research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the coordination polymer catena-poly[[[(aceto­nitrile-κN)copper(I)]-μ3-1,3-di­thiolane-κ3S:S:S′] hexa­fluoridophosphate]

aAnorganische Chemie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany, and bInstitut UTINAM UMR 6213 CNRS, Université Bourgogne Franche-Comté, 16 Route de Gray, 25030 Besançon Cedex, France
*Correspondence e-mail: michael.knorr@univ-fcomte.fr, carsten-strohmann@tu-dortmund.de

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 19 November 2019; accepted 3 December 2019; online 1 January 2020)

The polymeric title compound, [Cu2(C2H3N)2(C3H6S2)2](PF6)2, represents an example of a one-dimensional coordination polymer resulting from the reaction of [Cu(MeCN)4][PF6] with 1,3-di­thiol­ane. The cationic one-dimensional ribbon consists of two copper(I) centers each ligated by one aceto­nitrile mol­ecule and inter­connected through two bridging 1,3-di­thiol­ane ligands. One S-donor site of each ligand is κ1-bound to Cu, whereas the second S atom acts as a four-electron donor, bridging two Cu atoms in a κ4-bonding mode. The positive charge of each copper cation is compensated for by a hexa­fluorido­phosphate counter-ion. In the crystal, the polymer chains are linked by a series of C—H⋯F hydrogen bonds, forming a supra­molecular framework.

1. Chemical context

The five-membered heterocyclic ligand tetra­hydro­thio­phene (THT) is known to form a great variety of mol­ecular complexes and coordination polymers (CPs) with various transition metals. Notably, for the soft coinage metal ions copper(I), silver(I) and gold(I), numerous structurally characterized examples coordinated by terminal or bridging THT ligands have been documented (Ahrland et al., 1993[Ahrland, S., Dreisch, K., Norén, B. & Oskarsson, A. (1993). Mater. Chem. Phys. 35, 281-289.]; Dembo et al., 2010[Dembo, M. D., Dunaway, L. E., Jones, J. S., Lepekhina, E. A., McCullough, S. M., Ming, J. L., Li, X., Baril-Robert, F., Patterson, H. H., Bayse, C. A. & Pike, R. D. (2010). Inorg. Chim. Acta, 364, 102-114.]; Norén & Oskarsson, 1985[Norén, B. & Oskarsson, Å. (1985). Acta Chem. Scand. 39a, 701-709.]; Mälger et al., 1992[Mälger, H., Olbrich, F., Kopf, J., Abeln, D. & Weiss, E. (1992). Z. Naturforsch. B, 47, 1276-1280.]; Usón et al., 1984[Usón, R., Laguna, A., Laguna, M., Manzano, B. R., Jones, P. G. & Sheldrick, G. M. (1984). J. Chem. Soc. Dalton Trans. pp. 285-292.]). Even mixed-valence (CuI–CuII) compounds such as polymeric penta-μ-chloro-tris-μ-tetra­hydro­thio­phene­tetra­copper(I,II) have been prepared (Ainscough et al., 1985[Ainscough, E. W., Brodie, A. M., Husbands, J. M., Gainsford, G. J., Gabe, E. J. & Curtis, N. F. (1985). J. Chem. Soc. Dalton Trans. pp. 151-158.]). In the case of the five-membered heterocycle 1,2-di­thiol­ane, in which one CH2 unit is replaced by a second sulfur atom, there is one report on its coordination to Hg2(NO3)2 yielding the HgI adduct 1,2-di­thiol­ane·Hg2(NO3)2 (Brodersen & Rölz, 1977[Brodersen, K. & Rölz, W. (1977). Chem. Ber. 110, 1042-1046.]). Furthermore, the dinuclear organometallic species [η5-CpMn(CO)2(μ2-1,2-di­thiol­ane)]2 has been characterized crystallographically (Braunwarth et al., 1991[Braunwarth, H., Lau, P., Huttner, V., Minelli, M., Günauer, D., Zsolnai, V., Jibril, I. & Evertz, V. (1991). J. Organomet. Chem. 411, 383-394.]). The fluxional complexes [M(CO)5(1,3-di­thiol­ane)] (M = Cr, Mo, W) ligated by the isomeric heterocycle 1,3-di­thiol­ane (1,3-di­thia­cyclo­penta­ne) have been investigated by NMR spectroscopy (Abel et al., 1990[Abel, E. W., Orrell, K. G., Qureshi, K. B. & Šik, V. (1990). Polyhedron, 9, 703-711.]).

