research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of (1,8-naphth­yridine-κ2N,N′)[2-(1H-pyrazol-1-yl)phenyl-κ2N2,C1]iridium(III) hexa­fluorido­phosphate di­chloro­methane monosolvate

aJiangsu Nursing Vocational College, Huaian 223300, Jiangsu Province, People's Republic of China, bJiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin, Normal University, Huaian 223300, Jiangsu Province, People's Republic of China, and cSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
*Correspondence e-mail: junqian8203@ujs.edu.cn

Edited by M. Weil, Vienna University of Technology, Austria (Received 9 December 2019; accepted 15 December 2019; online 1 January 2020)

The solvated title salt, [Ir(C9H7N2)2(C8H6N2)]PF6·CH2Cl2, was obtained from the reaction between 1,8-naphthyridine (NAP) and an orthometalated iridium(III) precursor containing a 1-phenyl­pyrazole (ppz) ligand. The asymmetric unit comprises one [Ir(ppz)2(NAP)]+ cation, one PF6 counter-ion and one CH2Cl2 solvent mol­ecule. The central IrIII atom of the [Ir(ppz)2(NAP)]+ cation is distorted-octa­hedrally coordinated by four N atoms and two C atoms, whereby two N atoms stem from the NAP ligand while the ppz ligands ligate through one N and one C atom each. In the crystal, the [Ir(ppz)2(NAP)]+ cations and PF6 counter-ions are connected with each other through weak inter­molecular C—H⋯F hydrogen bonds. Together with an additional C—H⋯F inter­action involving the solvent mol­ecule, a three-dimensional network structure is formed.

1. Chemical context

Over the past two decades, transition-metal complexes have attracted considerable attention in both academia and industry (Dixon et al., 2000[Dixon, I. M., Collin, J. P., Sauvage, J. P., Flamigni, L., Encinas, S. & Barigelletti, F. (2000). Chem. Soc. Rev. 29, 385-391.]). For example, d6 iridium complexes with pseudo-octa­hedral coordination environments have been widely used in electroluminescent devices (sensors and light-emitting instruments) or photocatalysis because of their long excited-state lifetime, high quantum efficiency, luminescent colour adjustment and thermal stability (Lee et al., 2013[Lee, S., Kim, S. O., Shin, H., Yun, H. J., Yang, K., Kwon, S. K., Kim, J. J. & Kim, Y. H. (2013). J. Am. Chem. Soc. 135, 14321-14328.]; Fan et al., 2013[Fan, C., Zhu, L., Jiang, B., Li, Y., Zhao, F., Ma, D., Qin, J. & Yang, C. (2013). J. Phys. Chem. C, 117, 19134-19141.]). Among various iridium complexes, cyclo­metalated iridium(III) complexes are particularly attractive for the wide-range tunability of electronic structures via the rational mol­ecular design of different components (Zhu et al., 2016[Zhu, X., Lystrom, L., Kilina, S. & Sun, W. (2016). Inorg. Chem. 55, 11908-11919.]). According to the set-up of cyclo­metalated iridium(III) cations with general formula [(N[^\wedge]N)Ir(C[^\wedge]N)2]+ in which N[^\wedge]N refers to a di­imine ligand and C[^\wedge]N refers to a cyclo­metalated ligand, the combination and variation of N[^\wedge]N and C[^\wedge]N ligands provides the opportunity to modulate the properties of the target complexes (Goswami et al., 2014[Goswami, S., Sengupta, D., Paul, N. D., Mondal, T. K. & Goswami, S. (2014). Chem. Eur. J. 20, 6103-6111.]; Radwan et al., 2015[Radwan, Y. K., Maity, A. & Teets, T. S. (2015). Inorg. Chem. 54, 7122-7131.]).

In our laboratory, a key motivation for studies in this area arises from our inter­est in cyclo­metalated iridium(III) complexes, which exhibit a strong conjugated system with a high degree of delocalized π-electrons. Thus, one can enhance the non-linear optical properties of a system through the inter­action between the d orbitals of IrIII and the π-orbitals of an organic conjugated system (Liu et al., 2018[Liu, B., Monro, S., Lystrom, L., Cameron, C. G., Colón, K., Yin, H., Kilina, S., McFarland, S. A. & Sun, W. (2018). Inorg. Chem. 57, 7122-7131.]). Here we report the crystal structure of a solvated cyclo­metalated iridium(III) complex, [Ir(C9H7N2)2(C8H6N2)](PF6)·CH2Cl2, obtained from the reaction between an orthometalated iridium precursor ({(ppz)2Ir(μ-Cl)}2) (ppz = 1-phenyl­pyrazole) and 1,8-naphthyridine (NAP) as an auxiliary ligand.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title cyclo­metalated iridium(III) complex is composed of one [Ir(ppz)2(NAP)]+ cation, one PF6 counter-ion and one CH2Cl2 solvent mol­ecule. As shown in Fig. 1[link], the IrIII atom is coordinated by four N and two C atoms in the form of a pseudo-octa­hedral [IrN4C2] polyhedron. The axial positions are occupied by two N atoms from two ppz ligands, while the equatorial plane is defined by two N atoms from the NAP ligand and two C atoms from the ppz ligands.

[Figure 1]
Figure 1
The structures of the mol­ecular entities in the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented by spheres of arbitrary radius.

The bond lengths and angles related to the ppz ligand are normal and agree with the values in other cyclo­metalated iridium(III) compounds based on this ligand (see Database survey for details).

The average Ir—NC[^\wedge]N (C[^\wedge]N refers to the ppz ligand) and Ir—C bond lengths are 2.013 and 2.008 Å, respectively, while the average Ir—NN[^\wedge]N (N[^\wedge]N refers to the NAP ligand) bond length is much longer at 2.208 Å. The bond angles around the IrIII atom involving cis-arranged ligand atoms deviate clearly from 90° and range from 60.74 (10)° (the bite angle of the NAP ligand) to 110.71 (12)°, except for N1—Ir1—N5 with a value of 90.63 (11)°. Likewise, the bond angles N3—Ir1—N1, C1—Ir1—N6 and C10—Ir1—N5 of trans-oriented atoms are 173.28 (13), 170.06 (13) and 161.07 (13)°, respectively, and indicate a distortion from the ideal octa­hedral arrangement. The planes of the two planar ppz ligands (C1–C6/C7–C9/N1/N2, r.m.s. deviation of 0.0097 Å; C10–C15/C16–C18/N3/N4, r.m.s. deviation of 0.0562 Å) and the NAP ligand (r.m.s. deviation 0.389 Å) are 76.26 (8) and 70.63 (9)°, respectively, and thus deviate significantly from a perpendicular arrangement.

3. Supra­molecular features

In the crystal, the [Ir(ppz)2(NAP)]+ cations and PF6 counter-ions are linked by six charge-assisted and partly bifurcated C—H⋯F hydrogen bonds (C16—H16A⋯F5i, C16—H16A⋯F6i, C9—H9A⋯F1, C9—H9A⋯F4, C7—H7A⋯F5ii, C25—H25A⋯F5iii; Table 1[link]) into a three-dimensional supra­molecular network, as shown in Fig. 2[link]. In addition, a similar hydrogen bond between the CH2Cl2 solvent mol­ecule and the PF6counter-ion (C27—H27A⋯F2iv) consolidates this arrangement.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯F1 0.93 2.47 3.239 (4) 140
C9—H9A⋯F4 0.93 2.48 3.386 (5) 164
C16—H16A⋯F5i 0.93 2.46 3.018 (5) 118
C16—H16A⋯F6i 0.93 2.51 3.418 (6) 167
C7—H7A⋯F5ii 0.93 2.46 3.201 (5) 136
C25—H25A⋯F5iii 0.93 2.32 3.215 (4) 160
C27—H27A⋯F2iv 0.97 2.52 3.370 (13) 146
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A packing diagram of the title compound in a view along the a axis, showing the three-dimensional supra­molecular network structure. C—H⋯F hydrogen bonds are shown as dashed lines.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.39, updated November 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for complexes containing an iridium(III) atom together with 1-phenyl­pyrazole ligand fragments yielded 36 hits. Among these, eight crystallize in the monoclinic system like the title compound. Five of them have similar chelating N,N′-ligands, viz. XAHXIP (Jiang et al., 2010[Jiang, W. L., Gao, Y., Sun, Y., Ding, F., Xu, Y., Bian, Z. Q., Li, F., Bian, J. & Huang, C. H. (2010). Inorg. Chem. 49, 3252-3260.]), KISYOC/KISZIX (Davies et al., 2014[Davies, D. L., Lelj, F., Lowe, M. P., Ryder, K. S., Singh, K. & Singh, S. (2014). Dalton Trans. 43, 4026-4039.]), ROFZET (Sauvageot et al., 2014[Sauvageot, E., Marion, R., Sguerra, F., Grimault, A., Daniellou, R., Hamel, M., Gaillard, S. & Renaud, J. (2014). Org. Chem. Front. 1, 639-644.]) and JUPTIZ (Howarth et al., 2015[Howarth, A. J., Majewski, M. B., Brown, C. M., Lelj, F., Wolf, M. O. & Patrick, B. O. (2015). Dalton Trans. 44, 16272-16279.]). Two compounds contain the same tetra­dentate ligand, N,N′-bis­(3,5-bis­(tri­fluoro­meth­yl)benzo­yl)hydrazide, and are meso and rac diastereomers, viz. NASQEG and NASQIK (Congrave et al., 2017[Congrave, D. G., Hsu, Y., Batsanov, A. S., Beeby, A. & Bryce, M. R. (2017). Organometallics, 36, 981-993.]), and one compound is constructed solely by the 1-phenyl­pyrazole ligand, viz. OHUZAS (Tamayo et al., 2003[Tamayo, A. B., Alleyne, B. D., Djurovich, P. I., Lamansky, S., Tsyba, I., Ho, N. N., Bau, R. & Thompson, M. E. (2003). J. Am. Chem. Soc. 125, 7377-7387.]).

5. Synthesis and crystallization

The iridium dichloride bridge compound, [(ppz)2Ir(μ-Cl)]2, was synthesized following a reported literature procedure (Kwon et al., 2005[Kwon, T. H., Cho, H. S., Kim, M. K., Kim, J. W., Kim, J. J., Lee, K. H., Park, S. J., Shin, I. S., Kim, H., Shin, D. M., Chung, Y. K. & Hong, J. I. (2005). Organometallics, 24, 1578-1585.]) by heating IrCl3·3H2O (1 equiv.) and 1-phenyl­pyrazole (2.3 equiv.) in a mixed solution of 2-eth­oxy­ethanol and water (v/v = 3/1) at 408 K.

1,8-Naphthyridine was synthesized by a slight modification of a reported procedure (Majewicz & Caluwe, 1975[Majewicz, T. G. & Caluwe, P. (1975). J. Org. Chem. 40, 3407-3410.]). The reaction of 1,3-cyclo­hexa­nedione and an excess of 2-amino­nicotinaldehyde in refluxing ethanol, which contains a few drops of methano­lic KOH, resulted in the 1,8-naphthyridine ligand.

The cyclo­metalated iridium(III) title complex (I) was synthesized from the reaction of [(ppz)2Ir(μ-Cl)]2 with 1,8-naphthyridine in a mixed solution of di­chloro­methane (CH2Cl2) and methanol (MeOH) (v/v = 2/1) at 358 K with KPF6 as counter-ion through metathesis. The reaction process was monitored by thin layer chromatography. After the reaction was complete, the mixture was dried under vacuum and separated by column chromatography on silica gel with CH2Cl2/petroleum ether (v/v = 4/1) as eluent. The pure product of the cyclo­metalated iridium(III) complex was obtained as a dark-yellow solid. Single crystals were grown by inter-diffusion between n-hexane and a di­chloro­methane solution of the pure solid with CH2Cl2/hexane (v/v = 1/1) as buffer solution at room temperature. Compared to the direct benign/inert solvents reaction system, here the inter-diffusion method was applied as a mild way for the crystallization of the title complex. The use of the buffer solution ensures stable conditions for the crystallization of co-responsive constituents (Nie et al., 2019[Nie, Q. Y., Qian, J. & Zhang, C. (2019). J. Mol. Struct. 1186, 434-439.]). Therefore, well-shaped crystals of complex(I) can be obtained from the buffer area.

Elemental analysis for C27H22Cl2F6IrN6P (found): C, 36.86; H, 2.63; N, 10.19%; (calculated): C, 37.65; H, 2.62; N, 10.12%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93 Å for [Ir(ppz)2(NAP)]+ cation, C—H = 0.97 Å for CH2Cl2 solvent mol­ecule) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [Ir(C9H7N2)2(C8H6N2)]PF6·CH2Cl2
Mr 838.57
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 12.1222 (3), 15.5510 (4), 17.1579 (5)
β (°) 105.313 (1)
V3) 3119.64 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 4.57
Crystal size (mm) 0.20 × 0.18 × 0.15
 
Data collection
Diffractometer APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.417, 0.504
No. of measured, independent and observed [I > 2σ(I)] reflections 36216, 6387, 5528
Rint 0.032
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.062, 1.04
No. of reflections 6387
No. of parameters 388
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.29, −1.04
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

(1,8-Naphthyridine-κ2N,N')[2-(1H-pyrazol-1-yl)phenyl-κ2N2,C1]iridium(III) hexafluoridophosphate dichloromethane monosolvate top
Crystal data top
[Ir(C9H7N2)2(C8H6N2)]PF6·CH2Cl2F(000) = 1624
Mr = 838.57Dx = 1.785 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.1222 (3) ÅCell parameters from 9905 reflections
b = 15.5510 (4) Åθ = 2.9–26.4°
c = 17.1579 (5) ŵ = 4.57 mm1
β = 105.313 (1)°T = 293 K
V = 3119.64 (14) Å3Block, red
Z = 40.20 × 0.18 × 0.15 mm
Data collection top
APEXII CCD area detector
diffractometer
5528 reflections with I > 2σ(I)
phi and ω scansRint = 0.032
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 26.4°, θmin = 2.9°
Tmin = 0.417, Tmax = 0.504h = 1515
36216 measured reflectionsk = 1919
6387 independent reflectionsl = 2121
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0254P)2 + 8.5285P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
6387 reflectionsΔρmax = 1.29 e Å3
388 parametersΔρmin = 1.03 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.69497 (2)0.12122 (2)0.36803 (2)0.02071 (5)
N10.5244 (3)0.11978 (17)0.35308 (18)0.0227 (6)
N20.4908 (3)0.11594 (18)0.42268 (19)0.0279 (7)
N30.8666 (3)0.12796 (19)0.3960 (2)0.0324 (7)
N40.9109 (3)0.2077 (2)0.4177 (3)0.0446 (10)
N50.6867 (3)0.00707 (18)0.30844 (17)0.0231 (6)
N60.6822 (3)0.11475 (18)0.23884 (18)0.0229 (6)
C10.6907 (3)0.1083 (2)0.4841 (2)0.0272 (8)
C20.7798 (4)0.1025 (3)0.5545 (3)0.0423 (11)
H2A0.85500.10190.55080.051*
C30.7581 (6)0.0977 (3)0.6303 (3)0.0552 (15)
H3A0.81900.09360.67630.066*
C40.6483 (6)0.0990 (3)0.6380 (3)0.0541 (15)
H4A0.63550.09600.68910.065*
C50.5570 (5)0.1046 (3)0.5705 (3)0.0435 (11)
H5A0.48220.10530.57490.052*
C60.5806 (4)0.1092 (2)0.4952 (2)0.0295 (8)
C70.3761 (4)0.1172 (3)0.4054 (3)0.0379 (10)
H7A0.33290.11530.44280.045*
C80.3336 (4)0.1219 (3)0.3234 (3)0.0389 (10)
H8A0.25720.12370.29430.047*
C90.4292 (3)0.1233 (2)0.2927 (2)0.0301 (8)
H9A0.42690.12620.23810.036*
C100.7152 (3)0.2476 (2)0.3880 (2)0.0280 (8)
C110.6328 (4)0.3117 (2)0.3775 (2)0.0296 (8)
H11A0.55590.29640.36380.036*
C120.6627 (4)0.3982 (3)0.3869 (3)0.0387 (10)
H12A0.60580.43990.37840.046*
C130.7757 (5)0.4221 (3)0.4087 (3)0.0512 (13)
H13A0.79500.48000.41490.061*
C140.8604 (5)0.3609 (3)0.4213 (4)0.0572 (14)
H14A0.93710.37670.43690.069*
C150.8290 (4)0.2753 (3)0.4102 (3)0.0383 (10)
C161.0249 (4)0.2038 (3)0.4437 (4)0.0682 (18)
H16A1.07400.24980.46150.082*
C171.0564 (4)0.1195 (3)0.4393 (4)0.0653 (17)
H17A1.13020.09730.45360.078*
C180.9556 (4)0.0745 (3)0.4092 (3)0.0451 (11)
H18A0.95060.01560.39960.054*
C190.6751 (3)0.1585 (2)0.1718 (2)0.0290 (8)
H19A0.67620.21830.17360.035*
C200.6659 (4)0.1168 (3)0.0978 (2)0.0353 (9)
H20A0.66110.14920.05150.042*
C210.6641 (4)0.0293 (3)0.0932 (2)0.0369 (9)
H21A0.65850.00190.04410.044*
C220.6709 (3)0.0195 (2)0.1641 (2)0.0292 (8)
C230.6710 (4)0.1098 (3)0.1724 (3)0.0398 (10)
H23A0.66570.14510.12780.048*
C240.6790 (4)0.1446 (3)0.2465 (3)0.0420 (11)
H24A0.67960.20410.25260.050*
C250.6864 (4)0.0915 (2)0.3141 (2)0.0303 (8)
H25A0.69130.11670.36400.036*
C260.6794 (3)0.0278 (2)0.2341 (2)0.0231 (7)
P10.33055 (9)0.18918 (6)0.06223 (6)0.0258 (2)
F10.42475 (18)0.23551 (13)0.13286 (12)0.0291 (5)
F20.2498 (2)0.17991 (17)0.12174 (15)0.0450 (6)
F30.4115 (2)0.20007 (16)0.00312 (14)0.0392 (6)
F40.3873 (2)0.09807 (14)0.09090 (15)0.0417 (6)
F50.2744 (2)0.28140 (14)0.03324 (14)0.0372 (5)
F60.2350 (2)0.14372 (16)0.00851 (15)0.0435 (6)
Cl10.0040 (4)0.7352 (5)0.2789 (3)0.279 (3)
Cl20.0137 (4)0.5589 (5)0.3252 (4)0.302 (3)
C270.0177 (11)0.6755 (13)0.3551 (10)0.214 (8)
H27A0.04020.68630.38360.256*
H27B0.09180.68880.39150.256*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.02483 (8)0.01435 (7)0.02045 (8)0.00010 (5)0.00159 (5)0.00110 (5)
N10.0284 (16)0.0174 (14)0.0222 (15)0.0003 (12)0.0064 (12)0.0015 (11)
N20.0368 (18)0.0195 (15)0.0300 (17)0.0019 (13)0.0133 (14)0.0004 (12)
N30.0291 (17)0.0183 (15)0.046 (2)0.0023 (13)0.0033 (15)0.0015 (14)
N40.0296 (19)0.0245 (17)0.070 (3)0.0053 (15)0.0045 (18)0.0040 (17)
N50.0264 (16)0.0185 (14)0.0221 (15)0.0024 (12)0.0025 (12)0.0014 (11)
N60.0253 (15)0.0186 (14)0.0250 (15)0.0012 (12)0.0071 (12)0.0016 (11)
C10.038 (2)0.0158 (16)0.0241 (18)0.0026 (15)0.0014 (16)0.0021 (13)
C20.059 (3)0.028 (2)0.030 (2)0.0075 (19)0.007 (2)0.0012 (16)
C30.102 (5)0.031 (2)0.021 (2)0.012 (3)0.004 (2)0.0003 (17)
C40.110 (5)0.028 (2)0.026 (2)0.012 (3)0.021 (3)0.0009 (17)
C50.078 (3)0.027 (2)0.033 (2)0.008 (2)0.026 (2)0.0020 (17)
C60.049 (2)0.0155 (17)0.0236 (18)0.0025 (16)0.0089 (17)0.0006 (13)
C70.033 (2)0.030 (2)0.056 (3)0.0010 (17)0.021 (2)0.0007 (18)
C80.027 (2)0.029 (2)0.058 (3)0.0014 (17)0.0057 (19)0.0043 (19)
C90.029 (2)0.0230 (18)0.034 (2)0.0001 (15)0.0000 (16)0.0030 (15)
C100.041 (2)0.0170 (17)0.0242 (18)0.0010 (15)0.0048 (16)0.0019 (13)
C110.043 (2)0.0205 (18)0.0253 (19)0.0011 (16)0.0093 (17)0.0020 (14)
C120.058 (3)0.0200 (19)0.038 (2)0.0073 (18)0.013 (2)0.0022 (16)
C130.062 (3)0.018 (2)0.071 (3)0.005 (2)0.012 (3)0.007 (2)
C140.051 (3)0.029 (2)0.085 (4)0.013 (2)0.008 (3)0.009 (2)
C150.035 (2)0.0201 (19)0.052 (3)0.0029 (17)0.002 (2)0.0036 (17)
C160.031 (3)0.039 (3)0.119 (5)0.008 (2)0.008 (3)0.006 (3)
C170.027 (2)0.045 (3)0.111 (5)0.004 (2)0.005 (3)0.002 (3)
C180.033 (2)0.028 (2)0.068 (3)0.0030 (18)0.003 (2)0.001 (2)
C190.032 (2)0.0225 (18)0.033 (2)0.0021 (15)0.0094 (17)0.0082 (15)
C200.044 (2)0.038 (2)0.0251 (19)0.0044 (19)0.0111 (18)0.0101 (16)
C210.050 (3)0.037 (2)0.0234 (19)0.0016 (19)0.0101 (18)0.0004 (16)
C220.036 (2)0.0276 (19)0.0232 (18)0.0051 (16)0.0061 (16)0.0022 (15)
C230.066 (3)0.028 (2)0.028 (2)0.008 (2)0.015 (2)0.0095 (16)
C240.074 (3)0.0171 (18)0.036 (2)0.008 (2)0.018 (2)0.0052 (16)
C250.045 (2)0.0189 (17)0.0273 (19)0.0042 (16)0.0102 (18)0.0030 (14)
C260.0269 (19)0.0199 (17)0.0215 (17)0.0008 (14)0.0046 (14)0.0018 (13)
P10.0312 (5)0.0184 (4)0.0244 (5)0.0010 (4)0.0015 (4)0.0036 (3)
F10.0335 (12)0.0243 (11)0.0242 (11)0.0019 (9)0.0015 (9)0.0027 (8)
F20.0416 (14)0.0511 (16)0.0445 (15)0.0082 (12)0.0155 (12)0.0054 (12)
F30.0461 (15)0.0417 (14)0.0311 (12)0.0004 (11)0.0122 (11)0.0046 (10)
F40.0535 (16)0.0168 (11)0.0486 (15)0.0020 (10)0.0023 (12)0.0010 (10)
F50.0427 (14)0.0249 (11)0.0362 (13)0.0089 (10)0.0035 (11)0.0021 (9)
F60.0433 (14)0.0369 (13)0.0396 (14)0.0039 (11)0.0077 (11)0.0148 (11)
Cl10.177 (4)0.470 (9)0.169 (4)0.139 (5)0.008 (3)0.032 (5)
Cl20.106 (3)0.407 (9)0.381 (8)0.022 (4)0.043 (4)0.061 (7)
C270.116 (10)0.34 (2)0.197 (15)0.054 (13)0.065 (10)0.096 (17)
Geometric parameters (Å, º) top
Ir1—C101.999 (4)C11—H11A0.9300
Ir1—N32.010 (3)C12—C131.373 (7)
Ir1—N12.015 (3)C12—H12A0.9300
Ir1—C12.016 (4)C13—C141.374 (7)
Ir1—N62.183 (3)C13—H13A0.9300
Ir1—N52.232 (3)C14—C151.384 (6)
N1—C91.333 (5)C14—H14A0.9300
N1—N21.361 (4)C16—C171.372 (7)
N2—C71.344 (5)C16—H16A0.9300
N2—C61.424 (5)C17—C181.385 (6)
N3—C181.333 (5)C17—H17A0.9300
N3—N41.364 (4)C18—H18A0.9300
N4—C161.336 (6)C19—C201.404 (6)
N4—C151.428 (5)C19—H19A0.9300
N5—C251.317 (5)C20—C211.363 (6)
N5—C261.366 (4)C20—H20A0.9300
N6—C191.319 (5)C21—C221.418 (5)
N6—C261.355 (4)C21—H21A0.9300
C1—C21.394 (6)C22—C261.390 (5)
C1—C61.397 (6)C22—C231.411 (5)
C2—C31.396 (7)C23—C241.363 (6)
C2—H2A0.9300C23—H23A0.9300
C3—C41.372 (8)C24—C251.407 (5)
C3—H3A0.9300C24—H24A0.9300
C4—C51.378 (7)C25—H25A0.9300
C4—H4A0.9300P1—F41.595 (2)
C5—C61.396 (6)P1—F31.595 (3)
C5—H5A0.9300P1—F21.597 (3)
C7—C81.366 (7)P1—F11.600 (2)
C7—H7A0.9300P1—F61.604 (2)
C8—C91.394 (6)P1—F51.609 (2)
C8—H8A0.9300Cl1—C271.567 (14)
C9—H9A0.9300Cl2—C271.882 (19)
C10—C111.388 (5)C27—H27A0.9700
C10—C151.398 (6)C27—H27B0.9700
C11—C121.391 (5)
C10—Ir1—N380.52 (14)C13—C12—C11120.2 (4)
C10—Ir1—N196.21 (14)C13—C12—H12A119.9
N3—Ir1—N1173.28 (13)C11—C12—H12A119.9
C10—Ir1—C187.88 (14)C12—C13—C14120.4 (4)
N3—Ir1—C193.67 (15)C12—C13—H13A119.8
N1—Ir1—C180.29 (14)C14—C13—H13A119.8
C10—Ir1—N6101.05 (13)C13—C14—C15118.5 (5)
N3—Ir1—N692.10 (13)C13—C14—H14A120.7
N1—Ir1—N694.29 (11)C15—C14—H14A120.7
C1—Ir1—N6170.06 (13)C14—C15—C10123.3 (4)
C10—Ir1—N5161.07 (13)C14—C15—N4122.4 (4)
N3—Ir1—N594.28 (12)C10—C15—N4114.2 (3)
N1—Ir1—N590.63 (11)N4—C16—C17107.7 (4)
C1—Ir1—N5110.71 (12)N4—C16—H16A126.1
N6—Ir1—N560.74 (10)C17—C16—H16A126.1
C9—N1—N2106.6 (3)C16—C17—C18105.7 (4)
C9—N1—Ir1138.3 (3)C16—C17—H17A127.1
N2—N1—Ir1115.0 (2)C18—C17—H17A127.1
C7—N2—N1109.7 (3)N3—C18—C17110.1 (4)
C7—N2—C6134.6 (4)N3—C18—H18A125.0
N1—N2—C6115.7 (3)C17—C18—H18A125.0
C18—N3—N4106.1 (3)N6—C19—C20121.4 (3)
C18—N3—Ir1138.4 (3)N6—C19—H19A119.3
N4—N3—Ir1114.9 (2)C20—C19—H19A119.3
C16—N4—N3110.3 (4)C21—C20—C19120.7 (4)
C16—N4—C15134.2 (4)C21—C20—H20A119.7
N3—N4—C15115.5 (3)C19—C20—H20A119.7
C25—N5—C26117.6 (3)C20—C21—C22119.2 (4)
C25—N5—Ir1149.1 (3)C20—C21—H21A120.4
C26—N5—Ir193.3 (2)C22—C21—H21A120.4
C19—N6—C26117.9 (3)C26—C22—C23116.2 (3)
C19—N6—Ir1146.3 (3)C26—C22—C21115.6 (3)
C26—N6—Ir195.8 (2)C23—C22—C21128.1 (4)
C2—C1—C6115.7 (4)C24—C23—C22119.1 (4)
C2—C1—Ir1130.2 (3)C24—C23—H23A120.4
C6—C1—Ir1114.1 (3)C22—C23—H23A120.4
C1—C2—C3121.1 (5)C23—C24—C25120.6 (4)
C1—C2—H2A119.5C23—C24—H24A119.7
C3—C2—H2A119.5C25—C24—H24A119.7
C4—C3—C2121.1 (5)N5—C25—C24121.8 (4)
C4—C3—H3A119.5N5—C25—H25A119.1
C2—C3—H3A119.5C24—C25—H25A119.1
C3—C4—C5120.2 (4)N6—C26—N5110.2 (3)
C3—C4—H4A119.9N6—C26—C22125.1 (3)
C5—C4—H4A119.9N5—C26—C22124.6 (3)
C4—C5—C6117.8 (5)F4—P1—F390.16 (14)
C4—C5—H5A121.1F4—P1—F290.57 (15)
C6—C5—H5A121.1F3—P1—F2179.07 (15)
C5—C6—C1124.1 (4)F4—P1—F190.17 (12)
C5—C6—N2121.1 (4)F3—P1—F189.89 (13)
C1—C6—N2114.8 (3)F2—P1—F189.53 (13)
N2—C7—C8108.4 (4)F4—P1—F690.47 (13)
N2—C7—H7A125.8F3—P1—F690.46 (14)
C8—C7—H7A125.8F2—P1—F690.11 (14)
C7—C8—C9105.4 (4)F1—P1—F6179.27 (14)
C7—C8—H8A127.3F4—P1—F5179.49 (15)
C9—C8—H8A127.3F3—P1—F589.43 (14)
N1—C9—C8109.9 (4)F2—P1—F589.85 (14)
N1—C9—H9A125.1F1—P1—F589.54 (12)
C8—C9—H9A125.1F6—P1—F589.83 (13)
C11—C10—C15116.0 (3)Cl1—C27—Cl2110.9 (11)
C11—C10—Ir1129.2 (3)Cl1—C27—H27A109.5
C15—C10—Ir1114.7 (3)Cl2—C27—H27A109.5
C10—C11—C12121.5 (4)Cl1—C27—H27B109.5
C10—C11—H11A119.2Cl2—C27—H27B109.5
C12—C11—H11A119.2H27A—C27—H27B108.1
C9—N1—N2—C70.1 (4)Ir1—C10—C15—C14175.5 (4)
Ir1—N1—N2—C7178.7 (2)C11—C10—C15—N4178.0 (4)
C9—N1—N2—C6178.2 (3)Ir1—C10—C15—N42.2 (5)
Ir1—N1—N2—C63.0 (4)C16—N4—C15—C149.1 (9)
C18—N3—N4—C160.1 (6)N3—N4—C15—C14172.8 (5)
Ir1—N3—N4—C16173.1 (4)C16—N4—C15—C10173.1 (6)
C18—N3—N4—C15178.5 (4)N3—N4—C15—C105.0 (6)
Ir1—N3—N4—C155.4 (5)N3—N4—C16—C170.2 (7)
C6—C1—C2—C30.2 (6)C15—N4—C16—C17177.9 (6)
Ir1—C1—C2—C3177.0 (3)N4—C16—C17—C180.3 (8)
C1—C2—C3—C40.3 (7)N4—N3—C18—C170.1 (6)
C2—C3—C4—C50.3 (7)Ir1—N3—C18—C17170.4 (4)
C3—C4—C5—C60.2 (6)C16—C17—C18—N30.3 (7)
C4—C5—C6—C10.1 (6)C26—N6—C19—C200.5 (6)
C4—C5—C6—N2179.4 (4)Ir1—N6—C19—C20178.8 (3)
C2—C1—C6—C50.1 (5)N6—C19—C20—C210.0 (7)
Ir1—C1—C6—C5177.4 (3)C19—C20—C21—C220.4 (7)
C2—C1—C6—N2179.4 (3)C20—C21—C22—C260.2 (6)
Ir1—C1—C6—N22.2 (4)C20—C21—C22—C23179.6 (5)
C7—N2—C6—C52.1 (6)C26—C22—C23—C240.1 (7)
N1—N2—C6—C5179.9 (3)C21—C22—C23—C24179.5 (5)
C7—N2—C6—C1178.3 (4)C22—C23—C24—C250.4 (7)
N1—N2—C6—C10.5 (4)C26—N5—C25—C240.0 (6)
N1—N2—C7—C80.0 (4)Ir1—N5—C25—C24179.4 (4)
C6—N2—C7—C8177.8 (4)C23—C24—C25—N50.5 (7)
N2—C7—C8—C90.0 (4)C19—N6—C26—N5179.5 (3)
N2—N1—C9—C80.1 (4)Ir1—N6—C26—N50.5 (3)
Ir1—N1—C9—C8178.2 (3)C19—N6—C26—C220.7 (6)
C7—C8—C9—N10.1 (4)Ir1—N6—C26—C22179.7 (3)
C15—C10—C11—C121.4 (6)C25—N5—C26—N6179.2 (3)
Ir1—C10—C11—C12173.6 (3)Ir1—N5—C26—N60.5 (3)
C10—C11—C12—C131.4 (6)C25—N5—C26—C220.6 (6)
C11—C12—C13—C140.1 (8)Ir1—N5—C26—C22179.7 (3)
C12—C13—C14—C151.1 (8)C23—C22—C26—N6179.1 (4)
C13—C14—C15—C101.0 (8)C21—C22—C26—N60.3 (6)
C13—C14—C15—N4176.6 (5)C23—C22—C26—N50.6 (6)
C11—C10—C15—C140.3 (7)C21—C22—C26—N5179.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···F10.932.473.239 (4)140
C9—H9A···F40.932.483.386 (5)164
C16—H16A···F5i0.932.463.018 (5)118
C16—H16A···F6i0.932.513.418 (6)167
C7—H7A···F5ii0.932.463.201 (5)136
C25—H25A···F5iii0.932.323.215 (4)160
C27—H27A···F2iv0.972.523.370 (13)146
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x, y+1/2, z+1/2.
 

Funding information

Funding for this research was provided by: National Natural Science Foundation of China ( grant No. 51602130).

References

First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCongrave, D. G., Hsu, Y., Batsanov, A. S., Beeby, A. & Bryce, M. R. (2017). Organometallics, 36, 981–993.  Web of Science CSD CrossRef CAS Google Scholar
First citationDavies, D. L., Lelj, F., Lowe, M. P., Ryder, K. S., Singh, K. & Singh, S. (2014). Dalton Trans. 43, 4026–4039.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDixon, I. M., Collin, J. P., Sauvage, J. P., Flamigni, L., Encinas, S. & Barigelletti, F. (2000). Chem. Soc. Rev. 29, 385–391.  CrossRef CAS Google Scholar
First citationFan, C., Zhu, L., Jiang, B., Li, Y., Zhao, F., Ma, D., Qin, J. & Yang, C. (2013). J. Phys. Chem. C, 117, 19134–19141.  CrossRef CAS Google Scholar
First citationGoswami, S., Sengupta, D., Paul, N. D., Mondal, T. K. & Goswami, S. (2014). Chem. Eur. J. 20, 6103–6111.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHowarth, A. J., Majewski, M. B., Brown, C. M., Lelj, F., Wolf, M. O. & Patrick, B. O. (2015). Dalton Trans. 44, 16272–16279.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJiang, W. L., Gao, Y., Sun, Y., Ding, F., Xu, Y., Bian, Z. Q., Li, F., Bian, J. & Huang, C. H. (2010). Inorg. Chem. 49, 3252–3260.  CSD CrossRef CAS PubMed Google Scholar
First citationKwon, T. H., Cho, H. S., Kim, M. K., Kim, J. W., Kim, J. J., Lee, K. H., Park, S. J., Shin, I. S., Kim, H., Shin, D. M., Chung, Y. K. & Hong, J. I. (2005). Organometallics, 24, 1578–1585.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, S., Kim, S. O., Shin, H., Yun, H. J., Yang, K., Kwon, S. K., Kim, J. J. & Kim, Y. H. (2013). J. Am. Chem. Soc. 135, 14321–14328.  CrossRef CAS PubMed Google Scholar
First citationLiu, B., Monro, S., Lystrom, L., Cameron, C. G., Colón, K., Yin, H., Kilina, S., McFarland, S. A. & Sun, W. (2018). Inorg. Chem. 57, 7122–7131.  Google Scholar
First citationMajewicz, T. G. & Caluwe, P. (1975). J. Org. Chem. 40, 3407–3410.  CrossRef CAS Google Scholar
First citationNie, Q. Y., Qian, J. & Zhang, C. (2019). J. Mol. Struct. 1186, 434–439.  Web of Science CSD CrossRef CAS Google Scholar
First citationRadwan, Y. K., Maity, A. & Teets, T. S. (2015). Inorg. Chem. 54, 7122–7131.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSauvageot, E., Marion, R., Sguerra, F., Grimault, A., Daniellou, R., Hamel, M., Gaillard, S. & Renaud, J. (2014). Org. Chem. Front. 1, 639–644.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTamayo, A. B., Alleyne, B. D., Djurovich, P. I., Lamansky, S., Tsyba, I., Ho, N. N., Bau, R. & Thompson, M. E. (2003). J. Am. Chem. Soc. 125, 7377–7387.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, X., Lystrom, L., Kilina, S. & Sun, W. (2016). Inorg. Chem. 55, 11908–11919.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds