research communications
Synthesis and κ2N,N′)[2-(1H-pyrazol-1-yl)phenyl-κ2N2,C1]iridium(III) hexafluoridophosphate dichloromethane monosolvate
of (1,8-naphthyridine-aJiangsu Nursing Vocational College, Huaian 223300, Jiangsu Province, People's Republic of China, bJiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin, Normal University, Huaian 223300, Jiangsu Province, People's Republic of China, and cSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
*Correspondence e-mail: junqian8203@ujs.edu.cn
The solvated title salt, [Ir(C9H7N2)2(C8H6N2)]PF6·CH2Cl2, was obtained from the reaction between 1,8-naphthyridine (NAP) and an orthometalated iridium(III) precursor containing a 1-phenylpyrazole (ppz) ligand. The comprises one [Ir(ppz)2(NAP)]+ cation, one PF6− counter-ion and one CH2Cl2 solvent molecule. The central IrIII atom of the [Ir(ppz)2(NAP)]+ cation is distorted-octahedrally coordinated by four N atoms and two C atoms, whereby two N atoms stem from the NAP ligand while the ppz ligands ligate through one N and one C atom each. In the crystal, the [Ir(ppz)2(NAP)]+ cations and PF6− counter-ions are connected with each other through weak intermolecular C—H⋯F hydrogen bonds. Together with an additional C—H⋯F interaction involving the solvent molecule, a three-dimensional network structure is formed.
Keywords: crystal structure; cyclometalated iridium complex; 1-phenylpyrazole; C—H⋯F hydrogen bonds.
CCDC reference: 1874317
1. Chemical context
Over the past two decades, transition-metal complexes have attracted considerable attention in both academia and industry (Dixon et al., 2000). For example, d6 iridium complexes with pseudo-octahedral coordination environments have been widely used in electroluminescent devices (sensors and light-emitting instruments) or because of their long excited-state lifetime, high luminescent colour adjustment and thermal stability (Lee et al., 2013; Fan et al., 2013). Among various iridium complexes, cyclometalated iridium(III) complexes are particularly attractive for the wide-range tunability of electronic structures via the rational molecular design of different components (Zhu et al., 2016). According to the set-up of cyclometalated iridium(III) cations with general formula [(NN)Ir(CN)2]+ in which NN refers to a diimine ligand and CN refers to a cyclometalated ligand, the combination and variation of NN and CN ligands provides the opportunity to modulate the properties of the target complexes (Goswami et al., 2014; Radwan et al., 2015).
In our laboratory, a key motivation for studies in this area arises from our interest in cyclometalated iridium(III) complexes, which exhibit a strong π-electrons. Thus, one can enhance the non-linear optical properties of a system through the interaction between the d orbitals of IrIII and the π-orbitals of an organic (Liu et al., 2018). Here we report the of a solvated cyclometalated iridium(III) complex, [Ir(C9H7N2)2(C8H6N2)](PF6)·CH2Cl2, obtained from the reaction between an orthometalated iridium precursor ({(ppz)2Ir(μ-Cl)}2) (ppz = 1-phenylpyrazole) and 1,8-naphthyridine (NAP) as an auxiliary ligand.
with a high degree of delocalized2. Structural commentary
The 2(NAP)]+ cation, one PF6− counter-ion and one CH2Cl2 solvent molecule. As shown in Fig. 1, the IrIII atom is coordinated by four N and two C atoms in the form of a pseudo-octahedral [IrN4C2] polyhedron. The axial positions are occupied by two N atoms from two ppz ligands, while the equatorial plane is defined by two N atoms from the NAP ligand and two C atoms from the ppz ligands.
of the title cyclometalated iridium(III) complex is composed of one [Ir(ppz)The bond lengths and angles related to the ppz ligand are normal and agree with the values in other cyclometalated iridium(III) compounds based on this ligand (see Database survey for details).
The average Ir—NCN (CN refers to the ppz ligand) and Ir—C bond lengths are 2.013 and 2.008 Å, respectively, while the average Ir—NNN (NN refers to the NAP ligand) bond length is much longer at 2.208 Å. The bond angles around the IrIII atom involving cis-arranged ligand atoms deviate clearly from 90° and range from 60.74 (10)° (the bite angle of the NAP ligand) to 110.71 (12)°, except for N1—Ir1—N5 with a value of 90.63 (11)°. Likewise, the bond angles N3—Ir1—N1, C1—Ir1—N6 and C10—Ir1—N5 of trans-oriented atoms are 173.28 (13), 170.06 (13) and 161.07 (13)°, respectively, and indicate a distortion from the ideal octahedral arrangement. The planes of the two planar ppz ligands (C1–C6/C7–C9/N1/N2, r.m.s. deviation of 0.0097 Å; C10–C15/C16–C18/N3/N4, r.m.s. deviation of 0.0562 Å) and the NAP ligand (r.m.s. deviation 0.389 Å) are 76.26 (8) and 70.63 (9)°, respectively, and thus deviate significantly from a perpendicular arrangement.
3. Supramolecular features
In the crystal, the [Ir(ppz)2(NAP)]+ cations and PF6− counter-ions are linked by six charge-assisted and partly bifurcated C—H⋯F hydrogen bonds (C16—H16A⋯F5i, C16—H16A⋯F6i, C9—H9A⋯F1, C9—H9A⋯F4, C7—H7A⋯F5ii, C25—H25A⋯F5iii; Table 1) into a three-dimensional supramolecular network, as shown in Fig. 2. In addition, a similar hydrogen bond between the CH2Cl2 solvent molecule and the PF6−counter-ion (C27—H27A⋯F2iv) consolidates this arrangement.
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.39, updated November 2017; Groom et al., 2016) for complexes containing an iridium(III) atom together with 1-phenylpyrazole ligand fragments yielded 36 hits. Among these, eight crystallize in the monoclinic system like the title compound. Five of them have similar chelating N,N′-ligands, viz. XAHXIP (Jiang et al., 2010), KISYOC/KISZIX (Davies et al., 2014), ROFZET (Sauvageot et al., 2014) and JUPTIZ (Howarth et al., 2015). Two compounds contain the same tetradentate ligand, N,N′-bis(3,5-bis(trifluoromethyl)benzoyl)hydrazide, and are meso and rac viz. NASQEG and NASQIK (Congrave et al., 2017), and one compound is constructed solely by the 1-phenylpyrazole ligand, viz. OHUZAS (Tamayo et al., 2003).
5. Synthesis and crystallization
The iridium dichloride bridge compound, [(ppz)2Ir(μ-Cl)]2, was synthesized following a reported literature procedure (Kwon et al., 2005) by heating IrCl3·3H2O (1 equiv.) and 1-phenylpyrazole (2.3 equiv.) in a mixed solution of 2-ethoxyethanol and water (v/v = 3/1) at 408 K.
1,8-Naphthyridine was synthesized by a slight modification of a reported procedure (Majewicz & Caluwe, 1975). The reaction of 1,3-cyclohexanedione and an excess of 2-aminonicotinaldehyde in refluxing ethanol, which contains a few drops of methanolic KOH, resulted in the 1,8-naphthyridine ligand.
The cyclometalated iridium(III) title complex (I) was synthesized from the reaction of [(ppz)2Ir(μ-Cl)]2 with 1,8-naphthyridine in a mixed solution of dichloromethane (CH2Cl2) and methanol (MeOH) (v/v = 2/1) at 358 K with KPF6 as counter-ion through metathesis. The reaction process was monitored by thin layer After the reaction was complete, the mixture was dried under vacuum and separated by on silica gel with CH2Cl2/petroleum ether (v/v = 4/1) as The pure product of the cyclometalated iridium(III) complex was obtained as a dark-yellow solid. Single crystals were grown by inter-diffusion between n-hexane and a dichloromethane solution of the pure solid with CH2Cl2/hexane (v/v = 1/1) as buffer solution at room temperature. Compared to the direct benign/inert solvents reaction system, here the inter-diffusion method was applied as a mild way for the crystallization of the title complex. The use of the buffer solution ensures stable conditions for the crystallization of co-responsive constituents (Nie et al., 2019). Therefore, well-shaped crystals of complex(I) can be obtained from the buffer area.
Elemental analysis for C27H22Cl2F6IrN6P (found): C, 36.86; H, 2.63; N, 10.19%; (calculated): C, 37.65; H, 2.62; N, 10.12%.
6. Refinement
Crystal data, data collection and structure . Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93 Å for [Ir(ppz)2(NAP)]+ cation, C—H = 0.97 Å for CH2Cl2 solvent molecule) and were included in the in the riding-model approximation, with Uiso(H) set to 1.2Ueq(C).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1874317
https://doi.org/10.1107/S2056989019016773/wm5533sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019016773/wm5533Isup3.hkl
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).[Ir(C9H7N2)2(C8H6N2)]PF6·CH2Cl2 | F(000) = 1624 |
Mr = 838.57 | Dx = 1.785 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.1222 (3) Å | Cell parameters from 9905 reflections |
b = 15.5510 (4) Å | θ = 2.9–26.4° |
c = 17.1579 (5) Å | µ = 4.57 mm−1 |
β = 105.313 (1)° | T = 293 K |
V = 3119.64 (14) Å3 | Block, red |
Z = 4 | 0.20 × 0.18 × 0.15 mm |
APEXII CCD area detector diffractometer | 5528 reflections with I > 2σ(I) |
phi and ω scans | Rint = 0.032 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | θmax = 26.4°, θmin = 2.9° |
Tmin = 0.417, Tmax = 0.504 | h = −15→15 |
36216 measured reflections | k = −19→19 |
6387 independent reflections | l = −21→21 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.024 | H-atom parameters constrained |
wR(F2) = 0.062 | w = 1/[σ2(Fo2) + (0.0254P)2 + 8.5285P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.002 |
6387 reflections | Δρmax = 1.29 e Å−3 |
388 parameters | Δρmin = −1.03 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ir1 | 0.69497 (2) | 0.12122 (2) | 0.36803 (2) | 0.02071 (5) | |
N1 | 0.5244 (3) | 0.11978 (17) | 0.35308 (18) | 0.0227 (6) | |
N2 | 0.4908 (3) | 0.11594 (18) | 0.42268 (19) | 0.0279 (7) | |
N3 | 0.8666 (3) | 0.12796 (19) | 0.3960 (2) | 0.0324 (7) | |
N4 | 0.9109 (3) | 0.2077 (2) | 0.4177 (3) | 0.0446 (10) | |
N5 | 0.6867 (3) | −0.00707 (18) | 0.30844 (17) | 0.0231 (6) | |
N6 | 0.6822 (3) | 0.11475 (18) | 0.23884 (18) | 0.0229 (6) | |
C1 | 0.6907 (3) | 0.1083 (2) | 0.4841 (2) | 0.0272 (8) | |
C2 | 0.7798 (4) | 0.1025 (3) | 0.5545 (3) | 0.0423 (11) | |
H2A | 0.8550 | 0.1019 | 0.5508 | 0.051* | |
C3 | 0.7581 (6) | 0.0977 (3) | 0.6303 (3) | 0.0552 (15) | |
H3A | 0.8190 | 0.0936 | 0.6763 | 0.066* | |
C4 | 0.6483 (6) | 0.0990 (3) | 0.6380 (3) | 0.0541 (15) | |
H4A | 0.6355 | 0.0960 | 0.6891 | 0.065* | |
C5 | 0.5570 (5) | 0.1046 (3) | 0.5705 (3) | 0.0435 (11) | |
H5A | 0.4822 | 0.1053 | 0.5749 | 0.052* | |
C6 | 0.5806 (4) | 0.1092 (2) | 0.4952 (2) | 0.0295 (8) | |
C7 | 0.3761 (4) | 0.1172 (3) | 0.4054 (3) | 0.0379 (10) | |
H7A | 0.3329 | 0.1153 | 0.4428 | 0.045* | |
C8 | 0.3336 (4) | 0.1219 (3) | 0.3234 (3) | 0.0389 (10) | |
H8A | 0.2572 | 0.1237 | 0.2943 | 0.047* | |
C9 | 0.4292 (3) | 0.1233 (2) | 0.2927 (2) | 0.0301 (8) | |
H9A | 0.4269 | 0.1262 | 0.2381 | 0.036* | |
C10 | 0.7152 (3) | 0.2476 (2) | 0.3880 (2) | 0.0280 (8) | |
C11 | 0.6328 (4) | 0.3117 (2) | 0.3775 (2) | 0.0296 (8) | |
H11A | 0.5559 | 0.2964 | 0.3638 | 0.036* | |
C12 | 0.6627 (4) | 0.3982 (3) | 0.3869 (3) | 0.0387 (10) | |
H12A | 0.6058 | 0.4399 | 0.3784 | 0.046* | |
C13 | 0.7757 (5) | 0.4221 (3) | 0.4087 (3) | 0.0512 (13) | |
H13A | 0.7950 | 0.4800 | 0.4149 | 0.061* | |
C14 | 0.8604 (5) | 0.3609 (3) | 0.4213 (4) | 0.0572 (14) | |
H14A | 0.9371 | 0.3767 | 0.4369 | 0.069* | |
C15 | 0.8290 (4) | 0.2753 (3) | 0.4102 (3) | 0.0383 (10) | |
C16 | 1.0249 (4) | 0.2038 (3) | 0.4437 (4) | 0.0682 (18) | |
H16A | 1.0740 | 0.2498 | 0.4615 | 0.082* | |
C17 | 1.0564 (4) | 0.1195 (3) | 0.4393 (4) | 0.0653 (17) | |
H17A | 1.1302 | 0.0973 | 0.4536 | 0.078* | |
C18 | 0.9556 (4) | 0.0745 (3) | 0.4092 (3) | 0.0451 (11) | |
H18A | 0.9506 | 0.0156 | 0.3996 | 0.054* | |
C19 | 0.6751 (3) | 0.1585 (2) | 0.1718 (2) | 0.0290 (8) | |
H19A | 0.6762 | 0.2183 | 0.1736 | 0.035* | |
C20 | 0.6659 (4) | 0.1168 (3) | 0.0978 (2) | 0.0353 (9) | |
H20A | 0.6611 | 0.1492 | 0.0515 | 0.042* | |
C21 | 0.6641 (4) | 0.0293 (3) | 0.0932 (2) | 0.0369 (9) | |
H21A | 0.6585 | 0.0019 | 0.0441 | 0.044* | |
C22 | 0.6709 (3) | −0.0195 (2) | 0.1641 (2) | 0.0292 (8) | |
C23 | 0.6710 (4) | −0.1098 (3) | 0.1724 (3) | 0.0398 (10) | |
H23A | 0.6657 | −0.1451 | 0.1278 | 0.048* | |
C24 | 0.6790 (4) | −0.1446 (3) | 0.2465 (3) | 0.0420 (11) | |
H24A | 0.6796 | −0.2041 | 0.2526 | 0.050* | |
C25 | 0.6864 (4) | −0.0915 (2) | 0.3141 (2) | 0.0303 (8) | |
H25A | 0.6913 | −0.1167 | 0.3640 | 0.036* | |
C26 | 0.6794 (3) | 0.0278 (2) | 0.2341 (2) | 0.0231 (7) | |
P1 | 0.33055 (9) | 0.18918 (6) | 0.06223 (6) | 0.0258 (2) | |
F1 | 0.42475 (18) | 0.23551 (13) | 0.13286 (12) | 0.0291 (5) | |
F2 | 0.2498 (2) | 0.17991 (17) | 0.12174 (15) | 0.0450 (6) | |
F3 | 0.4115 (2) | 0.20007 (16) | 0.00312 (14) | 0.0392 (6) | |
F4 | 0.3873 (2) | 0.09807 (14) | 0.09090 (15) | 0.0417 (6) | |
F5 | 0.2744 (2) | 0.28140 (14) | 0.03324 (14) | 0.0372 (5) | |
F6 | 0.2350 (2) | 0.14372 (16) | −0.00851 (15) | 0.0435 (6) | |
Cl1 | −0.0040 (4) | 0.7352 (5) | 0.2789 (3) | 0.279 (3) | |
Cl2 | 0.0137 (4) | 0.5589 (5) | 0.3252 (4) | 0.302 (3) | |
C27 | 0.0177 (11) | 0.6755 (13) | 0.3551 (10) | 0.214 (8) | |
H27A | −0.0402 | 0.6863 | 0.3836 | 0.256* | |
H27B | 0.0918 | 0.6888 | 0.3915 | 0.256* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ir1 | 0.02483 (8) | 0.01435 (7) | 0.02045 (8) | −0.00010 (5) | 0.00159 (5) | −0.00110 (5) |
N1 | 0.0284 (16) | 0.0174 (14) | 0.0222 (15) | 0.0003 (12) | 0.0064 (12) | 0.0015 (11) |
N2 | 0.0368 (18) | 0.0195 (15) | 0.0300 (17) | 0.0019 (13) | 0.0133 (14) | 0.0004 (12) |
N3 | 0.0291 (17) | 0.0183 (15) | 0.046 (2) | −0.0023 (13) | 0.0033 (15) | −0.0015 (14) |
N4 | 0.0296 (19) | 0.0245 (17) | 0.070 (3) | −0.0053 (15) | −0.0045 (18) | −0.0040 (17) |
N5 | 0.0264 (16) | 0.0185 (14) | 0.0221 (15) | −0.0024 (12) | 0.0025 (12) | −0.0014 (11) |
N6 | 0.0253 (15) | 0.0186 (14) | 0.0250 (15) | 0.0012 (12) | 0.0071 (12) | 0.0016 (11) |
C1 | 0.038 (2) | 0.0158 (16) | 0.0241 (18) | 0.0026 (15) | 0.0014 (16) | −0.0021 (13) |
C2 | 0.059 (3) | 0.028 (2) | 0.030 (2) | 0.0075 (19) | −0.007 (2) | −0.0012 (16) |
C3 | 0.102 (5) | 0.031 (2) | 0.021 (2) | 0.012 (3) | −0.004 (2) | 0.0003 (17) |
C4 | 0.110 (5) | 0.028 (2) | 0.026 (2) | 0.012 (3) | 0.021 (3) | 0.0009 (17) |
C5 | 0.078 (3) | 0.027 (2) | 0.033 (2) | 0.008 (2) | 0.026 (2) | 0.0020 (17) |
C6 | 0.049 (2) | 0.0155 (17) | 0.0236 (18) | 0.0025 (16) | 0.0089 (17) | −0.0006 (13) |
C7 | 0.033 (2) | 0.030 (2) | 0.056 (3) | 0.0010 (17) | 0.021 (2) | 0.0007 (18) |
C8 | 0.027 (2) | 0.029 (2) | 0.058 (3) | 0.0014 (17) | 0.0057 (19) | 0.0043 (19) |
C9 | 0.029 (2) | 0.0230 (18) | 0.034 (2) | 0.0001 (15) | 0.0000 (16) | 0.0030 (15) |
C10 | 0.041 (2) | 0.0170 (17) | 0.0242 (18) | 0.0010 (15) | 0.0048 (16) | −0.0019 (13) |
C11 | 0.043 (2) | 0.0205 (18) | 0.0253 (19) | 0.0011 (16) | 0.0093 (17) | −0.0020 (14) |
C12 | 0.058 (3) | 0.0200 (19) | 0.038 (2) | 0.0073 (18) | 0.013 (2) | −0.0022 (16) |
C13 | 0.062 (3) | 0.018 (2) | 0.071 (3) | −0.005 (2) | 0.012 (3) | −0.007 (2) |
C14 | 0.051 (3) | 0.029 (2) | 0.085 (4) | −0.013 (2) | 0.008 (3) | −0.009 (2) |
C15 | 0.035 (2) | 0.0201 (19) | 0.052 (3) | −0.0029 (17) | −0.002 (2) | −0.0036 (17) |
C16 | 0.031 (3) | 0.039 (3) | 0.119 (5) | −0.008 (2) | −0.008 (3) | −0.006 (3) |
C17 | 0.027 (2) | 0.045 (3) | 0.111 (5) | 0.004 (2) | −0.005 (3) | −0.002 (3) |
C18 | 0.033 (2) | 0.028 (2) | 0.068 (3) | 0.0030 (18) | 0.003 (2) | −0.001 (2) |
C19 | 0.032 (2) | 0.0225 (18) | 0.033 (2) | 0.0021 (15) | 0.0094 (17) | 0.0082 (15) |
C20 | 0.044 (2) | 0.038 (2) | 0.0251 (19) | 0.0044 (19) | 0.0111 (18) | 0.0101 (16) |
C21 | 0.050 (3) | 0.037 (2) | 0.0234 (19) | −0.0016 (19) | 0.0101 (18) | −0.0004 (16) |
C22 | 0.036 (2) | 0.0276 (19) | 0.0232 (18) | −0.0051 (16) | 0.0061 (16) | −0.0022 (15) |
C23 | 0.066 (3) | 0.028 (2) | 0.028 (2) | −0.008 (2) | 0.015 (2) | −0.0095 (16) |
C24 | 0.074 (3) | 0.0171 (18) | 0.036 (2) | −0.008 (2) | 0.018 (2) | −0.0052 (16) |
C25 | 0.045 (2) | 0.0189 (17) | 0.0273 (19) | −0.0042 (16) | 0.0102 (18) | 0.0030 (14) |
C26 | 0.0269 (19) | 0.0199 (17) | 0.0215 (17) | −0.0008 (14) | 0.0046 (14) | 0.0018 (13) |
P1 | 0.0312 (5) | 0.0184 (4) | 0.0244 (5) | 0.0010 (4) | 0.0015 (4) | −0.0036 (3) |
F1 | 0.0335 (12) | 0.0243 (11) | 0.0242 (11) | −0.0019 (9) | −0.0015 (9) | −0.0027 (8) |
F2 | 0.0416 (14) | 0.0511 (16) | 0.0445 (15) | −0.0082 (12) | 0.0155 (12) | −0.0054 (12) |
F3 | 0.0461 (15) | 0.0417 (14) | 0.0311 (12) | 0.0004 (11) | 0.0122 (11) | −0.0046 (10) |
F4 | 0.0535 (16) | 0.0168 (11) | 0.0486 (15) | 0.0020 (10) | 0.0023 (12) | 0.0010 (10) |
F5 | 0.0427 (14) | 0.0249 (11) | 0.0362 (13) | 0.0089 (10) | −0.0035 (11) | −0.0021 (9) |
F6 | 0.0433 (14) | 0.0369 (13) | 0.0396 (14) | −0.0039 (11) | −0.0077 (11) | −0.0148 (11) |
Cl1 | 0.177 (4) | 0.470 (9) | 0.169 (4) | −0.139 (5) | 0.008 (3) | 0.032 (5) |
Cl2 | 0.106 (3) | 0.407 (9) | 0.381 (8) | −0.022 (4) | 0.043 (4) | 0.061 (7) |
C27 | 0.116 (10) | 0.34 (2) | 0.197 (15) | 0.054 (13) | 0.065 (10) | 0.096 (17) |
Ir1—C10 | 1.999 (4) | C11—H11A | 0.9300 |
Ir1—N3 | 2.010 (3) | C12—C13 | 1.373 (7) |
Ir1—N1 | 2.015 (3) | C12—H12A | 0.9300 |
Ir1—C1 | 2.016 (4) | C13—C14 | 1.374 (7) |
Ir1—N6 | 2.183 (3) | C13—H13A | 0.9300 |
Ir1—N5 | 2.232 (3) | C14—C15 | 1.384 (6) |
N1—C9 | 1.333 (5) | C14—H14A | 0.9300 |
N1—N2 | 1.361 (4) | C16—C17 | 1.372 (7) |
N2—C7 | 1.344 (5) | C16—H16A | 0.9300 |
N2—C6 | 1.424 (5) | C17—C18 | 1.385 (6) |
N3—C18 | 1.333 (5) | C17—H17A | 0.9300 |
N3—N4 | 1.364 (4) | C18—H18A | 0.9300 |
N4—C16 | 1.336 (6) | C19—C20 | 1.404 (6) |
N4—C15 | 1.428 (5) | C19—H19A | 0.9300 |
N5—C25 | 1.317 (5) | C20—C21 | 1.363 (6) |
N5—C26 | 1.366 (4) | C20—H20A | 0.9300 |
N6—C19 | 1.319 (5) | C21—C22 | 1.418 (5) |
N6—C26 | 1.355 (4) | C21—H21A | 0.9300 |
C1—C2 | 1.394 (6) | C22—C26 | 1.390 (5) |
C1—C6 | 1.397 (6) | C22—C23 | 1.411 (5) |
C2—C3 | 1.396 (7) | C23—C24 | 1.363 (6) |
C2—H2A | 0.9300 | C23—H23A | 0.9300 |
C3—C4 | 1.372 (8) | C24—C25 | 1.407 (5) |
C3—H3A | 0.9300 | C24—H24A | 0.9300 |
C4—C5 | 1.378 (7) | C25—H25A | 0.9300 |
C4—H4A | 0.9300 | P1—F4 | 1.595 (2) |
C5—C6 | 1.396 (6) | P1—F3 | 1.595 (3) |
C5—H5A | 0.9300 | P1—F2 | 1.597 (3) |
C7—C8 | 1.366 (7) | P1—F1 | 1.600 (2) |
C7—H7A | 0.9300 | P1—F6 | 1.604 (2) |
C8—C9 | 1.394 (6) | P1—F5 | 1.609 (2) |
C8—H8A | 0.9300 | Cl1—C27 | 1.567 (14) |
C9—H9A | 0.9300 | Cl2—C27 | 1.882 (19) |
C10—C11 | 1.388 (5) | C27—H27A | 0.9700 |
C10—C15 | 1.398 (6) | C27—H27B | 0.9700 |
C11—C12 | 1.391 (5) | ||
C10—Ir1—N3 | 80.52 (14) | C13—C12—C11 | 120.2 (4) |
C10—Ir1—N1 | 96.21 (14) | C13—C12—H12A | 119.9 |
N3—Ir1—N1 | 173.28 (13) | C11—C12—H12A | 119.9 |
C10—Ir1—C1 | 87.88 (14) | C12—C13—C14 | 120.4 (4) |
N3—Ir1—C1 | 93.67 (15) | C12—C13—H13A | 119.8 |
N1—Ir1—C1 | 80.29 (14) | C14—C13—H13A | 119.8 |
C10—Ir1—N6 | 101.05 (13) | C13—C14—C15 | 118.5 (5) |
N3—Ir1—N6 | 92.10 (13) | C13—C14—H14A | 120.7 |
N1—Ir1—N6 | 94.29 (11) | C15—C14—H14A | 120.7 |
C1—Ir1—N6 | 170.06 (13) | C14—C15—C10 | 123.3 (4) |
C10—Ir1—N5 | 161.07 (13) | C14—C15—N4 | 122.4 (4) |
N3—Ir1—N5 | 94.28 (12) | C10—C15—N4 | 114.2 (3) |
N1—Ir1—N5 | 90.63 (11) | N4—C16—C17 | 107.7 (4) |
C1—Ir1—N5 | 110.71 (12) | N4—C16—H16A | 126.1 |
N6—Ir1—N5 | 60.74 (10) | C17—C16—H16A | 126.1 |
C9—N1—N2 | 106.6 (3) | C16—C17—C18 | 105.7 (4) |
C9—N1—Ir1 | 138.3 (3) | C16—C17—H17A | 127.1 |
N2—N1—Ir1 | 115.0 (2) | C18—C17—H17A | 127.1 |
C7—N2—N1 | 109.7 (3) | N3—C18—C17 | 110.1 (4) |
C7—N2—C6 | 134.6 (4) | N3—C18—H18A | 125.0 |
N1—N2—C6 | 115.7 (3) | C17—C18—H18A | 125.0 |
C18—N3—N4 | 106.1 (3) | N6—C19—C20 | 121.4 (3) |
C18—N3—Ir1 | 138.4 (3) | N6—C19—H19A | 119.3 |
N4—N3—Ir1 | 114.9 (2) | C20—C19—H19A | 119.3 |
C16—N4—N3 | 110.3 (4) | C21—C20—C19 | 120.7 (4) |
C16—N4—C15 | 134.2 (4) | C21—C20—H20A | 119.7 |
N3—N4—C15 | 115.5 (3) | C19—C20—H20A | 119.7 |
C25—N5—C26 | 117.6 (3) | C20—C21—C22 | 119.2 (4) |
C25—N5—Ir1 | 149.1 (3) | C20—C21—H21A | 120.4 |
C26—N5—Ir1 | 93.3 (2) | C22—C21—H21A | 120.4 |
C19—N6—C26 | 117.9 (3) | C26—C22—C23 | 116.2 (3) |
C19—N6—Ir1 | 146.3 (3) | C26—C22—C21 | 115.6 (3) |
C26—N6—Ir1 | 95.8 (2) | C23—C22—C21 | 128.1 (4) |
C2—C1—C6 | 115.7 (4) | C24—C23—C22 | 119.1 (4) |
C2—C1—Ir1 | 130.2 (3) | C24—C23—H23A | 120.4 |
C6—C1—Ir1 | 114.1 (3) | C22—C23—H23A | 120.4 |
C1—C2—C3 | 121.1 (5) | C23—C24—C25 | 120.6 (4) |
C1—C2—H2A | 119.5 | C23—C24—H24A | 119.7 |
C3—C2—H2A | 119.5 | C25—C24—H24A | 119.7 |
C4—C3—C2 | 121.1 (5) | N5—C25—C24 | 121.8 (4) |
C4—C3—H3A | 119.5 | N5—C25—H25A | 119.1 |
C2—C3—H3A | 119.5 | C24—C25—H25A | 119.1 |
C3—C4—C5 | 120.2 (4) | N6—C26—N5 | 110.2 (3) |
C3—C4—H4A | 119.9 | N6—C26—C22 | 125.1 (3) |
C5—C4—H4A | 119.9 | N5—C26—C22 | 124.6 (3) |
C4—C5—C6 | 117.8 (5) | F4—P1—F3 | 90.16 (14) |
C4—C5—H5A | 121.1 | F4—P1—F2 | 90.57 (15) |
C6—C5—H5A | 121.1 | F3—P1—F2 | 179.07 (15) |
C5—C6—C1 | 124.1 (4) | F4—P1—F1 | 90.17 (12) |
C5—C6—N2 | 121.1 (4) | F3—P1—F1 | 89.89 (13) |
C1—C6—N2 | 114.8 (3) | F2—P1—F1 | 89.53 (13) |
N2—C7—C8 | 108.4 (4) | F4—P1—F6 | 90.47 (13) |
N2—C7—H7A | 125.8 | F3—P1—F6 | 90.46 (14) |
C8—C7—H7A | 125.8 | F2—P1—F6 | 90.11 (14) |
C7—C8—C9 | 105.4 (4) | F1—P1—F6 | 179.27 (14) |
C7—C8—H8A | 127.3 | F4—P1—F5 | 179.49 (15) |
C9—C8—H8A | 127.3 | F3—P1—F5 | 89.43 (14) |
N1—C9—C8 | 109.9 (4) | F2—P1—F5 | 89.85 (14) |
N1—C9—H9A | 125.1 | F1—P1—F5 | 89.54 (12) |
C8—C9—H9A | 125.1 | F6—P1—F5 | 89.83 (13) |
C11—C10—C15 | 116.0 (3) | Cl1—C27—Cl2 | 110.9 (11) |
C11—C10—Ir1 | 129.2 (3) | Cl1—C27—H27A | 109.5 |
C15—C10—Ir1 | 114.7 (3) | Cl2—C27—H27A | 109.5 |
C10—C11—C12 | 121.5 (4) | Cl1—C27—H27B | 109.5 |
C10—C11—H11A | 119.2 | Cl2—C27—H27B | 109.5 |
C12—C11—H11A | 119.2 | H27A—C27—H27B | 108.1 |
C9—N1—N2—C7 | −0.1 (4) | Ir1—C10—C15—C14 | 175.5 (4) |
Ir1—N1—N2—C7 | 178.7 (2) | C11—C10—C15—N4 | −178.0 (4) |
C9—N1—N2—C6 | 178.2 (3) | Ir1—C10—C15—N4 | −2.2 (5) |
Ir1—N1—N2—C6 | −3.0 (4) | C16—N4—C15—C14 | 9.1 (9) |
C18—N3—N4—C16 | 0.1 (6) | N3—N4—C15—C14 | −172.8 (5) |
Ir1—N3—N4—C16 | 173.1 (4) | C16—N4—C15—C10 | −173.1 (6) |
C18—N3—N4—C15 | −178.5 (4) | N3—N4—C15—C10 | 5.0 (6) |
Ir1—N3—N4—C15 | −5.4 (5) | N3—N4—C16—C17 | −0.2 (7) |
C6—C1—C2—C3 | 0.2 (6) | C15—N4—C16—C17 | 177.9 (6) |
Ir1—C1—C2—C3 | 177.0 (3) | N4—C16—C17—C18 | 0.3 (8) |
C1—C2—C3—C4 | −0.3 (7) | N4—N3—C18—C17 | 0.1 (6) |
C2—C3—C4—C5 | 0.3 (7) | Ir1—N3—C18—C17 | −170.4 (4) |
C3—C4—C5—C6 | −0.2 (6) | C16—C17—C18—N3 | −0.3 (7) |
C4—C5—C6—C1 | 0.1 (6) | C26—N6—C19—C20 | −0.5 (6) |
C4—C5—C6—N2 | −179.4 (4) | Ir1—N6—C19—C20 | −178.8 (3) |
C2—C1—C6—C5 | −0.1 (5) | N6—C19—C20—C21 | 0.0 (7) |
Ir1—C1—C6—C5 | −177.4 (3) | C19—C20—C21—C22 | 0.4 (7) |
C2—C1—C6—N2 | 179.4 (3) | C20—C21—C22—C26 | −0.2 (6) |
Ir1—C1—C6—N2 | 2.2 (4) | C20—C21—C22—C23 | −179.6 (5) |
C7—N2—C6—C5 | −2.1 (6) | C26—C22—C23—C24 | 0.1 (7) |
N1—N2—C6—C5 | −179.9 (3) | C21—C22—C23—C24 | 179.5 (5) |
C7—N2—C6—C1 | 178.3 (4) | C22—C23—C24—C25 | 0.4 (7) |
N1—N2—C6—C1 | 0.5 (4) | C26—N5—C25—C24 | 0.0 (6) |
N1—N2—C7—C8 | 0.0 (4) | Ir1—N5—C25—C24 | −179.4 (4) |
C6—N2—C7—C8 | −177.8 (4) | C23—C24—C25—N5 | −0.5 (7) |
N2—C7—C8—C9 | 0.0 (4) | C19—N6—C26—N5 | −179.5 (3) |
N2—N1—C9—C8 | 0.1 (4) | Ir1—N6—C26—N5 | −0.5 (3) |
Ir1—N1—C9—C8 | −178.2 (3) | C19—N6—C26—C22 | 0.7 (6) |
C7—C8—C9—N1 | −0.1 (4) | Ir1—N6—C26—C22 | 179.7 (3) |
C15—C10—C11—C12 | 1.4 (6) | C25—N5—C26—N6 | −179.2 (3) |
Ir1—C10—C11—C12 | −173.6 (3) | Ir1—N5—C26—N6 | 0.5 (3) |
C10—C11—C12—C13 | −1.4 (6) | C25—N5—C26—C22 | 0.6 (6) |
C11—C12—C13—C14 | 0.1 (8) | Ir1—N5—C26—C22 | −179.7 (3) |
C12—C13—C14—C15 | 1.1 (8) | C23—C22—C26—N6 | 179.1 (4) |
C13—C14—C15—C10 | −1.0 (8) | C21—C22—C26—N6 | −0.3 (6) |
C13—C14—C15—N4 | 176.6 (5) | C23—C22—C26—N5 | −0.6 (6) |
C11—C10—C15—C14 | −0.3 (7) | C21—C22—C26—N5 | 179.9 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9A···F1 | 0.93 | 2.47 | 3.239 (4) | 140 |
C9—H9A···F4 | 0.93 | 2.48 | 3.386 (5) | 164 |
C16—H16A···F5i | 0.93 | 2.46 | 3.018 (5) | 118 |
C16—H16A···F6i | 0.93 | 2.51 | 3.418 (6) | 167 |
C7—H7A···F5ii | 0.93 | 2.46 | 3.201 (5) | 136 |
C25—H25A···F5iii | 0.93 | 2.32 | 3.215 (4) | 160 |
C27—H27A···F2iv | 0.97 | 2.52 | 3.370 (13) | 146 |
Symmetry codes: (i) x+1, −y+1/2, z+1/2; (ii) x, −y+1/2, z+1/2; (iii) −x+1, y−1/2, −z+1/2; (iv) −x, y+1/2, −z+1/2. |
Funding information
Funding for this research was provided by: National Natural Science Foundation of China ( grant No. 51602130).
References
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA. Google Scholar
Congrave, D. G., Hsu, Y., Batsanov, A. S., Beeby, A. & Bryce, M. R. (2017). Organometallics, 36, 981–993. Web of Science CSD CrossRef CAS Google Scholar
Davies, D. L., Lelj, F., Lowe, M. P., Ryder, K. S., Singh, K. & Singh, S. (2014). Dalton Trans. 43, 4026–4039. Web of Science CSD CrossRef CAS PubMed Google Scholar
Dixon, I. M., Collin, J. P., Sauvage, J. P., Flamigni, L., Encinas, S. & Barigelletti, F. (2000). Chem. Soc. Rev. 29, 385–391. CrossRef CAS Google Scholar
Fan, C., Zhu, L., Jiang, B., Li, Y., Zhao, F., Ma, D., Qin, J. & Yang, C. (2013). J. Phys. Chem. C, 117, 19134–19141. CrossRef CAS Google Scholar
Goswami, S., Sengupta, D., Paul, N. D., Mondal, T. K. & Goswami, S. (2014). Chem. Eur. J. 20, 6103–6111. Web of Science CSD CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Howarth, A. J., Majewski, M. B., Brown, C. M., Lelj, F., Wolf, M. O. & Patrick, B. O. (2015). Dalton Trans. 44, 16272–16279. Web of Science CSD CrossRef CAS PubMed Google Scholar
Jiang, W. L., Gao, Y., Sun, Y., Ding, F., Xu, Y., Bian, Z. Q., Li, F., Bian, J. & Huang, C. H. (2010). Inorg. Chem. 49, 3252–3260. CSD CrossRef CAS PubMed Google Scholar
Kwon, T. H., Cho, H. S., Kim, M. K., Kim, J. W., Kim, J. J., Lee, K. H., Park, S. J., Shin, I. S., Kim, H., Shin, D. M., Chung, Y. K. & Hong, J. I. (2005). Organometallics, 24, 1578–1585. Web of Science CSD CrossRef CAS Google Scholar
Lee, S., Kim, S. O., Shin, H., Yun, H. J., Yang, K., Kwon, S. K., Kim, J. J. & Kim, Y. H. (2013). J. Am. Chem. Soc. 135, 14321–14328. CrossRef CAS PubMed Google Scholar
Liu, B., Monro, S., Lystrom, L., Cameron, C. G., Colón, K., Yin, H., Kilina, S., McFarland, S. A. & Sun, W. (2018). Inorg. Chem. 57, 7122–7131. Google Scholar
Majewicz, T. G. & Caluwe, P. (1975). J. Org. Chem. 40, 3407–3410. CrossRef CAS Google Scholar
Nie, Q. Y., Qian, J. & Zhang, C. (2019). J. Mol. Struct. 1186, 434–439. Web of Science CSD CrossRef CAS Google Scholar
Radwan, Y. K., Maity, A. & Teets, T. S. (2015). Inorg. Chem. 54, 7122–7131. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sauvageot, E., Marion, R., Sguerra, F., Grimault, A., Daniellou, R., Hamel, M., Gaillard, S. & Renaud, J. (2014). Org. Chem. Front. 1, 639–644. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tamayo, A. B., Alleyne, B. D., Djurovich, P. I., Lamansky, S., Tsyba, I., Ho, N. N., Bau, R. & Thompson, M. E. (2003). J. Am. Chem. Soc. 125, 7377–7387. Web of Science CSD CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhu, X., Lystrom, L., Kilina, S. & Sun, W. (2016). Inorg. Chem. 55, 11908–11919. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.