4) versus 1.984 (7) Å]. The three dithiolane ligands each have one S atom that is a two-electron donor and one S atom that is a μ2-four-electron donor. The Cu⋯Cu separations of ca 3.689–3.852 Å are far above the sum of the van der Waals radii of two Cu atoms (2.8 Å), excluding any bonding interaction. These two bonding modes lead to the formation of a ribbon-like coordination polymer, which runs parallel to the a axis, where each copper(I) center is bonded to two μ2-S atoms and one μ1-S atom (Fig. 2 and Table 1).
3. Supramolecular features
The crystal packing of the title compound is illustrated in Fig. 3, and shows the ribbon-like structures, propagating along the a-axis direction, that are linked by a number of C—H⋯F hydrogen bonds, forming a supramolecular framework (Fig. 3 and Table 2).
|
4. Database survey
Other examples of crystallographically characterized 1,3-dithiolane complexes substituted at the 2-position found in the Cambridge Structural Database (CSD, version 5.40, update August 2019; Groom et al., 2016) include catena-[(μ5-1,3-dithiolane-2-carboxylato)(μ4-1,3-dithiolane-2-carboxylato)(μ2-trifluoromethanesulfonato-O,O′)trisilver(I)] (CSD refcode FAQIPY; Gondi et al., 2011), catena-[(μ3-1,3-dithiolane-2-methanol-S,S,S′)(nitrato-O)silver(I)] (HESLUN; Zhang et al., 2006), chlorotriphenylphosphine[2,5-bis(1,3-dithiolan-2-yl)phenyl-S]palladium(II) (IVUFEK; Vicente et al., 2004), rac-trans-dichlorobis{[2-(1,3-dithiolan-2-yl)phenyl](diphenyl)phosphine}ruthenium(II) chloroform solvate (TUMKOC; Bayly et al., 2009). Other examples of related 1,3-dithiane copper(I) coordination polymers have also been reported (Raghuvanshi et al., 2019).
5. Synthesis and crystallization
The reaction scheme for the synthesis of the title compound is illustrated in Fig. 4. To a solution of [Cu(MeCN)4][PF6] (372 mg, 0.1 mmol) in CH2Cl2 (10 ml) was added an equimolar amount of 1,3-dithiolane (L1) via a syringe. The solution was stirred at 293 K for 2 h, then layered with Et2O (10 ml) and stored in a refrigerator for 2 days. Colourless block-like crystals formed progressively (245 mg, 68% yield).
Elemental analysis calculated for C10H18Cu2F12N2P2S4: C, 16.88; H, 2.54; N, 3.94; S, 18.03%. Found: C, 16.44; H, 2.28; N, 3.44; S, 17.81%. IR (ATR; cm−1): 2280 w (weak) (CN), 835 vs (very strong) (PF6).
6. Refinement
Crystal data, data collection and structure . The C-bound H atoms were included in calculated positions and treated as riding: C—H = 0.98–0.99 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms. The structure was refined as a two-component BASF = 0.121 (12). In the final cycles of three reflections were omitted; one was affected by the backstop and two were most disagreeable reflections.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1969688
https://doi.org/10.1107/S205698901901627X/su5530sup1.cif
contains datablocks Global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901901627X/su5530Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698901901627X/su5530Isup3.cdx
Data collection: APEX2 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2(Dolomanov et al., 2009), PLATON (Spek, 2009) and publCIF (Westrip, 2010).[Cu2(C2H3N)2(C3H6S2)2](PF6)2 | Dx = 2.019 Mg m−3 |
Mr = 711.52 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pna21 | Cell parameters from 9565 reflections |
a = 11.8409 (9) Å | θ = 2.7–31.8° |
b = 12.9273 (9) Å | µ = 2.41 mm−1 |
c = 15.2921 (11) Å | T = 105 K |
V = 2340.8 (3) Å3 | Block, colourless |
Z = 4 | 0.33 × 0.32 × 0.27 mm |
F(000) = 1408 |
Bruker D8 VENTURE area detector diffractometer | 8122 independent reflections |
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs | 7092 reflections with I > 2σ(I) |
HELIOS mirror optics monochromator | Rint = 0.040 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 33.1°, θmin = 2.3° |
ω and φ scans | h = −17→17 |
Absorption correction: multi-scan (TWINABS; Bruker, 2016) | k = −19→18 |
Tmin = 0.608, Tmax = 0.746 | l = −21→23 |
40393 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.034 | w = 1/[σ2(Fo2) + (0.0388P)2 + 1.7169P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.080 | (Δ/σ)max = 0.001 |
S = 1.03 | Δρmax = 0.93 e Å−3 |
8122 reflections | Δρmin = −0.73 e Å−3 |
293 parameters | Extinction correction: (SHELXL-2018/3; Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1 restraint | Extinction coefficient: 0.0012 (3) |
Primary atom site location: dual | Absolute structure: Refined as an inversion twin. |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.115 (11) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a two-component inversion twin |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.84315 (3) | 0.78973 (3) | 0.57850 (3) | 0.01740 (10) | |
Cu2 | 0.59217 (4) | 0.80128 (3) | 0.43586 (3) | 0.01907 (10) | |
S1 | 0.73437 (7) | 0.71169 (7) | 0.68074 (6) | 0.01758 (17) | |
S2 | 0.53256 (7) | 0.75921 (6) | 0.57705 (6) | 0.01552 (15) | |
S3 | 0.47858 (7) | 0.74560 (8) | 0.32430 (7) | 0.02113 (18) | |
S4 | 0.28017 (7) | 0.75139 (6) | 0.43792 (6) | 0.01688 (16) | |
N1 | 0.8599 (3) | 0.9416 (2) | 0.5802 (3) | 0.0218 (6) | |
N2 | 0.6146 (3) | 0.9531 (3) | 0.4352 (3) | 0.0271 (7) | |
C1 | 0.6181 (3) | 0.6541 (3) | 0.6216 (3) | 0.0176 (6) | |
H1A | 0.572111 | 0.610665 | 0.661277 | 0.021* | |
H1B | 0.646981 | 0.609859 | 0.573648 | 0.021* | |
C2 | 0.6454 (3) | 0.8120 (3) | 0.7273 (3) | 0.0216 (7) | |
H2A | 0.595280 | 0.781936 | 0.772430 | 0.026* | |
H2B | 0.692894 | 0.865649 | 0.755319 | 0.026* | |
C3 | 0.5748 (3) | 0.8604 (3) | 0.6548 (3) | 0.0229 (8) | |
H3A | 0.619383 | 0.914115 | 0.624196 | 0.027* | |
H3B | 0.506878 | 0.893506 | 0.680033 | 0.027* | |
C4 | 0.8973 (3) | 1.0220 (3) | 0.5899 (3) | 0.0233 (7) | |
C5 | 0.9471 (4) | 1.1236 (3) | 0.6047 (3) | 0.0337 (10) | |
H5A | 1.026569 | 1.122572 | 0.586966 | 0.051* | |
H5B | 0.941772 | 1.141126 | 0.666932 | 0.051* | |
H5C | 0.906273 | 1.175400 | 0.570202 | 0.051* | |
C6 | 0.6404 (4) | 1.0373 (4) | 0.4332 (4) | 0.0384 (10) | |
C7 | 0.6757 (8) | 1.1462 (5) | 0.4299 (6) | 0.081 (3) | |
H7A | 0.631809 | 1.182650 | 0.385163 | 0.122* | |
H7B | 0.756221 | 1.150048 | 0.415362 | 0.122* | |
H7C | 0.662709 | 1.178524 | 0.486982 | 0.122* | |
C8 | 0.3636 (3) | 0.6684 (3) | 0.3662 (3) | 0.0212 (7) | |
H8A | 0.393246 | 0.608356 | 0.399149 | 0.025* | |
H8B | 0.316389 | 0.642406 | 0.317440 | 0.025* | |
C9 | 0.3864 (3) | 0.8562 (3) | 0.3071 (3) | 0.0250 (8) | |
H9A | 0.431480 | 0.917698 | 0.290743 | 0.030* | |
H9B | 0.332220 | 0.841488 | 0.259437 | 0.030* | |
C10 | 0.3233 (3) | 0.8761 (3) | 0.3924 (3) | 0.0241 (8) | |
H10A | 0.256090 | 0.919716 | 0.381185 | 0.029* | |
H10B | 0.372927 | 0.912903 | 0.434195 | 0.029* | |
P1 | 0.83561 (9) | 0.41114 (8) | 0.64167 (8) | 0.0243 (2) | |
F1 | 0.8514 (2) | 0.5141 (2) | 0.5834 (2) | 0.0352 (6) | |
F2 | 0.8195 (2) | 0.3098 (2) | 0.7025 (2) | 0.0381 (7) | |
F3 | 0.9652 (2) | 0.3807 (2) | 0.6263 (2) | 0.0400 (6) | |
F4 | 0.8733 (3) | 0.4757 (2) | 0.72667 (18) | 0.0373 (6) | |
F5 | 0.7068 (2) | 0.4413 (2) | 0.6591 (3) | 0.0478 (8) | |
F6 | 0.8011 (3) | 0.3459 (3) | 0.5585 (2) | 0.0564 (10) | |
P2 | 0.56386 (9) | 0.42170 (8) | 0.34899 (7) | 0.0242 (2) | |
F7 | 0.6297 (4) | 0.5004 (3) | 0.2875 (2) | 0.0639 (11) | |
F8 | 0.4947 (4) | 0.3435 (3) | 0.4073 (2) | 0.0765 (14) | |
F9 | 0.5737 (2) | 0.3338 (2) | 0.27453 (18) | 0.0295 (5) | |
F10 | 0.6798 (2) | 0.3850 (2) | 0.3895 (2) | 0.0402 (7) | |
F11 | 0.5557 (2) | 0.5097 (2) | 0.4233 (2) | 0.0394 (7) | |
F12 | 0.4494 (3) | 0.4601 (3) | 0.3056 (3) | 0.0836 (17) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01103 (17) | 0.02016 (19) | 0.0210 (2) | −0.00064 (14) | 0.00107 (16) | −0.00060 (19) |
Cu2 | 0.01171 (18) | 0.0229 (2) | 0.0226 (2) | −0.00045 (15) | 0.00019 (17) | 0.00155 (19) |
S1 | 0.0107 (3) | 0.0221 (4) | 0.0200 (4) | 0.0000 (3) | −0.0009 (3) | 0.0023 (3) |
S2 | 0.0092 (3) | 0.0186 (3) | 0.0188 (4) | 0.0002 (3) | 0.0004 (3) | 0.0008 (4) |
S3 | 0.0130 (4) | 0.0303 (4) | 0.0201 (4) | 0.0001 (3) | 0.0025 (3) | −0.0025 (4) |
S4 | 0.0098 (3) | 0.0221 (4) | 0.0187 (4) | 0.0007 (3) | 0.0008 (3) | 0.0005 (4) |
N1 | 0.0211 (14) | 0.0210 (13) | 0.0232 (15) | 0.0036 (11) | 0.0000 (14) | −0.0005 (14) |
N2 | 0.0294 (17) | 0.0244 (14) | 0.0275 (16) | −0.0013 (13) | −0.0028 (17) | 0.0032 (16) |
C1 | 0.0109 (13) | 0.0188 (15) | 0.0232 (17) | 0.0004 (12) | −0.0012 (13) | 0.0041 (13) |
C2 | 0.0162 (16) | 0.0276 (17) | 0.0210 (18) | −0.0007 (13) | 0.0018 (13) | −0.0030 (15) |
C3 | 0.0167 (16) | 0.0221 (16) | 0.030 (2) | 0.0020 (13) | −0.0030 (14) | −0.0058 (15) |
C4 | 0.0253 (18) | 0.0239 (17) | 0.0208 (18) | 0.0042 (14) | −0.0024 (15) | −0.0012 (15) |
C5 | 0.044 (3) | 0.0210 (18) | 0.036 (2) | −0.0023 (17) | −0.010 (2) | −0.0038 (17) |
C6 | 0.050 (3) | 0.030 (2) | 0.036 (2) | −0.0020 (19) | −0.009 (2) | 0.006 (2) |
C7 | 0.115 (7) | 0.031 (3) | 0.097 (6) | −0.017 (3) | −0.028 (6) | 0.022 (4) |
C8 | 0.0131 (15) | 0.0248 (17) | 0.026 (2) | −0.0002 (13) | 0.0027 (13) | −0.0048 (15) |
C9 | 0.0189 (17) | 0.032 (2) | 0.0241 (19) | −0.0009 (14) | −0.0017 (14) | 0.0094 (16) |
C10 | 0.0189 (17) | 0.0233 (17) | 0.030 (2) | 0.0052 (14) | 0.0044 (15) | 0.0058 (15) |
P1 | 0.0237 (5) | 0.0215 (4) | 0.0276 (5) | 0.0015 (4) | −0.0041 (4) | 0.0034 (4) |
F1 | 0.0441 (15) | 0.0313 (12) | 0.0302 (13) | 0.0015 (11) | −0.0016 (13) | 0.0093 (12) |
F2 | 0.0352 (14) | 0.0288 (13) | 0.0505 (18) | 0.0056 (11) | 0.0069 (13) | 0.0147 (12) |
F3 | 0.0305 (13) | 0.0460 (15) | 0.0434 (16) | 0.0103 (12) | 0.0071 (12) | 0.0068 (14) |
F4 | 0.0461 (16) | 0.0389 (14) | 0.0269 (13) | −0.0004 (13) | −0.0021 (13) | −0.0024 (11) |
F5 | 0.0238 (13) | 0.0352 (14) | 0.084 (3) | 0.0063 (11) | −0.0003 (14) | 0.0167 (16) |
F6 | 0.080 (3) | 0.0400 (16) | 0.049 (2) | 0.0039 (16) | −0.0306 (18) | −0.0073 (14) |
P2 | 0.0207 (4) | 0.0254 (5) | 0.0267 (5) | 0.0014 (4) | −0.0027 (4) | −0.0060 (4) |
F7 | 0.125 (3) | 0.0390 (17) | 0.0273 (15) | −0.034 (2) | −0.010 (2) | 0.0043 (13) |
F8 | 0.089 (3) | 0.086 (3) | 0.054 (2) | −0.059 (2) | 0.040 (2) | −0.024 (2) |
F9 | 0.0261 (12) | 0.0282 (11) | 0.0341 (14) | 0.0008 (10) | −0.0020 (10) | −0.0097 (11) |
F10 | 0.0383 (15) | 0.0422 (15) | 0.0400 (16) | 0.0129 (13) | −0.0168 (13) | −0.0089 (13) |
F11 | 0.0354 (14) | 0.0431 (14) | 0.0397 (17) | 0.0112 (12) | −0.0089 (12) | −0.0241 (13) |
F12 | 0.061 (2) | 0.093 (3) | 0.097 (3) | 0.052 (2) | −0.053 (2) | −0.069 (3) |
Cu1—N1 | 1.973 (3) | C5—H5A | 0.9800 |
Cu1—S1 | 2.2630 (10) | C5—H5B | 0.9800 |
Cu1—S2i | 2.3305 (9) | C5—H5C | 0.9800 |
Cu1—S4i | 2.3367 (11) | C6—C7 | 1.469 (7) |
Cu2—N2 | 1.980 (3) | C7—H7A | 0.9800 |
Cu2—S3 | 2.2886 (11) | C7—H7B | 0.9800 |
Cu2—S4i | 2.3281 (9) | C7—H7C | 0.9800 |
Cu2—S2 | 2.3357 (11) | C8—H8A | 0.9900 |
S1—C1 | 1.808 (4) | C8—H8B | 0.9900 |
S1—C2 | 1.817 (4) | C9—C10 | 1.524 (6) |
S2—C1 | 1.827 (4) | C9—H9A | 0.9900 |
S2—C3 | 1.836 (4) | C9—H9B | 0.9900 |
S3—C8 | 1.806 (4) | C10—H10A | 0.9900 |
S3—C9 | 1.817 (4) | C10—H10B | 0.9900 |
S4—C8 | 1.825 (4) | P1—F6 | 1.579 (3) |
S4—C10 | 1.830 (4) | P1—F5 | 1.597 (3) |
N1—C4 | 1.140 (5) | P1—F3 | 1.602 (3) |
N2—C6 | 1.132 (6) | P1—F4 | 1.608 (3) |
C1—H1A | 0.9900 | P1—F1 | 1.613 (3) |
C1—H1B | 0.9900 | P1—F2 | 1.617 (3) |
C2—C3 | 1.523 (6) | P2—F8 | 1.577 (4) |
C2—H2A | 0.9900 | P2—F10 | 1.579 (3) |
C2—H2B | 0.9900 | P2—F12 | 1.588 (3) |
C3—H3A | 0.9900 | P2—F7 | 1.590 (4) |
C3—H3B | 0.9900 | P2—F11 | 1.611 (3) |
C4—C5 | 1.456 (6) | P2—F9 | 1.613 (3) |
N1—Cu1—S1 | 119.47 (11) | H5B—C5—H5C | 109.5 |
N1—Cu1—S2i | 99.97 (9) | N2—C6—C7 | 179.0 (7) |
S1—Cu1—S2i | 115.68 (4) | C6—C7—H7A | 109.5 |
N1—Cu1—S4i | 105.68 (12) | C6—C7—H7B | 109.5 |
S1—Cu1—S4i | 110.65 (4) | H7A—C7—H7B | 109.5 |
S2i—Cu1—S4i | 103.69 (4) | C6—C7—H7C | 109.5 |
N2—Cu2—S3 | 112.75 (12) | H7A—C7—H7C | 109.5 |
N2—Cu2—S4i | 99.29 (11) | H7B—C7—H7C | 109.5 |
S3—Cu2—S4i | 118.69 (4) | S3—C8—S4 | 107.2 (2) |
N2—Cu2—S2 | 106.03 (13) | S3—C8—H8A | 110.3 |
S3—Cu2—S2 | 115.99 (4) | S4—C8—H8A | 110.3 |
S4i—Cu2—S2 | 102.03 (4) | S3—C8—H8B | 110.3 |
C1—S1—C2 | 92.80 (17) | S4—C8—H8B | 110.3 |
C1—S1—Cu1 | 105.74 (13) | H8A—C8—H8B | 108.5 |
C2—S1—Cu1 | 106.41 (13) | C10—C9—S3 | 107.7 (3) |
C1—S2—C3 | 97.91 (17) | C10—C9—H9A | 110.2 |
C1—S2—Cu1ii | 109.15 (11) | S3—C9—H9A | 110.2 |
C3—S2—Cu1ii | 116.70 (13) | C10—C9—H9B | 110.2 |
C1—S2—Cu2 | 110.50 (13) | S3—C9—H9B | 110.2 |
C3—S2—Cu2 | 110.50 (14) | H9A—C9—H9B | 108.5 |
Cu1ii—S2—Cu2 | 111.28 (4) | C9—C10—S4 | 108.2 (3) |
C8—S3—C9 | 91.90 (18) | C9—C10—H10A | 110.0 |
C8—S3—Cu2 | 110.66 (14) | S4—C10—H10A | 110.0 |
C9—S3—Cu2 | 102.31 (14) | C9—C10—H10B | 110.0 |
C8—S4—C10 | 97.95 (18) | S4—C10—H10B | 110.0 |
C8—S4—Cu2ii | 109.72 (13) | H10A—C10—H10B | 108.4 |
C10—S4—Cu2ii | 121.31 (13) | F6—P1—F5 | 91.0 (2) |
C8—S4—Cu1ii | 104.29 (13) | F6—P1—F3 | 89.9 (2) |
C10—S4—Cu1ii | 117.50 (15) | F5—P1—F3 | 178.8 (2) |
Cu2ii—S4—Cu1ii | 104.54 (4) | F6—P1—F4 | 178.58 (19) |
C4—N1—Cu1 | 161.5 (3) | F5—P1—F4 | 90.19 (18) |
C6—N2—Cu2 | 172.0 (4) | F3—P1—F4 | 88.87 (17) |
S1—C1—S2 | 107.58 (19) | F6—P1—F1 | 91.48 (18) |
S1—C1—H1A | 110.2 | F5—P1—F1 | 90.12 (16) |
S2—C1—H1A | 110.2 | F3—P1—F1 | 90.55 (16) |
S1—C1—H1B | 110.2 | F4—P1—F1 | 89.24 (16) |
S2—C1—H1B | 110.2 | F6—P1—F2 | 89.98 (19) |
H1A—C1—H1B | 108.5 | F5—P1—F2 | 89.37 (16) |
C3—C2—S1 | 109.0 (3) | F3—P1—F2 | 89.94 (15) |
C3—C2—H2A | 109.9 | F4—P1—F2 | 89.31 (17) |
S1—C2—H2A | 109.9 | F1—P1—F2 | 178.46 (18) |
C3—C2—H2B | 109.9 | F8—P2—F10 | 92.1 (2) |
S1—C2—H2B | 109.9 | F8—P2—F12 | 89.6 (3) |
H2A—C2—H2B | 108.3 | F10—P2—F12 | 178.1 (3) |
C2—C3—S2 | 109.2 (3) | F8—P2—F7 | 177.8 (2) |
C2—C3—H3A | 109.8 | F10—P2—F7 | 89.9 (2) |
S2—C3—H3A | 109.8 | F12—P2—F7 | 88.4 (3) |
C2—C3—H3B | 109.8 | F8—P2—F11 | 91.27 (19) |
S2—C3—H3B | 109.8 | F10—P2—F11 | 89.26 (15) |
H3A—C3—H3B | 108.3 | F12—P2—F11 | 91.32 (16) |
N1—C4—C5 | 178.2 (5) | F7—P2—F11 | 89.70 (18) |
C4—C5—H5A | 109.5 | F8—P2—F9 | 89.15 (17) |
C4—C5—H5B | 109.5 | F10—P2—F9 | 90.17 (15) |
H5A—C5—H5B | 109.5 | F12—P2—F9 | 89.25 (16) |
C4—C5—H5C | 109.5 | F7—P2—F9 | 89.90 (17) |
H5A—C5—H5C | 109.5 | F11—P2—F9 | 179.30 (16) |
C2—S1—C1—S2 | 40.7 (2) | C9—S3—C8—S4 | −41.9 (2) |
Cu1—S1—C1—S2 | −67.21 (18) | Cu2—S3—C8—S4 | 62.0 (2) |
C3—S2—C1—S1 | −23.4 (2) | C10—S4—C8—S3 | 22.5 (2) |
Cu1ii—S2—C1—S1 | −145.34 (13) | Cu2ii—S4—C8—S3 | 149.92 (14) |
Cu2—S2—C1—S1 | 91.98 (18) | Cu1ii—S4—C8—S3 | −98.58 (18) |
C1—S1—C2—C3 | −48.2 (3) | C8—S3—C9—C10 | 51.8 (3) |
Cu1—S1—C2—C3 | 59.1 (3) | Cu2—S3—C9—C10 | −59.9 (3) |
S1—C2—C3—S2 | 37.2 (3) | S3—C9—C10—S4 | −41.7 (3) |
C1—S2—C3—C2 | −8.0 (3) | C8—S4—C10—C9 | 11.4 (3) |
Cu1ii—S2—C3—C2 | 108.1 (2) | Cu2ii—S4—C10—C9 | −107.6 (2) |
Cu2—S2—C3—C2 | −123.5 (2) | Cu1ii—S4—C10—C9 | 122.1 (3) |
Symmetry codes: (i) x+1/2, −y+3/2, z; (ii) x−1/2, −y+3/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···F9iii | 0.99 | 2.55 | 3.264 (4) | 129 |
C1—H1A···F12iii | 0.99 | 2.40 | 3.277 (5) | 147 |
C2—H2A···F9iii | 0.99 | 2.50 | 3.287 (5) | 136 |
C3—H3B···F4ii | 0.99 | 2.42 | 3.376 (5) | 161 |
C5—H5C···F6iv | 0.98 | 2.54 | 3.426 (6) | 151 |
C8—H8A···F11 | 0.99 | 2.34 | 3.186 (5) | 143 |
C8—H8B···F2v | 0.99 | 2.46 | 3.323 (5) | 145 |
C10—H10A···F7ii | 0.99 | 2.31 | 3.221 (5) | 152 |
C10—H10B···F1ii | 0.99 | 2.48 | 3.264 (5) | 136 |
Symmetry codes: (ii) x−1/2, −y+3/2, z; (iii) −x+1, −y+1, z+1/2; (iv) x, y+1, z; (v) −x+1, −y+1, z−1/2. |
Acknowledgements
Lena Knauer would like to thank the `Fonds der Chemischen Industrie' for a doctoral fellowship.
References
Abel, E. W., Orrell, K. G., Qureshi, K. B. & Šik, V. (1990). Polyhedron, 9, 703–711. CrossRef CAS Web of Science Google Scholar
Ahrland, S., Dreisch, K., Norén, B. & Oskarsson, A. (1993). Mater. Chem. Phys. 35, 281–289. CSD CrossRef CAS Web of Science Google Scholar
Ainscough, E. W., Brodie, A. M., Husbands, J. M., Gainsford, G. J., Gabe, E. J. & Curtis, N. F. (1985). J. Chem. Soc. Dalton Trans. pp. 151–158. CSD CrossRef Web of Science Google Scholar
Bayly, S. R., Cowley, A. R., Dilworth, J. R. & Ward, C. V. (2009). Eur. J. Inorg. Chem. pp. 3807–3813. Web of Science CSD CrossRef Google Scholar
Braunwarth, H., Lau, P., Huttner, V., Minelli, M., Günauer, D., Zsolnai, V., Jibril, I. & Evertz, V. (1991). J. Organomet. Chem. 411, 383–394. CSD CrossRef CAS Web of Science Google Scholar
Brodersen, K. & Rölz, W. (1977). Chem. Ber. 110, 1042–1046. CrossRef CAS Web of Science Google Scholar
Bruker (2016). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chaabéne, M., Khatyr, A., Knorr, M., Askri, M., Rousselin, Y. & Kubicki, M. M. (2016). Inorg. Chim. Acta, 451, 177–186. Google Scholar
Dembo, M. D., Dunaway, L. E., Jones, J. S., Lepekhina, E. A., McCullough, S. M., Ming, J. L., Li, X., Baril-Robert, F., Patterson, H. H., Bayse, C. A. & Pike, R. D. (2010). Inorg. Chim. Acta, 364, 102–114. Web of Science CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gondi, S. R., Zhang, H. & Son, D. Y. (2011). J. Sulfur Chem. 32, 17–21. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Knaust, J. M. & Keller, S. W. (2003). CrystEngComm, 5, 459–465. Web of Science CSD CrossRef CAS Google Scholar
Knorr, M., Khatyr, A., Dini Aleo, A., El Yaagoubi, A., Strohmann, C., Kubicki, M. M., Rousselin, Y., Aly, S. M., Fortin, D., Lapprand, A. & Harvey, P. D. (2014). Cryst. Growth Des. 14, 5373–5387. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mälger, H., Olbrich, F., Kopf, J., Abeln, D. & Weiss, E. (1992). Z. Naturforsch. B, 47, 1276–1280. Google Scholar
Norén, B. & Oskarsson, Å. (1985). Acta Chem. Scand. 39a, 701–709. Google Scholar
Peindy, H. N., Guyon, F., Khatyr, A., Knorr, M. & Strohmann, C. (2007). Eur. J. Inorg. Chem. pp. 1823–1828. Web of Science CSD CrossRef Google Scholar
Raghuvanshi, A., Dargallay, N. J., Knorr, M., Viau, L., Knauer, L. & Strohmann, C. (2017). J. Inorg. Organomet. Polym. 27, 1501–1513. Web of Science CSD CrossRef CAS Google Scholar
Raghuvanshi, A., Knorr, M., Knauer, L., Strohmann, C., Boullanger, S., Moutarlier, V. & Viau, L. (2019). Inorg. Chem. 58, 5753–5775. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Usón, R., Laguna, A., Laguna, M., Manzano, B. R., Jones, P. G. & Sheldrick, G. M. (1984). J. Chem. Soc. Dalton Trans. pp. 285–292. Google Scholar
Vicente, J., Abad, J.-A., Hernández-Mata, F. S., Rink, B., Jones, P. G. & Ramírez de Arellano, M. C. (2004). Organometallics, 23, 1292–1304. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, H., Gondi, S. R. & Son, D. Y. (2006). Acta Cryst. E62, m3086–m3088. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.