In a comparative study with respect to our previous work on the coordination chemistry of the open-chain di­thio­ether analogues RS-CH2-SR (Chaabéne et al., 2016[Chaabéne, M., Khatyr, A., Knorr, M., Askri, M., Rousselin, Y. & Kubicki, M. M. (2016). Inorg. Chim. Acta, 451, 177-186.]; Knorr et al., 2014[Knorr, M., Khatyr, A., Dini Aleo, A., El Yaagoubi, A., Strohmann, C., Kubicki, M. M., Rousselin, Y., Aly, S. M., Fortin, D., Lapprand, A. & Harvey, P. D. (2014). Cryst. Growth Des. 14, 5373-5387.]; Peindy et al., 2007[Peindy, H. N., Guyon, F., Khatyr, A., Knorr, M. & Strohmann, C. (2007). Eur. J. Inorg. Chem. pp. 1823-1828.]) and in part to fill the gap between the versatile coordination chemistry of THT (see above) and the almost unexplored coordination chemistry of 1,3-di­thiol­ane, we recently described in detail the construction and structural features of mol­ecular clusters and coordination networks, with dimensionalities varying from 0D–2D by reacting 1,3-di­thiol­ane and its ferrocenyl derivative substituted at the 2-position with CuX salts (X = Cl, Br, I) (Raghuvanshi et al., 2017[Raghuvanshi, A., Dargallay, N. J., Knorr, M., Viau, L., Knauer, L. & Strohmann, C. (2017). J. Inorg. Organomet. Polym. 27, 1501-1513.]). However, surprisingly, a survey of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), reveals that apart from our CuX–1,3-di­thiol­ane compounds, no other unsubstituted 1,3-di­thiol­ane complexes have been structurally characterized. We have now extended our project on the coordination chemistry of this cyclic di­thio­ether using [Cu(MeCN)4][PF6] as reactant to obtain the title polymeric ionic salt-like material, which could be inter­esting for electrochemical investigations.

[Scheme 1]

2. Structural commentary

We have previously described (Raghuvanshi et al., 2017[Raghuvanshi, A., Dargallay, N. J., Knorr, M., Viau, L., Knauer, L. & Strohmann, C. (2017). J. Inorg. Organomet. Polym. 27, 1501-1513.]), the structural features of the ribbon-like structures of compounds [{Cu(μ2-Br)}(μ2-L1)]n and [{Cu(μ2-Cl)}(μ2-L1)]n, formed upon treatment of CuBr and CuCl with 1,3-di­thiol­ane (L1). The title complex salt, a ribbon of composition [Cu(1,3-di­thiane)(MeCN)]n+ (CP1) also results from the reaction of [Cu(MeCN)4][PF6] with L1, but its architecture is quite different.

The mol­ecular structure of the asymmetric unit of the title complex is illustrated in Fig. 1[link], and selected bond lengths and bond angles are given in Table 1[link]. The ribbon-like structure is built upon individual CuI atoms, each ligated by a datively bound MeCN ligand and inter­connected to the neighbouring metal centers by two bridging di­thiol­ane ligands (Fig. 2[link]). Overall, the architecture of CP1 is quite reminiscent of that of the 1D polymeric tetra­fluorido­borate salt [Cu(1,3-di­thiane)(MeCN)]n+ (Knaust & Keller, 2003[Knaust, J. M. & Keller, S. W. (2003). CrystEngComm, 5, 459-465.]). Nevertheless, there is one difference. Whereas the asymmetric unit of the latter salt (crystallizing in the ortho­rhom­bic Sohncke space group P212121) contains three unique copper(I) centers, that of CP1 (crystallizing in the ortho­rhom­bic non-centrosymmetric space group Pna21) contains only two unique CuI atoms. Each displays a CuNS3 four-coordinate environment; see Table 1[link] [L—Cu—L angles: 99.97 (7) to 119.47 (11)° for Cu1, and 99.29 (11) to 118.69 (4)° for Cu2]. The τ4 descriptor for fourfold coordination is = 0.89 for both atoms Cu1 and Cu2, indicating that each have a trigonal-pyramidal geometry (τ4 = 1 for a perfect tetra­hedral geometry, = 0 for a perfect square planar geometry and = 0.85 for a perfect trigonal-pyramidal geometry; Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]).

Table 1
Selected geometric parameters (Å, °)

Cu1—N1 1.973 (3) Cu2—N2 1.980 (3)
Cu1—S1 2.2630 (10) Cu2—S3 2.2886 (11)
Cu1—S2i 2.3305 (9) Cu2—S4i 2.3281 (9)
Cu1—S4i 2.3367 (11) Cu2—S2 2.3357 (11)
       
N1—Cu1—S1 119.47 (11) N2—Cu2—S4i 99.29 (11)
N1—Cu1—S2i 99.97 (9) S3—Cu2—S4i 118.69 (4)
S1—Cu1—S2i 115.68 (4) N2—Cu2—S2 106.03 (13)
N1—Cu1—S4i 105.68 (12) S3—Cu2—S2 115.99 (4)
S1—Cu1—S4i 110.65 (4) S4i—Cu2—S2 102.03 (4)
S2i—Cu1—S4i 103.69 (4) Cu1ii—S2—Cu2 111.28 (4)
N2—Cu2—S3 112.75 (12) Cu2ii—S4—Cu1ii 104.54 (4)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z].
[Figure 1]
Figure 1
A view of the asymmetric unit of the title compound, with atom labelling [symmetry codes: (i) x − [{1\over 2}], −y + [{3\over 2}], z; (ii) x + [{1\over 2}], −y + [{3\over 2}], z]. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
A partial view along the b axis of the crystal packing of the title compound. For clarity, the H atoms and the PF6 anions have been omitted.

The coordination environment for each of the CuI centers includes three bridging di­thiol­ane ligands and one terminal aceto­nitrile ligand. All Cu—S bond lengths are in the range 2.2630 (10)–2.3367 (11) Å, the mean Cu—S bond length of 2.314 (12) Å is quite similar to that in [Cu(1,3-di­thiane)(MeCN)]n+. In addition, the mean Cu—N bond distance matches well with that of [Cu(1,3-di­thiane)(MeCN)]n [1.979 (4) versus 1.984 (7) Å]. The three di­thiol­ane ligands each have one S atom that is a two-electron donor and one S atom that is a μ2-four-electron donor. The Cu⋯Cu separations of ca 3.689–3.852 Å are far above the sum of the van der Waals radii of two Cu atoms (2.8 Å), excluding any bonding inter­action. These two bonding modes lead to the formation of a ribbon-like coordination polymer, which runs parallel to the a axis, where each copper(I) center is bonded to two μ2-S atoms and one μ1-S atom (Fig. 2[link] and Table 1[link]).

3. Supra­molecular features

The crystal packing of the title compound is illustrated in Fig. 3[link], and shows the ribbon-like structures, propagating along the a-axis direction, that are linked by a number of C—H⋯F hydrogen bonds, forming a supra­molecular framework (Fig. 3[link] and Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯F9iii 0.99 2.55 3.264 (4) 129
C1—H1A⋯F12iii 0.99 2.40 3.277 (5) 147
C2—H2A⋯F9iii 0.99 2.50 3.287 (5) 136
C3—H3B⋯F4ii 0.99 2.42 3.376 (5) 161
C5—H5C⋯F6iv 0.98 2.54 3.426 (6) 151
C8—H8A⋯F11 0.99 2.34 3.186 (5) 143
C8—H8B⋯F2v 0.99 2.46 3.323 (5) 145
C10—H10A⋯F7ii 0.99 2.31 3.221 (5) 152
C10—H10B⋯F1ii 0.99 2.48 3.264 (5) 136
Symmetry codes: (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (iii) [-x+1, -y+1, z+{\script{1\over 2}}]; (iv) x, y+1, z; (v) [-x+1, -y+1, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
A view along the a axis of the crystal packing of the title compound. The C—H⋯F hydrogen bonds (Table 2[link]) are shown as dashed lines. For clarity, only the H atoms involved in these inter­actions have been included.

4. Database survey

Other examples of crystallographically characterized 1,3-di­thiol­ane complexes substituted at the 2-position found in the Cambridge Structural Database (CSD, version 5.40, update August 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) include catena-[(μ5-1,3-di­thiol­ane-2-carboxyl­ato)(μ4-1,3-di­thiol­ane-2-carboxyl­ato)(μ2-tri­fluoro­methane­sulfonato-O,O′)tris­ilver(I)] (CSD refcode FAQIPY; Gondi et al., 2011[Gondi, S. R., Zhang, H. & Son, D. Y. (2011). J. Sulfur Chem. 32, 17-21.]), catena-[(μ3-1,3-di­thiol­ane-2-methanol-S,S,S′)(nitrato-O)silver(I)] (HESLUN; Zhang et al., 2006[Zhang, H., Gondi, S. R. & Son, D. Y. (2006). Acta Cryst. E62, m3086-m3088.]), chloro­tri­phenyl­phosphine[2,5-bis­(1,3-di­thio­lan-2-yl)phen­yl-S]palladium(II) (IVUFEK; Vicente et al., 2004[Vicente, J., Abad, J.-A., Hernández-Mata, F. S., Rink, B., Jones, P. G. & Ramírez de Arellano, M. C. (2004). Organometallics, 23, 1292-1304.]), rac-trans-di­chloro­bis­{[2-(1,3-di­thio­lan-2-yl)phen­yl](diphen­yl)phos­phine}ruthenium(II) chloro­form solvate (TUMKOC; Bayly et al., 2009[Bayly, S. R., Cowley, A. R., Dilworth, J. R. & Ward, C. V. (2009). Eur. J. Inorg. Chem. pp. 3807-3813.]). Other examples of related 1,3-di­thiane copper(I) coordination polymers have also been reported (Raghuvanshi et al., 2019[Raghuvanshi, A., Knorr, M., Knauer, L., Strohmann, C., Boullanger, S., Moutarlier, V. & Viau, L. (2019). Inorg. Chem. 58, 5753-5775.]).

5. Synthesis and crystallization

The reaction scheme for the synthesis of the title compound is illustrated in Fig. 4[link]. To a solution of [Cu(MeCN)4][PF6] (372 mg, 0.1 mmol) in CH2Cl2 (10 ml) was added an equimolar amount of 1,3-di­thiol­ane (L1) via a syringe. The solution was stirred at 293 K for 2 h, then layered with Et2O (10 ml) and stored in a refrigerator for 2 days. Colourless block-like crystals formed progressively (245 mg, 68% yield).

[Figure 4]
Figure 4
Reaction scheme for the synthesis of the title compound, CP1.

Elemental analysis calculated for C10H18Cu2F12N2P2S4: C, 16.88; H, 2.54; N, 3.94; S, 18.03%. Found: C, 16.44; H, 2.28; N, 3.44; S, 17.81%. IR (ATR; cm−1): 2280 w (weak) (CN), 835 vs (very strong) (PF6).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The C-bound H atoms were included in calculated positions and treated as riding: C—H = 0.98–0.99 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms. The structure was refined as a two-component inversion twin; BASF = 0.121 (12). In the final cycles of refinement three reflections were omitted; one was affected by the backstop and two were most disagreeable reflections.

Table 3
Experimental details

Crystal data
Chemical formula [Cu2(C2H3N)2(C3H6S2)2] (PF6)2
Mr 711.52
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 105
a, b, c (Å) 11.8409 (9), 12.9273 (9), 15.2921 (11)
V3) 2340.8 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.41
Crystal size (mm) 0.33 × 0.32 × 0.27
 
Data collection
Diffractometer Bruker D8 VENTURE area detector
Absorption correction Multi-scan (TWINABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.608, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 40393, 8122, 7092
Rint 0.040
(sin θ/λ)max−1) 0.769
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.080, 1.03
No. of reflections 8122
No. of parameters 293
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.93, −0.73
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2(Dolomanov et al., 2009), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

catena-Poly[[[(acetonitrile-κN)copper(I)]-µ3-1,3-dithiolane-κ3S:S:S'] hexafluoridophosphate] top
Crystal data top
[Cu2(C2H3N)2(C3H6S2)2](PF6)2Dx = 2.019 Mg m3
Mr = 711.52Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 9565 reflections
a = 11.8409 (9) Åθ = 2.7–31.8°
b = 12.9273 (9) ŵ = 2.41 mm1
c = 15.2921 (11) ÅT = 105 K
V = 2340.8 (3) Å3Block, colourless
Z = 40.33 × 0.32 × 0.27 mm
F(000) = 1408
Data collection top
Bruker D8 VENTURE area detector
diffractometer
8122 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs7092 reflections with I > 2σ(I)
HELIOS mirror optics monochromatorRint = 0.040
Detector resolution: 10.4167 pixels mm-1θmax = 33.1°, θmin = 2.3°
ω and φ scansh = 1717
Absorption correction: multi-scan
(TWINABS; Bruker, 2016)
k = 1918
Tmin = 0.608, Tmax = 0.746l = 2123
40393 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0388P)2 + 1.7169P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.080(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.93 e Å3
8122 reflectionsΔρmin = 0.73 e Å3
293 parametersExtinction correction: (SHELXL-2018/3; Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0012 (3)
Primary atom site location: dualAbsolute structure: Refined as an inversion twin.
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.115 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.84315 (3)0.78973 (3)0.57850 (3)0.01740 (10)
Cu20.59217 (4)0.80128 (3)0.43586 (3)0.01907 (10)
S10.73437 (7)0.71169 (7)0.68074 (6)0.01758 (17)
S20.53256 (7)0.75921 (6)0.57705 (6)0.01552 (15)
S30.47858 (7)0.74560 (8)0.32430 (7)0.02113 (18)
S40.28017 (7)0.75139 (6)0.43792 (6)0.01688 (16)
N10.8599 (3)0.9416 (2)0.5802 (3)0.0218 (6)
N20.6146 (3)0.9531 (3)0.4352 (3)0.0271 (7)
C10.6181 (3)0.6541 (3)0.6216 (3)0.0176 (6)
H1A0.5721110.6106650.6612770.021*
H1B0.6469810.6098590.5736480.021*
C20.6454 (3)0.8120 (3)0.7273 (3)0.0216 (7)
H2A0.5952800.7819360.7724300.026*
H2B0.6928940.8656490.7553190.026*
C30.5748 (3)0.8604 (3)0.6548 (3)0.0229 (8)
H3A0.6193830.9141150.6241960.027*
H3B0.5068780.8935060.6800330.027*
C40.8973 (3)1.0220 (3)0.5899 (3)0.0233 (7)
C50.9471 (4)1.1236 (3)0.6047 (3)0.0337 (10)
H5A1.0265691.1225720.5869660.051*
H5B0.9417721.1411260.6669320.051*
H5C0.9062731.1754000.5702020.051*
C60.6404 (4)1.0373 (4)0.4332 (4)0.0384 (10)
C70.6757 (8)1.1462 (5)0.4299 (6)0.081 (3)
H7A0.6318091.1826500.3851630.122*
H7B0.7562211.1500480.4153620.122*
H7C0.6627091.1785240.4869820.122*
C80.3636 (3)0.6684 (3)0.3662 (3)0.0212 (7)
H8A0.3932460.6083560.3991490.025*
H8B0.3163890.6424060.3174400.025*
C90.3864 (3)0.8562 (3)0.3071 (3)0.0250 (8)
H9A0.4314800.9176980.2907430.030*
H9B0.3322200.8414880.2594370.030*
C100.3233 (3)0.8761 (3)0.3924 (3)0.0241 (8)
H10A0.2560900.9197160.3811850.029*
H10B0.3729270.9129030.4341950.029*
P10.83561 (9)0.41114 (8)0.64167 (8)0.0243 (2)
F10.8514 (2)0.5141 (2)0.5834 (2)0.0352 (6)
F20.8195 (2)0.3098 (2)0.7025 (2)0.0381 (7)
F30.9652 (2)0.3807 (2)0.6263 (2)0.0400 (6)
F40.8733 (3)0.4757 (2)0.72667 (18)0.0373 (6)
F50.7068 (2)0.4413 (2)0.6591 (3)0.0478 (8)
F60.8011 (3)0.3459 (3)0.5585 (2)0.0564 (10)
P20.56386 (9)0.42170 (8)0.34899 (7)0.0242 (2)
F70.6297 (4)0.5004 (3)0.2875 (2)0.0639 (11)
F80.4947 (4)0.3435 (3)0.4073 (2)0.0765 (14)
F90.5737 (2)0.3338 (2)0.27453 (18)0.0295 (5)
F100.6798 (2)0.3850 (2)0.3895 (2)0.0402 (7)
F110.5557 (2)0.5097 (2)0.4233 (2)0.0394 (7)
F120.4494 (3)0.4601 (3)0.3056 (3)0.0836 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01103 (17)0.02016 (19)0.0210 (2)0.00064 (14)0.00107 (16)0.00060 (19)
Cu20.01171 (18)0.0229 (2)0.0226 (2)0.00045 (15)0.00019 (17)0.00155 (19)
S10.0107 (3)0.0221 (4)0.0200 (4)0.0000 (3)0.0009 (3)0.0023 (3)
S20.0092 (3)0.0186 (3)0.0188 (4)0.0002 (3)0.0004 (3)0.0008 (4)
S30.0130 (4)0.0303 (4)0.0201 (4)0.0001 (3)0.0025 (3)0.0025 (4)
S40.0098 (3)0.0221 (4)0.0187 (4)0.0007 (3)0.0008 (3)0.0005 (4)
N10.0211 (14)0.0210 (13)0.0232 (15)0.0036 (11)0.0000 (14)0.0005 (14)
N20.0294 (17)0.0244 (14)0.0275 (16)0.0013 (13)0.0028 (17)0.0032 (16)
C10.0109 (13)0.0188 (15)0.0232 (17)0.0004 (12)0.0012 (13)0.0041 (13)
C20.0162 (16)0.0276 (17)0.0210 (18)0.0007 (13)0.0018 (13)0.0030 (15)
C30.0167 (16)0.0221 (16)0.030 (2)0.0020 (13)0.0030 (14)0.0058 (15)
C40.0253 (18)0.0239 (17)0.0208 (18)0.0042 (14)0.0024 (15)0.0012 (15)
C50.044 (3)0.0210 (18)0.036 (2)0.0023 (17)0.010 (2)0.0038 (17)
C60.050 (3)0.030 (2)0.036 (2)0.0020 (19)0.009 (2)0.006 (2)
C70.115 (7)0.031 (3)0.097 (6)0.017 (3)0.028 (6)0.022 (4)
C80.0131 (15)0.0248 (17)0.026 (2)0.0002 (13)0.0027 (13)0.0048 (15)
C90.0189 (17)0.032 (2)0.0241 (19)0.0009 (14)0.0017 (14)0.0094 (16)
C100.0189 (17)0.0233 (17)0.030 (2)0.0052 (14)0.0044 (15)0.0058 (15)
P10.0237 (5)0.0215 (4)0.0276 (5)0.0015 (4)0.0041 (4)0.0034 (4)
F10.0441 (15)0.0313 (12)0.0302 (13)0.0015 (11)0.0016 (13)0.0093 (12)
F20.0352 (14)0.0288 (13)0.0505 (18)0.0056 (11)0.0069 (13)0.0147 (12)
F30.0305 (13)0.0460 (15)0.0434 (16)0.0103 (12)0.0071 (12)0.0068 (14)
F40.0461 (16)0.0389 (14)0.0269 (13)0.0004 (13)0.0021 (13)0.0024 (11)
F50.0238 (13)0.0352 (14)0.084 (3)0.0063 (11)0.0003 (14)0.0167 (16)
F60.080 (3)0.0400 (16)0.049 (2)0.0039 (16)0.0306 (18)0.0073 (14)
P20.0207 (4)0.0254 (5)0.0267 (5)0.0014 (4)0.0027 (4)0.0060 (4)
F70.125 (3)0.0390 (17)0.0273 (15)0.034 (2)0.010 (2)0.0043 (13)
F80.089 (3)0.086 (3)0.054 (2)0.059 (2)0.040 (2)0.024 (2)
F90.0261 (12)0.0282 (11)0.0341 (14)0.0008 (10)0.0020 (10)0.0097 (11)
F100.0383 (15)0.0422 (15)0.0400 (16)0.0129 (13)0.0168 (13)0.0089 (13)
F110.0354 (14)0.0431 (14)0.0397 (17)0.0112 (12)0.0089 (12)0.0241 (13)
F120.061 (2)0.093 (3)0.097 (3)0.052 (2)0.053 (2)0.069 (3)
Geometric parameters (Å, º) top
Cu1—N11.973 (3)C5—H5A0.9800
Cu1—S12.2630 (10)C5—H5B0.9800
Cu1—S2i2.3305 (9)C5—H5C0.9800
Cu1—S4i2.3367 (11)C6—C71.469 (7)
Cu2—N21.980 (3)C7—H7A0.9800
Cu2—S32.2886 (11)C7—H7B0.9800
Cu2—S4i2.3281 (9)C7—H7C0.9800
Cu2—S22.3357 (11)C8—H8A0.9900
S1—C11.808 (4)C8—H8B0.9900
S1—C21.817 (4)C9—C101.524 (6)
S2—C11.827 (4)C9—H9A0.9900
S2—C31.836 (4)C9—H9B0.9900
S3—C81.806 (4)C10—H10A0.9900
S3—C91.817 (4)C10—H10B0.9900
S4—C81.825 (4)P1—F61.579 (3)
S4—C101.830 (4)P1—F51.597 (3)
N1—C41.140 (5)P1—F31.602 (3)
N2—C61.132 (6)P1—F41.608 (3)
C1—H1A0.9900P1—F11.613 (3)
C1—H1B0.9900P1—F21.617 (3)
C2—C31.523 (6)P2—F81.577 (4)
C2—H2A0.9900P2—F101.579 (3)
C2—H2B0.9900P2—F121.588 (3)
C3—H3A0.9900P2—F71.590 (4)
C3—H3B0.9900P2—F111.611 (3)
C4—C51.456 (6)P2—F91.613 (3)
N1—Cu1—S1119.47 (11)H5B—C5—H5C109.5
N1—Cu1—S2i99.97 (9)N2—C6—C7179.0 (7)
S1—Cu1—S2i115.68 (4)C6—C7—H7A109.5
N1—Cu1—S4i105.68 (12)C6—C7—H7B109.5
S1—Cu1—S4i110.65 (4)H7A—C7—H7B109.5
S2i—Cu1—S4i103.69 (4)C6—C7—H7C109.5
N2—Cu2—S3112.75 (12)H7A—C7—H7C109.5
N2—Cu2—S4i99.29 (11)H7B—C7—H7C109.5
S3—Cu2—S4i118.69 (4)S3—C8—S4107.2 (2)
N2—Cu2—S2106.03 (13)S3—C8—H8A110.3
S3—Cu2—S2115.99 (4)S4—C8—H8A110.3
S4i—Cu2—S2102.03 (4)S3—C8—H8B110.3
C1—S1—C292.80 (17)S4—C8—H8B110.3
C1—S1—Cu1105.74 (13)H8A—C8—H8B108.5
C2—S1—Cu1106.41 (13)C10—C9—S3107.7 (3)
C1—S2—C397.91 (17)C10—C9—H9A110.2
C1—S2—Cu1ii109.15 (11)S3—C9—H9A110.2
C3—S2—Cu1ii116.70 (13)C10—C9—H9B110.2
C1—S2—Cu2110.50 (13)S3—C9—H9B110.2
C3—S2—Cu2110.50 (14)H9A—C9—H9B108.5
Cu1ii—S2—Cu2111.28 (4)C9—C10—S4108.2 (3)
C8—S3—C991.90 (18)C9—C10—H10A110.0
C8—S3—Cu2110.66 (14)S4—C10—H10A110.0
C9—S3—Cu2102.31 (14)C9—C10—H10B110.0
C8—S4—C1097.95 (18)S4—C10—H10B110.0
C8—S4—Cu2ii109.72 (13)H10A—C10—H10B108.4
C10—S4—Cu2ii121.31 (13)F6—P1—F591.0 (2)
C8—S4—Cu1ii104.29 (13)F6—P1—F389.9 (2)
C10—S4—Cu1ii117.50 (15)F5—P1—F3178.8 (2)
Cu2ii—S4—Cu1ii104.54 (4)F6—P1—F4178.58 (19)
C4—N1—Cu1161.5 (3)F5—P1—F490.19 (18)
C6—N2—Cu2172.0 (4)F3—P1—F488.87 (17)
S1—C1—S2107.58 (19)F6—P1—F191.48 (18)
S1—C1—H1A110.2F5—P1—F190.12 (16)
S2—C1—H1A110.2F3—P1—F190.55 (16)
S1—C1—H1B110.2F4—P1—F189.24 (16)
S2—C1—H1B110.2F6—P1—F289.98 (19)
H1A—C1—H1B108.5F5—P1—F289.37 (16)
C3—C2—S1109.0 (3)F3—P1—F289.94 (15)
C3—C2—H2A109.9F4—P1—F289.31 (17)
S1—C2—H2A109.9F1—P1—F2178.46 (18)
C3—C2—H2B109.9F8—P2—F1092.1 (2)
S1—C2—H2B109.9F8—P2—F1289.6 (3)
H2A—C2—H2B108.3F10—P2—F12178.1 (3)
C2—C3—S2109.2 (3)F8—P2—F7177.8 (2)
C2—C3—H3A109.8F10—P2—F789.9 (2)
S2—C3—H3A109.8F12—P2—F788.4 (3)
C2—C3—H3B109.8F8—P2—F1191.27 (19)
S2—C3—H3B109.8F10—P2—F1189.26 (15)
H3A—C3—H3B108.3F12—P2—F1191.32 (16)
N1—C4—C5178.2 (5)F7—P2—F1189.70 (18)
C4—C5—H5A109.5F8—P2—F989.15 (17)
C4—C5—H5B109.5F10—P2—F990.17 (15)
H5A—C5—H5B109.5F12—P2—F989.25 (16)
C4—C5—H5C109.5F7—P2—F989.90 (17)
H5A—C5—H5C109.5F11—P2—F9179.30 (16)
C2—S1—C1—S240.7 (2)C9—S3—C8—S441.9 (2)
Cu1—S1—C1—S267.21 (18)Cu2—S3—C8—S462.0 (2)
C3—S2—C1—S123.4 (2)C10—S4—C8—S322.5 (2)
Cu1ii—S2—C1—S1145.34 (13)Cu2ii—S4—C8—S3149.92 (14)
Cu2—S2—C1—S191.98 (18)Cu1ii—S4—C8—S398.58 (18)
C1—S1—C2—C348.2 (3)C8—S3—C9—C1051.8 (3)
Cu1—S1—C2—C359.1 (3)Cu2—S3—C9—C1059.9 (3)
S1—C2—C3—S237.2 (3)S3—C9—C10—S441.7 (3)
C1—S2—C3—C28.0 (3)C8—S4—C10—C911.4 (3)
Cu1ii—S2—C3—C2108.1 (2)Cu2ii—S4—C10—C9107.6 (2)
Cu2—S2—C3—C2123.5 (2)Cu1ii—S4—C10—C9122.1 (3)
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···F9iii0.992.553.264 (4)129
C1—H1A···F12iii0.992.403.277 (5)147
C2—H2A···F9iii0.992.503.287 (5)136
C3—H3B···F4ii0.992.423.376 (5)161
C5—H5C···F6iv0.982.543.426 (6)151
C8—H8A···F110.992.343.186 (5)143
C8—H8B···F2v0.992.463.323 (5)145
C10—H10A···F7ii0.992.313.221 (5)152
C10—H10B···F1ii0.992.483.264 (5)136
Symmetry codes: (ii) x1/2, y+3/2, z; (iii) x+1, y+1, z+1/2; (iv) x, y+1, z; (v) x+1, y+1, z1/2.
 

Acknowledgements

Lena Knauer would like to thank the `Fonds der Chemischen Industrie' for a doctoral fellowship.

References

First citationAbel, E. W., Orrell, K. G., Qureshi, K. B. & Šik, V. (1990). Polyhedron, 9, 703–711.  CrossRef CAS Web of Science Google Scholar
First citationAhrland, S., Dreisch, K., Norén, B. & Oskarsson, A. (1993). Mater. Chem. Phys. 35, 281–289.  CSD CrossRef CAS Web of Science Google Scholar
First citationAinscough, E. W., Brodie, A. M., Husbands, J. M., Gainsford, G. J., Gabe, E. J. & Curtis, N. F. (1985). J. Chem. Soc. Dalton Trans. pp. 151–158.  CSD CrossRef Web of Science Google Scholar
First citationBayly, S. R., Cowley, A. R., Dilworth, J. R. & Ward, C. V. (2009). Eur. J. Inorg. Chem. pp. 3807–3813.  Web of Science CSD CrossRef Google Scholar
First citationBraunwarth, H., Lau, P., Huttner, V., Minelli, M., Günauer, D., Zsolnai, V., Jibril, I. & Evertz, V. (1991). J. Organomet. Chem. 411, 383–394.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrodersen, K. & Rölz, W. (1977). Chem. Ber. 110, 1042–1046.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2016). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChaabéne, M., Khatyr, A., Knorr, M., Askri, M., Rousselin, Y. & Kubicki, M. M. (2016). Inorg. Chim. Acta, 451, 177–186.  Google Scholar
First citationDembo, M. D., Dunaway, L. E., Jones, J. S., Lepekhina, E. A., McCullough, S. M., Ming, J. L., Li, X., Baril-Robert, F., Patterson, H. H., Bayse, C. A. & Pike, R. D. (2010). Inorg. Chim. Acta, 364, 102–114.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGondi, S. R., Zhang, H. & Son, D. Y. (2011). J. Sulfur Chem. 32, 17–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKnaust, J. M. & Keller, S. W. (2003). CrystEngComm, 5, 459–465.  Web of Science CSD CrossRef CAS Google Scholar
First citationKnorr, M., Khatyr, A., Dini Aleo, A., El Yaagoubi, A., Strohmann, C., Kubicki, M. M., Rousselin, Y., Aly, S. M., Fortin, D., Lapprand, A. & Harvey, P. D. (2014). Cryst. Growth Des. 14, 5373–5387.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMälger, H., Olbrich, F., Kopf, J., Abeln, D. & Weiss, E. (1992). Z. Naturforsch. B, 47, 1276–1280.  Google Scholar
First citationNorén, B. & Oskarsson, Å. (1985). Acta Chem. Scand. 39a, 701–709.  Google Scholar
First citationPeindy, H. N., Guyon, F., Khatyr, A., Knorr, M. & Strohmann, C. (2007). Eur. J. Inorg. Chem. pp. 1823–1828.  Web of Science CSD CrossRef Google Scholar
First citationRaghuvanshi, A., Dargallay, N. J., Knorr, M., Viau, L., Knauer, L. & Strohmann, C. (2017). J. Inorg. Organomet. Polym. 27, 1501–1513.  Web of Science CSD CrossRef CAS Google Scholar
First citationRaghuvanshi, A., Knorr, M., Knauer, L., Strohmann, C., Boullanger, S., Moutarlier, V. & Viau, L. (2019). Inorg. Chem. 58, 5753–5775.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsón, R., Laguna, A., Laguna, M., Manzano, B. R., Jones, P. G. & Sheldrick, G. M. (1984). J. Chem. Soc. Dalton Trans. pp. 285–292.  Google Scholar
First citationVicente, J., Abad, J.-A., Hernández-Mata, F. S., Rink, B., Jones, P. G. & Ramírez de Arellano, M. C. (2004). Organometallics, 23, 1292–1304.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, H., Gondi, S. R. & Son, D. Y. (2006). Acta Cryst. E62, m3086–m3088.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds