research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 4-{[(anthracen-9-yl)meth­yl]amino}­benzoic acid

CROSSMARK_Color_square_no_text.svg

aDepartment of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh 202002 (UP), India, bDepartment of Chemistry, Langat Singh College, B. R. A. Bihar University, Muzaffarpur, Bihar 842001, India, and cTaras Shevchenko National University of Kyiv, Department of Chemistry, 64 Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: faizichemiitg@gmail.com,ifritsky@univ.kiev.ua

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 28 November 2019; accepted 2 December 2019; online 1 January 2020)

In the mol­ecule of the title anthracene derivative, C22H17NO2, the benzene ring is inclined to the mean plane of the anthracene ring system (r.m.s. deviation = 0.024 Å) by 75.21 (9)°. In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming classical carb­oxy­lic acid inversion dimers with an R22(8) ring motif. The dimers are linked by C—H⋯π inter­actions, forming a supra­molecular framework.

1. Chemical context

Anthraldehyde has been used in the synthesis of several Schiff base compounds that exhibit fluorescent properties as a result of strong ππ conjugation (Asiri et al., 2011[Asiri, A. M., Al-Youbi, A. O., Khan, S. A. & Tahir, M. N. (2011). Acta Cryst. E67, o3419.]; Pavitha et al., 2017[Pavitha, P., Prashanth, J., Ramu, G., Ramesh, G., Mamatha, K. & Reddy, B. V. (2017). J. Mol. Struct. 1147, 406-426.]). Many complexes synthesized using anthraldehyde have shown remarkable sensing properties and have been used as chemo sensors (Obali & Ucan, 2012[Obali, A. Y. & Ucan, H. I. (2012). J. Fluoresc. 22, 1357-1370.]; Zhou et al., 2012[Zhou, Y., Zhou, H., Zhang, J., Zhang, L. & Niu, J. (2012). Spectrochimica Acta Part A: Mol. Biomol. Spect. 98, 14-17.]). Schiff base compounds are also of inter­est because of their biological applications, which include anti­bacterial, anti­cancer and anti­viral (Asiri & Khan, 2010[Asiri, A. M. & Khan, S. A. (2010). Molecules, 15, 6850-6858.]; Cheng et al., 2010[Cheng, L. X., Tang, J. J., Luo, H., Jin, X.-L., Dai, F., Yang, J., Qian, Y.-P., Li, X.-Z. & Zhou, B. (2010). Bioorg. Med. Chem. Lett. 20, 2417-2420.]) activities. Herein, we report on the crystal and mol­ecular structures of the title Schiff base compound, 4-{[(anthracen-9-yl)meth­yl]amino}­benzoic acid, synthesized via reaction of 9-anthraldehyde with 4-amino­benzoic acid (PABA) followed by reduction with sodium borohydride.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The mol­ecule is non-planar, with the benzene ring (C2–C7) being inclined to the mean plane of the anthracene ring system (C9–C22; r.m.s. deviation = 0.024 Å) by 75.21 (9)°, and the torsional angle of the bridge, C5—N1—C8—C9, is 142.6 (2)°. The C8—N1 bond length of 1.457 (3) Å, is comparable to the C—N bond-length values obtained for the similar ligand 5-[(anthracen-9-ylmeth­yl)amino]­isophthalic acid (see §5. Database survey).

[Figure 1]
Figure 1
The mol­ecular structure of the tittle compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

The C1=O2 and C1—O1 bond lengths of 1.238 (3) and 1.325 (3) Å, respectively, are in the expected ranges (Cambridge Structural Database; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

3. Supra­molecular features

In the crystal, a classical carb­oxy­lic acid inversion dimer is formed enclosing an [R_{2}^{2}](8) ring motif (Table 1[link] and Fig. 2[link]). The dimers pack along the a-axis direction in a herringbone fashion. They are linked by a series of C—H⋯π inter­actions (Table 1[link] and Fig. 3[link]), forming a supra­molecular three-dimensional structure. The NH hydrogen atom (H1A) is not involved in hydrogen bonding but is directed towards the benzene ring (C2–C7). Approximate geometrical details of this weak N—H⋯π inter­action are given in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, and Cg4 are the centroids of the C2–C7, C9/C10/C15–C17/C22 and C17–C22 rings, respectively. Approximative geometrical parameters are given for the weak N—H..π inter­action.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 1.05 (4) 1.58 (3) 2.621 (3) 172 (3)
N1—H1A⋯Cg1ii 0.93 (3) 3.49 4.140 129
C4—H4⋯Cg4iii 0.93 2.98 (1) 3.752 (3) 141 (1)
C6—H6⋯Cg1ii 0.93 2.69 (1) 3.410 (3) 135 (1)
C16—H16⋯Cg4iv 0.93 2.83 (1) 3.644 (3) 147 (1)
C18—H18⋯Cg2iv 0.93 2.69 (1) 3.452 (3) 140 (1)
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x, y+1, z; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
A partial view along the b axis of crystal packing of the title compound. The hydrogen bonds (Table 1[link]) are shown as dashed lines.
[Figure 3]
Figure 3
A view along the b axis of crystal packing of the title compound. The O—H⋯O hydrogen bonds and the C—H⋯π inter­actions are indicated by dashed lines (Table 1[link]). For clarity, only the H atoms (grey balls) involved in these inter­actions have been included.

4. Hirshfeld analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]). The Hirshfeld surfaces are colour-mapped with the normalized contact distance, dnorm, from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii).

The Hirshfeld surface of the title compound mapped over dnorm, in the colour range −0.7519 to 1.6997 a.u., is given in Fig. 4[link]. The positions of the strong O—H⋯O hydrogen bonds are indicated by the red regions on the Hirshfeld surface.

[Figure 4]
Figure 4
The Hirshfeld surface of the title compound mapped over dnorm, in the colour range −0.7519 to 1.6997 a.u..

The two-dimensional fingerprint plots are given in Fig. 5[link]. They reveal that the principal contributions to the overall surface involve H⋯H contacts at 42.7% (Fig. 5[link]b), followed by C⋯H/H⋯C contacts at 40.0% (Fig. 5[link]c) and O⋯H/H⋯O contacts at 12.3% (Fig. 5[link]d). Apart from the C⋯C contacts, contributing 2.1%, all other atom⋯atom contact contributions are negligible.

[Figure 5]
Figure 5
(a) The two-dimensional fingerprint plots of the title compound, and delineated into (b) H⋯H (42.7%), (c) C⋯H/H⋯C (40.0%) and (d) O⋯H/H⋯O (12.3%) contacts.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, update August 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the N-(anthracen-9-ylmeth­yl)aniline skeleton gave six hits (see supporting information file S1), all of which concern polymeric metal complexes of the ligand 5-[(anthracen-9-ylmeth­yl)amino]­isophthalic acid; for example, a series of four gadolinium coordination polymers (CSD refcodes VOLSOG, VOLSUM, VOLTAT, VOLTIB; Singh et al., 2014[Singh, R., Mrozinski, J. & Bharadwaj, P. K. (2014). Cryst. Growth Des. 14, 3623-3633.]). The bridging C—N bond length varies from ca.1.389 to 1.494 Å, compared to the C8—N1 bond length of 1.457 (3) Å in the title compound.

A search for the 1-(anthracen-9-yl)-N-phenyl­methanimine skeleton gave 21 hits (see supporting information file S2), none of which involve a benzoic acid moiety.

6. Synthesis and crystallization

4-Amino­benzoic acid (0.33 g, 2.42 mmol) was added to a solution of 9-anthraldehyde (0.5 g, 2.42 mmol) dissolved in ethanol and the whole mixture was heated at 343 K under reflux for 5–6 h. The mixture was then stirred for a further 10 h at room temperature to obtain a yellow precipitate of the new product, which was monitored through TLC. The yellow precipitate, which was then air dried, was obtained in 76% yield. This was further reduced with sodium borohydride taken in excess (0.183 g, 4.84 mmol) by maintaining the temperature at 277–278 K until the colour of the precipitate had changed from bright yellow to dull yellow. The precipitate was filtered, washed with water and acidified with acetic acid. The product thus obtained was dissolved in hot ethanol and kept for crystallization. Block-like pale-yellow crystals of the title compound were obtained after a few days.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The OH and NH hydrogen atoms were located in a difference-Fourier map and refined freely. The C-bound H atoms were included in calculated positions and allowed to ride on their parent C atom: C—H = 0.93–0.97Å with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C22H17NO2
Mr 327.39
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 14.985 (2), 6.0116 (9), 19.106 (3)
β (°) 106.796 (5)
V3) 1647.7 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.4 × 0.27 × 0.18
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.629, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 25595, 2913, 1975
Rint 0.118
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.141, 1.12
No. of reflections 2913
No. of parameters 235
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.38, −0.32
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), olex2.refine (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: olex2.refine (Bourhis et al., 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

4-{[(Anthracen-9-yl)methyl]amino}benzoic acid top
Crystal data top
C22H17NO2F(000) = 688.3239
Mr = 327.39Dx = 1.320 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.985 (2) ÅCell parameters from 3139 reflections
b = 6.0116 (9) Åθ = 3.1–28.2°
c = 19.106 (3) ŵ = 0.09 mm1
β = 106.796 (5)°T = 100 K
V = 1647.7 (4) Å3Block, pale-yellow
Z = 40.4 × 0.27 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
1975 reflections with I > 2σ(I)
φ and ω scansRint = 0.118
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 25.1°, θmin = 2.8°
Tmin = 0.629, Tmax = 0.746h = 2020
25595 measured reflectionsk = 88
2913 independent reflectionsl = 2525
Refinement top
Refinement on F229 constraints
Least-squares matrix: fullPrimary atom site location: iterative
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.9105P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.0003
2913 reflectionsΔρmax = 0.38 e Å3
235 parametersΔρmin = 0.32 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.47155 (12)0.7404 (3)0.95012 (10)0.0304 (5)
O20.57543 (12)1.0125 (3)0.95315 (10)0.0317 (5)
N10.66609 (14)0.3342 (4)0.72544 (12)0.0252 (5)
C10.54000 (17)0.8318 (4)0.92904 (14)0.0238 (6)
C20.57055 (16)0.7035 (4)0.87497 (13)0.0212 (6)
C30.63813 (16)0.7902 (4)0.84570 (14)0.0230 (6)
H30.66266 (16)0.9303 (4)0.86054 (14)0.0276 (7)*
C40.66973 (17)0.6741 (4)0.79531 (13)0.0222 (6)
H40.71436 (17)0.7367 (4)0.77612 (13)0.0266 (7)*
C50.63421 (16)0.4606 (4)0.77302 (13)0.0209 (6)
C60.56515 (17)0.3731 (4)0.80193 (13)0.0224 (6)
H60.53997 (17)0.2335 (4)0.78701 (13)0.0269 (7)*
C70.53463 (16)0.4920 (4)0.85202 (13)0.0215 (6)
H70.48944 (16)0.4312 (4)0.87096 (13)0.0258 (7)*
C80.74688 (17)0.3903 (4)0.70105 (14)0.0243 (6)
H8a0.72642 (17)0.4653 (4)0.65418 (14)0.0291 (7)*
H8b0.78696 (17)0.4913 (4)0.73586 (14)0.0291 (7)*
C90.80133 (16)0.1835 (4)0.69386 (13)0.0208 (6)
C100.80253 (16)0.1014 (4)0.62496 (13)0.0204 (6)
C110.75646 (17)0.2083 (4)0.55691 (14)0.0257 (6)
H110.72308 (17)0.3384 (4)0.55740 (14)0.0308 (7)*
C120.76034 (18)0.1242 (5)0.49175 (14)0.0294 (7)
H120.72945 (18)0.1972 (5)0.44864 (14)0.0353 (8)*
C130.81084 (18)0.0732 (5)0.48869 (15)0.0310 (7)
H130.81360 (18)0.1278 (5)0.44382 (15)0.0372 (8)*
C140.85503 (17)0.1822 (4)0.55102 (14)0.0269 (6)
H140.88740 (17)0.3124 (4)0.54841 (14)0.0322 (7)*
C150.85289 (16)0.1007 (4)0.62098 (14)0.0216 (6)
C160.89943 (16)0.2114 (4)0.68500 (14)0.0225 (6)
H160.93082 (16)0.3429 (4)0.68203 (14)0.0270 (7)*
C170.90025 (16)0.1302 (4)0.75358 (13)0.0202 (6)
C180.94936 (16)0.2430 (4)0.81929 (14)0.0255 (6)
H180.98095 (16)0.3741 (4)0.81619 (14)0.0307 (7)*
C190.95099 (18)0.1630 (4)0.88627 (15)0.0289 (7)
H190.98374 (18)0.2383 (4)0.92840 (15)0.0347 (8)*
C200.90250 (17)0.0354 (4)0.89133 (15)0.0287 (6)
H200.90346 (17)0.0897 (4)0.93712 (15)0.0344 (8)*
C210.85437 (17)0.1482 (4)0.83019 (14)0.0243 (6)
H210.82321 (17)0.2784 (4)0.83510 (14)0.0291 (7)*
C220.85075 (16)0.0706 (4)0.75862 (14)0.0204 (6)
H10.457 (2)0.850 (6)0.9884 (19)0.074 (11)*
H1a0.635 (2)0.201 (5)0.7113 (15)0.042 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0321 (10)0.0298 (10)0.0357 (12)0.0061 (8)0.0198 (9)0.0083 (9)
O20.0368 (11)0.0274 (10)0.0352 (12)0.0070 (9)0.0172 (9)0.0115 (9)
N10.0215 (12)0.0251 (12)0.0322 (14)0.0041 (10)0.0127 (10)0.0071 (10)
C10.0234 (14)0.0238 (14)0.0239 (15)0.0007 (11)0.0065 (11)0.0001 (11)
C20.0200 (13)0.0223 (13)0.0209 (14)0.0021 (11)0.0053 (11)0.0011 (11)
C30.0204 (13)0.0206 (13)0.0275 (15)0.0013 (11)0.0059 (11)0.0024 (11)
C40.0197 (13)0.0236 (13)0.0242 (14)0.0003 (11)0.0078 (11)0.0018 (11)
C50.0195 (13)0.0207 (13)0.0219 (14)0.0026 (10)0.0051 (11)0.0004 (11)
C60.0215 (13)0.0194 (13)0.0251 (15)0.0012 (11)0.0050 (11)0.0012 (11)
C70.0185 (13)0.0229 (13)0.0230 (14)0.0015 (11)0.0058 (11)0.0036 (11)
C80.0234 (13)0.0218 (13)0.0295 (16)0.0009 (11)0.0105 (12)0.0011 (11)
C90.0193 (13)0.0202 (13)0.0241 (14)0.0013 (10)0.0081 (11)0.0007 (11)
C100.0147 (12)0.0227 (13)0.0242 (15)0.0019 (10)0.0063 (11)0.0005 (11)
C110.0216 (13)0.0277 (14)0.0279 (15)0.0013 (11)0.0076 (11)0.0009 (12)
C120.0250 (14)0.0397 (16)0.0215 (15)0.0021 (12)0.0037 (12)0.0020 (12)
C130.0267 (14)0.0393 (16)0.0258 (16)0.0018 (13)0.0057 (12)0.0067 (13)
C140.0238 (13)0.0287 (14)0.0276 (15)0.0006 (12)0.0066 (12)0.0089 (12)
C150.0170 (12)0.0235 (13)0.0239 (15)0.0030 (10)0.0054 (11)0.0043 (11)
C160.0202 (13)0.0190 (13)0.0297 (15)0.0000 (11)0.0094 (11)0.0029 (11)
C170.0171 (12)0.0212 (13)0.0235 (14)0.0022 (10)0.0076 (11)0.0009 (11)
C180.0195 (13)0.0249 (14)0.0318 (16)0.0010 (11)0.0066 (11)0.0024 (12)
C190.0234 (14)0.0345 (16)0.0272 (16)0.0043 (12)0.0047 (11)0.0064 (12)
C200.0285 (15)0.0338 (15)0.0245 (16)0.0051 (12)0.0087 (12)0.0032 (12)
C210.0216 (13)0.0261 (14)0.0268 (15)0.0023 (11)0.0096 (11)0.0029 (12)
C220.0181 (12)0.0203 (13)0.0242 (14)0.0054 (10)0.0085 (11)0.0030 (11)
Geometric parameters (Å, º) top
O1—C11.325 (3)C10—C151.443 (3)
O1—H11.05 (4)C11—H110.9300
O2—C11.238 (3)C11—C121.360 (3)
N1—C51.372 (3)C12—H120.9300
N1—C81.457 (3)C12—C131.418 (4)
N1—H1a0.92 (3)C13—H130.9300
C1—C21.465 (3)C13—C141.353 (4)
C2—C31.392 (3)C14—H140.9300
C2—C71.401 (3)C14—C151.433 (3)
C3—H30.9300C15—C161.390 (3)
C3—C41.379 (3)C16—H160.9300
C4—H40.9300C16—C171.395 (3)
C4—C51.408 (3)C17—C181.429 (3)
C5—C61.408 (3)C17—C221.435 (3)
C6—H60.9300C18—H180.9300
C6—C71.375 (3)C18—C191.360 (4)
C7—H70.9300C19—H190.9300
C8—H8a0.9700C19—C201.414 (4)
C8—H8b0.9700C20—H200.9300
C8—C91.515 (3)C20—C211.363 (3)
C9—C101.411 (3)C21—H210.9300
C9—C221.418 (3)C21—C221.431 (3)
C10—C111.436 (3)
H1—O1—C1106.6 (18)H11—C11—C10119.13 (14)
C8—N1—C5124.4 (2)C12—C11—C10121.7 (2)
H1a—N1—C5115.7 (18)C12—C11—H11119.13 (16)
H1a—N1—C8119.8 (18)H12—C12—C11119.57 (16)
O2—C1—O1122.5 (2)C13—C12—C11120.9 (3)
C2—C1—O1115.1 (2)C13—C12—H12119.57 (16)
C2—C1—O2122.5 (2)H13—C13—C12119.99 (16)
C3—C2—C1119.9 (2)C14—C13—C12120.0 (3)
C7—C2—C1121.9 (2)C14—C13—H13119.99 (16)
C7—C2—C3118.2 (2)H14—C14—C13119.39 (16)
H3—C3—C2119.07 (15)C15—C14—C13121.2 (2)
C4—C3—C2121.9 (2)C15—C14—H14119.39 (15)
C4—C3—H3119.07 (15)C14—C15—C10119.3 (2)
H4—C4—C3120.11 (15)C16—C15—C10119.6 (2)
C5—C4—C3119.8 (2)C16—C15—C14121.1 (2)
C5—C4—H4120.11 (14)H16—C16—C15119.16 (14)
C4—C5—N1122.1 (2)C17—C16—C15121.7 (2)
C6—C5—N1119.3 (2)C17—C16—H16119.16 (14)
C6—C5—C4118.6 (2)C18—C17—C16121.5 (2)
H6—C6—C5119.71 (14)C22—C17—C16119.5 (2)
C7—C6—C5120.6 (2)C22—C17—C18119.0 (2)
C7—C6—H6119.71 (15)H18—C18—C17119.22 (15)
C6—C7—C2121.0 (2)C19—C18—C17121.6 (2)
H7—C7—C2119.49 (14)C19—C18—H18119.22 (16)
H7—C7—C6119.49 (15)H19—C19—C18120.26 (16)
H8a—C8—N1109.44 (13)C20—C19—C18119.5 (3)
H8b—C8—N1109.44 (13)C20—C19—H19120.26 (16)
H8b—C8—H8a108.0H20—C20—C19119.47 (16)
C9—C8—N1111.0 (2)C21—C20—C19121.1 (3)
C9—C8—H8a109.44 (14)C21—C20—H20119.47 (16)
C9—C8—H8b109.44 (13)H21—C21—C20119.29 (16)
C10—C9—C8121.6 (2)C22—C21—C20121.4 (2)
C22—C9—C8118.2 (2)C22—C21—H21119.29 (14)
C22—C9—C10120.2 (2)C17—C22—C9119.6 (2)
C11—C10—C9123.8 (2)C21—C22—C9123.0 (2)
C15—C10—C9119.4 (2)C21—C22—C17117.4 (2)
C15—C10—C11116.8 (2)
C8—N1—C5—C48.8 (4)C9—C10—C11—C12179.3 (3)
C8—N1—C5—C6169.8 (2)C15—C10—C11—C120.3 (4)
C5—N1—C8—C9142.6 (2)C9—C10—C15—C14179.2 (2)
O1—C1—C2—C3176.1 (2)C9—C10—C15—C160.0 (4)
O1—C1—C2—C74.8 (4)C11—C10—C15—C140.4 (3)
O2—C1—C2—C33.8 (4)C11—C10—C15—C16179.6 (2)
O2—C1—C2—C7175.3 (2)C10—C11—C12—C130.3 (4)
C1—C2—C3—C4179.2 (2)C11—C12—C13—C140.8 (4)
C7—C2—C3—C40.1 (4)C12—C13—C14—C150.7 (4)
C1—C2—C7—C6179.1 (2)C13—C14—C15—C100.1 (4)
C3—C2—C7—C60.0 (4)C13—C14—C15—C16179.1 (3)
C2—C3—C4—C50.8 (4)C10—C15—C16—C171.1 (4)
C3—C4—C5—N1177.2 (2)C14—C15—C16—C17178.0 (2)
C3—C4—C5—C61.4 (4)C15—C16—C17—C18179.1 (2)
N1—C5—C6—C7177.3 (2)C15—C16—C17—C221.0 (4)
C4—C5—C6—C71.4 (4)C16—C17—C18—C19179.4 (2)
C5—C6—C7—C20.7 (4)C22—C17—C18—C190.7 (4)
N1—C8—C9—C10109.5 (3)C16—C17—C22—C90.3 (4)
N1—C8—C9—C2269.6 (3)C16—C17—C22—C21179.5 (2)
C8—C9—C10—C112.5 (4)C18—C17—C22—C9179.7 (2)
C8—C9—C10—C15177.9 (2)C18—C17—C22—C210.6 (4)
C22—C9—C10—C11178.4 (2)C17—C18—C19—C200.5 (4)
C22—C9—C10—C151.3 (4)C18—C19—C20—C210.2 (4)
C8—C9—C22—C17177.8 (2)C19—C20—C21—C220.1 (4)
C8—C9—C22—C212.5 (4)C20—C21—C22—C9179.9 (3)
C10—C9—C22—C171.4 (4)C20—C21—C22—C170.4 (4)
C10—C9—C22—C21178.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, and Cg4 are the centroids of the C2–C7, C9/C10/C15–C17/C22 and C17–C22 rings, respectively. Approximative geometrical parameters are given for the weak N—H..π interaction.
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i1.05 (4)1.58 (3)2.621 (3)172 (3)
N1—H1A···Cg1ii0.93 (3)3.494.140129
C4—H4···Cg4iii0.932.98 (1)3.752 (3)141 (1)
C6—H6···Cg1ii0.932.69 (1)3.410 (3)135 (1)
C16—H16···Cg4iv0.932.83 (1)3.644 (3)147 (1)
C18—H18···Cg2iv0.932.69 (1)3.452 (3)140 (1)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1, y1/2, z+3/2; (iii) x, y+1, z; (iv) x+2, y1/2, z+3/2.
 

Acknowledgements

The authors are grateful to the Department of Chemistry, Langat Singh College, B. R. A. Bihar University, Muzaffarpur, India, for providing laboratory facilities.

Funding information

Funding for this research was provided by a start-up-grant from the University Grants Commisson (India).

References

First citationAsiri, A. M., Al-Youbi, A. O., Khan, S. A. & Tahir, M. N. (2011). Acta Cryst. E67, o3419.  CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M. & Khan, S. A. (2010). Molecules, 15, 6850–6858.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, L. X., Tang, J. J., Luo, H., Jin, X.-L., Dai, F., Yang, J., Qian, Y.-P., Li, X.-Z. & Zhou, B. (2010). Bioorg. Med. Chem. Lett. 20, 2417–2420.  CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationObali, A. Y. & Ucan, H. I. (2012). J. Fluoresc. 22, 1357–1370.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPavitha, P., Prashanth, J., Ramu, G., Ramesh, G., Mamatha, K. & Reddy, B. V. (2017). J. Mol. Struct. 1147, 406–426.  Web of Science CSD CrossRef CAS Google Scholar
First citationSingh, R., Mrozinski, J. & Bharadwaj, P. K. (2014). Cryst. Growth Des. 14, 3623–3633.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, Y., Zhou, H., Zhang, J., Zhang, L. & Niu, J. (2012). Spectrochimica Acta Part A: Mol. Biomol. Spect. 98, 14–17.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds