research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of (E)-5-(4-methyl­phen­yl)-1-(pyridin-2-yl)pent-2-en-4-yn-1-one and [3,4-bis­(phenyl­ethyn­yl)cyclo­butane-1,2-di­yl]bis­­(pyridin-2-yl­methanone)

CROSSMARK_Color_square_no_text.svg

aA.N. Nesmeyanov Institute of Organoelement Compounds of RAS, 28, Vavilova Str., Moscow, 119991, Russian Federation, bTogliatti State University; 14 Belorusskaya Str., Togliatti, 445667, Russian Federation, and cNational Research Center 'Kurchatov Institute', pl. Akad. Kurchatova, 1, Moscow, 123098, Russian Federation
*Correspondence e-mail: vologzhanina@mail.ru

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 21 November 2019; accepted 3 January 2020; online 14 January 2020)

Recrystallization of (E)-5-phenyl-1-(pyridin-2-yl)pent-2-en-4-yn-1-one at room temperature from ethyl­ene glycol in daylight afforded [3,4-bis­(phenyl­ethyn­yl)cyclo­butane-1,2-di­yl)bis­(pyridin-2-yl­methanone], C32H22N2O2 (3), while (E)-5-(4-methyl­phen­yl)-1-(pyridin-2-yl)pent-2-en-4-yn-1-one, C17H13NO (2), remained photoinert. This is the first experimental evidence that pentenynones can be photoreactive when fixed in nearly coplanar parallel positions. During the photoreaction, the bond lengths and angles along the pentenyne chain changed significantly, while the disposition of the pyridyl ring towards the keto group was almost unchanged. The cyclo­butane ring adopts an rctt conformation.

1. Chemical context

Vinyl-substituted ketones are known to take part in photo-initiated reactions both in the solid state and in solution (Hopkin et al., 1991[Hopkin, S. E., Muir, M. & Theocharis, Ch. R. (1991). J. Chem. Soc., Dalton Trans. 2. pp. 1131-1135.]; Vatsadze et al., 2006[Vatsadze, S. Z., Manaenkova, M. A., Sviridenkova, N. V., Zyk, N. V., Krut'ko, D. P., Churakov, A. V., Antipin, M. Yu., Howard, J. A. K. & Lang, H. (2006). Russ. Chem. Bull. 55, 1184-1194.]). Both transcis isomerization and [2 + 2] cyclo­addition reactions can be observed depending on the nature of the substituents on the alkyl chain (Vatsadze et al., 2006[Vatsadze, S. Z., Manaenkova, M. A., Sviridenkova, N. V., Zyk, N. V., Krut'ko, D. P., Churakov, A. V., Antipin, M. Yu., Howard, J. A. K. & Lang, H. (2006). Russ. Chem. Bull. 55, 1184-1194.]). Many of the compounds previously reported by us, including 1,5-di­aryl­pentenynones (Golovanov et al., 2013[Golovanov, A. A., Latypova, D. R., Bekin, V. V., Pisareva, V. S., Vologzhanina, A. V. & Dokichev, V. A. (2013). Russ. J. Org. Chem. 49, 1264-1269.]; Vologzhanina et al., 2014[Vologzhanina, A. V., Golovanov, A. A., Gusev, D. M., Odin, I. S., Apreyan, R. A. & Suponitsky, K. Yu. (2014). Cryst. Growth Des. 14, 4402-4410.]; Voronova et al., 2016[Voronova, E. D., Golovanov, A. A., Suponitsky, K. Yu., Fedyanin, I. V. & Vologzhanina, A. V. (2016). Cryst. Growth Des. 16, 3859-3868.]1) and cyclic ketones with vinyl­acetyl­ene fragments (Voronova et al., 2018[Voronova, E. D., Golovanov, A. A., Odin, I. S., Anisimov, M. A., Dorovatovskii, P. V., Zubavichus, Y. V. & Vologzhanina, A. V. (2018). Acta Cryst. C74, 1674-1683.]) in crystals exhibit coplanar packing with a distance between the olefin fragments of less than 4.2 Å; thus, they satisfy the Schmidt (1971[Schmidt, G. M. J. (1971). Pure. Apll. Chem. 27, 647-678.]) criteria for a solid-state [2 + 2] cyclo­addition to occur. However, our numerous attepts to carry out [2 + 2] photo­cyclo­addition in these compounds were unsuccessful. We aimed to synthesize pyridine-substituted representatives of this family in order to fix olefin fragments in photoreactive positions using hydrogen bonding or coordination bonding as described by Nagarathinam et al. (2008[Nagarathinam, M., Peedikakkal, A. M. P. & Vittal, J. J. (2008). Chem. Commun. pp. 5277.]). Two novel pyridine-2-yl-containing ketones, 1 and 2 (Scheme[link] and Fig. 1[link]), were synthesized as described below, and recrystallized from ethanol. Single-crystal XRD data for 2 could only be obtained using synchrotron radiation, while we failed to obtain a crystal structure of 1 using single-crystal or powder X-ray diffraction. Recrystallization of 1 and 2 from ethyl­ene glycol afforded, respectively, a dimerization reaction product, 3, and the initial solid phase.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of 2 and 3, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

2. Structural commentary

The asymmetric unit of ketone 2 contains two independent mol­ecules (Fig. 1[link]). Their conformations are very similar to each other as shown in Fig. 2[link]. Both mol­ecules of 2 exhibit delocalization of charge density along the alkyl chain, as can be concluded from the bond lengths given in Table 1[link], the single bonds between a double and a triple bond being much shorter than the average value of 1.53–1.54 Å for a C—C bond. The corresponding values for the C=O ketone fragments in 3 are similar to those in 2, while the absence of double bonds along the alkyl chain causes shortening of the allyl bonds and elongation of single bonds. The bond lengths in the cyclo­butane ring of 3 are unequal: those corresponding to a previously `double' bond are characteristic of a C—C bond (ca 1.55 Å), while the single bonds between two `monomers' are elongated to 1.575 (2) Å. Only the rctt isomer of a 1,2,3,4-tetra­substituted cyclo­butane was obtained of four theoretically possible (based on XRD data).

Table 1
Selected geometry parameters (Å, °) for 2 and 3

The carbon atoms of the pentenynone fragment are numbered from 1 to 5. Φ1 is the dihedral angle between the pyridine ring and the ketone fragment and Φ2 is the dihedral angle between the pyridine and phenyl rings.

Bond 2 3
C1=O 1.226 (2), 1.228 (2) 1.212 (2), 1.215 (2)
C1—Cpy 1.498 (3)–1.498 (2) 1.495 (2), 1.498 (2)
C1—C2 1.474 (3)–1.477 (3) 1.509 (2), 1.513 (2)
C2=C3 1.335 (3), 1.336 (3)
Ccb—Ccb 1.549 (2), 1.554 (2)
C3—C4 1.411 (3), 1.420 (3) 1.454 (2), 1.460 (2)
C4≡C5 1.206 (3), 1.203 (3) 1.195 (2), 1.194 (2)
C5—CPh 1.426 (3), 1.430 (3) 1.441 (2), 1.439 (2)
Φ1 11.0 (1), 11.1 (1) 14.8 (1), 0.9 (1)
Φ2 7.4 (1), 5.1 (1) 84.8 (1), 47.0 (1)
[Figure 2]
Figure 2
Conformation of the two symmetrically independent mol­ecules in 2 (red and blue) in superimposed representation.

The conformations of the mol­ecules of both 2 and 3 is probably affected by intra­molecular C—H⋯N contacts (Tables 2[link] and 3[link]) involving the nitro­gen atoms of the pyridine-2-yl rings and hydrogen atoms of ethenyl or cyclo­butane moieties. The C—H⋯N angle does not exceed 102°; however, such a mutual disposition of the conjugated pyridine ring and a double bond was found not only in 2 and 3, but also in previously reported pyridine-2-yl-containing chalcones. The chalcones in the Cambridge Structural Database (CSD, Version 5.40, update of November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) [ABADUE (Fun et al., 2011b[Fun, H.-K., Chantrapromma, S. & Suwunwong, T. (2011b). Acta Cryst. E67, o2789-o2790.]), AFOPOC (Chantrapromma et al., 2013[Chantrapromma, S., Suwunwong, T., Boonnak, N. & Fun, H.-K. (2013). Acta Cryst. E69, o1076-o1077.]), AYUYOJ (Fun et al., 2011a[Fun, H.-K., Suwunwong, T. & Chantrapromma, S. (2011a). Acta Cryst. E67, o2406-o2407.]), BERXEC (Wang et al., 2004[Wang, P., Moorefield, G. R. & Newkome, G. R. (2004). Org. Lett. 6, 1197-1200.]), CIBYIY (Brennan et al., 2018[Brennan, C., Housecroft, C. E., Constable, E. C., Neuburger, M. & Prescimone, A. (2018). CSD Communication (refcode CIBYIY). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc205qfc]), COBJEJ (Prajapati et al., 2008[Prajapati, R., Mishra, L., Grabowski, S. J., Govil, G. & Dubey, S. K. (2008). J. Mol. Struct. 879, 1-6.]), ENINOG (Lee et al., 2016[Lee, S.-L., Tan, A. L., Young, D. J., Jotani, M. M. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 849-853.]), GARMAP (Fan & Wang, 2012[Fan, C.-B. & Wang, X.-M. (2012). Acta Cryst. E68, o417.]), IJUSAI (Jasinski et al., 2011[Jasinski, J. P., Butcher, R. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o352-o353.]), IXOXOJ (Dudek et al., 2011[Dudek, M., Clegg, J. K., Glasson, C. R. K., Kelly, N., Gloe, K., Gloe, K., Kelling, A., Buschmann, H., Jolliffe, K. A., Lindoy, L. F. & Meehan, G. V. (2011). Cryst. Growth Des. 11, 1697-1704.]), LANTAY (Qian et al., 2017[Qian, Z., Li, D., Xie, T., Zhang, X., He, Y., Ai, Y. & Zhang, G. (2017). CrystEngComm, 19, 2283-2287.]), OGIZIP and VUZVET (Tan et al., 2016[Tan, J., Zhang, Y., Zhang, M., Tian, X., Wang, Y., Li, S., Wang, C., Zhou, H., Yang, J., Tian, Y. & Wu, J. (2016). J. Mater. Chem. C. 4, 3256-3267.]), PUKVEY (Rout & Mondal, 2015[Rout, K. C. & Mondal, B. (2015). Inorg. Chim. Acta, 437, 54-58.]), QEMJOK and QEMJUQ (Albaladejo et al., 2018[Albaladejo, M. J., González-Soria, M. J. & Alonso, F. (2018). Green Chem. 20, 701-712.]), SOXHAP (Lin et al., 2009[Lin, S., Jia, R., Zhang, X., Wang, Z. & Yuan, Y. (2009). Acta Cryst. E65, o1161.]), TISCEF (Jayarama et al., 2013[Jayarama, A., Ravindra, H. J., Menezes, A. P., Dharmaprakash, S. M. & Ng, S. W. (2013). J. Mol. Struct. 1051, 285-291.]) and YUQTEK (Li et al., 2010[Li, X. (2010). Acta Cryst. E66, o1613.])] demonstrate similar conformations, but different crystal packing in the region of pyridyl ring. The majority of 1-phenyl-substituted chalcones and 1-phenyl-substituted pentenyn-1-ones also exhibit a nearly coplanar arrangement of the aryl and ketone fragments and thus no hindrance occurs between the hydrogen atoms of these fragments.

Table 2
Hydrogen-bond geometry (Å, °) for (2)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N1 0.95 2.52 2.832 (3) 100
C16—H16⋯N2i 0.95 2.66 3.555 (3) 158
C20—H20⋯N2i 0.95 2.71 3.465 (3) 136
C3—H3⋯O1ii 0.95 2.43 3.206 (3) 139
C19—H19⋯O2iii 0.95 2.57 3.379 (2) 143
C25—H25⋯O2iv 0.95 2.65 3.561 (2) 161
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y+1, -z; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) -x+1, -y, -z+1.

Table 3
Hydrogen-bond geometry (Å, °) for (3)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N1 1.00 2.45 2.835 (3) 102
C3—H3⋯O1 1.00 2.49 2.899 (2) 104
C8—H8⋯O2 1.00 2.39 2.804 (2) 104
C25—H25⋯N1i 0.95 2.60 3.445 (3) 148
C19—H19⋯N1ii 0.95 2.73 3.665 (2) 167
C20—H20⋯O1iii 0.95 2.62 3.263 (2) 125
C32—H32⋯O2iv 0.95 2.55 3.487 (2) 168
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y+1, -z; (iii) x, y, z-1; (iv) -x+1, -y+1, -z+1.

3. Supra­molecular features

As the independent mol­ecules of ketone 2 have similar conformations, their crystalline environment becomes of particular inter­est because it can rationalize why Z ≠ 1. Previously, we found that the most abundant C—H⋯O-bonded associates in the crystals of chalcones, polyenones and pentenynones include dimers, head-to-tail chains and zigzag C—H⋯O chains with the most acidic proton of a mol­ecule (Vologzhanina et al., 2014[Vologzhanina, A. V., Golovanov, A. A., Gusev, D. M., Odin, I. S., Apreyan, R. A. & Suponitsky, K. Yu. (2014). Cryst. Growth Des. 14, 4402-4410.]). The two independent mol­ecules of ketone 2 demonstrate two of these motifs (Fig. 3[link]). In the C—H⋯O-connected dimers, r(C⋯O) = 3.206 (3) Å, and in the head-to-tail chains r(C⋯O) and r(C⋯N) = 3.379 (2) and 3.465 (3) Å, respectively. The corresponding C—H⋯O and C—H⋯N angles are, respectively, 139, 143 and 136°. Note, that only one of two independent mol­ecules in 2 forms head-to-tail chains via a pair of inter­molecular C—H⋯O and C—N⋯N bonds. None of the previously reported pyridine-2-yl-containing chalcones nor 3 forms such associates. Instead, the nitro­gen atoms inter­act with the hydrogen atoms of the alkyl and aryl groups. For example, in the crystal of 3, the hydrogen atoms of a pyridine-2-yl ring take part in C—H⋯N inter­actions [Fig. 3[link], r(C⋯N) = 3.445 (3)–3.665 (2) Å]. Oxygen atoms take part in C—H⋯O bonding with hydrogen atoms of the phenyl and pyridin-2-yl rings. In addition, in 2 and 3, numerous hydro­phobic inter­actions can be found.

[Figure 3]
Figure 3
Supra­molecular aggregates in the crystals of 2 and 3. Hydrogen bonds are depicted by dashed lines.

4. Synthesis and crystallization

The 5-phenyl-1-(pyridin-2-yl)pent-2-en-4-yn-1-one, 1, and 5-(4-methyl­phen­yl)-1-(pyridin-2-yl)pent-2-en-4-yn-1-one, 2, were synthesized according to the previously described method (Golovanov et al., 2013[Golovanov, A. A., Latypova, D. R., Bekin, V. V., Pisareva, V. S., Vologzhanina, A. V. & Dokichev, V. A. (2013). Russ. J. Org. Chem. 49, 1264-1269.]). Single crystals of 3 were grown from solution of 1 in ethyl­ene glycol. The 1H NMR spectrum indicates the presence of a mixture of reaction products and unreacted 1. Powder XRD indicated that the solid sample of the recrystallized ketone consisted of both 1 and 3, and thus solid 3 could not be characterized by other physicochemical methods. Recrystallization of 2 from ethyl­ene glycol afforded 2 as obtained from XRD data.

For 1: yellowish needles, yield 61%, m.p. 348–351 K (from a mixture of water and ethanol). 1H NMR (300 MHz, CDCl3), δ, ppm: 8.48 s (1C, CAr, CPy), 8.09–8.16 m (2C, CAr, CPy, C2), 7.84–7.79 m (2C, CAr, CPy), 7.20–7.52 m (6C, CAr, C3). 13C NMR (75 MHz, CDCl3), δ, ppm: 188.5 (C1), 152.6, 149.0, 132.2, 131.9, 129.5, 128.6, 128.2, 128.0, 127.1, 122.1, 99.6 (C5), 88.9 (C4). Found, %: C 82.44; H 5.41. C16H11NO. Calculated, %: C 82.38; H 4.75.

For 2: yellowish needles, yield 34%, m.p. 373–374 K (from a mixture of water–ethanol. IR Spectra, ν, cm−1: 2191 (C≡C), 1649 (C=O). Found, %: C 82.44; H 5.33. C17H13NO. Calculated, %: C 82.57; H 5.30.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. Intensity data for 2 were collected at the K4.4 `Belok' beamline of the Kurchatov Synchrotron Radiation Source (NRC `Kurchatov Institute', Moscow, Russia) at a wavelength of 0.80248 Å using a Rayonix CCD 165 detector. Image integration was performed using iMosflm software (Battye et al., 2011[Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271-281.]). Hydrogen atoms were placed in calculated positions (0.95–1.00 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Table 4
Experimental details

  (3) (2)
Crystal data
Chemical formula C32H22N2O2 C17H13NO
Mr 466.51 247.28
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 120 100
a, b, c (Å) 12.272 (3), 18.720 (4), 11.425 (2) 14.859 (3), 17.747 (4), 9.995 (2)
β (°) 115.850 (3) 101.06 (3)
V3) 2362.0 (8) 2586.7 (9)
Z 4 8
Radiation type Mo Kα Synchrotron, λ = 0.80248 Å
μ (mm−1) 0.08 0.10
Crystal size (mm) 0.46 × 0.28 × 0.17 0.02 × 0.02 × 0.01
 
Data collection
Diffractometer Bruker SMART APEX CCD area detector Mar CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SCALA; Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.])
Tmin, Tmax 0.848, 0.903 0.997, 0.999
No. of measured, independent and observed [I > 2σ(I)] reflections 24543, 7095, 4255 23024, 5645, 4453
Rint 0.079 0.077
(sin θ/λ)max−1) 0.714 0.640
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.130, 0.99 0.060, 0.157, 1.02
No. of reflections 7095 5645
No. of parameters 325 346
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.31 0.23, −0.21
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), Marccd (Doyle, 2011[Doyle, R. A. (2011). Marccd software manual. Rayonix LLC, Evanston, USA.]), iMosflm (Battye et al., 2011[Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271-281.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: SAINT (Bruker, 2014) for (3). Cell refinement: APEX2 (Bruker, 2014) for (3); Marccd (Doyle, 2011) for (2). Data reduction: SAINT(Bruker, 2014) for (3); iMosflm (Battye et al., 2011) for (2). For both structures, program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

[3,4-Bis(phenylethynyl)cyclobutane-1,2-diyl]bis(pyridin-2-ylmethanone) (3) top
Crystal data top
C32H22N2O2F(000) = 976
Mr = 466.51Dx = 1.312 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.272 (3) ÅCell parameters from 4566 reflections
b = 18.720 (4) Åθ = 2.2–30.0°
c = 11.425 (2) ŵ = 0.08 mm1
β = 115.850 (3)°T = 120 K
V = 2362.0 (8) Å3Prism, orange
Z = 40.46 × 0.28 × 0.17 mm
Data collection top
Bruker SMART APEX CCD area detector
diffractometer
7095 independent reflections
Radiation source: sealed tube4255 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
Detector resolution: 8 pixels mm-1θmax = 30.5°, θmin = 1.8°
ω scansh = 1517
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 2626
Tmin = 0.848, Tmax = 0.903l = 1616
24543 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0557P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
7095 reflectionsΔρmax = 0.33 e Å3
325 parametersΔρmin = 0.31 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.14655 (11)0.50117 (6)0.61894 (10)0.0224 (3)
O20.44626 (12)0.53397 (6)0.81027 (11)0.0249 (3)
N10.03170 (13)0.66755 (7)0.47517 (13)0.0215 (3)
N20.26664 (14)0.68759 (7)0.76527 (14)0.0236 (3)
C10.14015 (15)0.55793 (8)0.56522 (14)0.0167 (3)
C20.23152 (15)0.57818 (8)0.51555 (15)0.0168 (3)
H20.19540.61140.43960.020*
C30.30105 (15)0.51652 (8)0.48769 (15)0.0173 (3)
H30.30310.47430.54210.021*
C40.25950 (16)0.49385 (8)0.35333 (15)0.0188 (3)
C50.22108 (16)0.47470 (8)0.24269 (16)0.0202 (4)
C60.38544 (15)0.58614 (8)0.75844 (15)0.0177 (3)
C70.35663 (15)0.60721 (8)0.62014 (15)0.0175 (3)
H70.36760.65950.61060.021*
C80.42148 (16)0.55980 (8)0.55808 (15)0.0179 (3)
H80.48750.53040.62450.021*
C90.46337 (16)0.59998 (8)0.47593 (15)0.0198 (3)
C100.50391 (16)0.63388 (8)0.41551 (15)0.0200 (4)
C110.04630 (15)0.61189 (8)0.55421 (15)0.0171 (3)
C120.01798 (17)0.60341 (8)0.62740 (17)0.0241 (4)
H120.00640.56240.68050.029*
C130.09935 (18)0.65600 (9)0.62137 (19)0.0303 (4)
H130.14410.65210.67110.036*
C140.11435 (18)0.71411 (9)0.54191 (18)0.0302 (4)
H140.16870.75140.53670.036*
C150.04852 (17)0.71700 (9)0.46982 (17)0.0270 (4)
H150.06120.75650.41320.032*
C160.17317 (16)0.45234 (8)0.10882 (15)0.0208 (4)
C170.06057 (18)0.42003 (8)0.04773 (17)0.0282 (4)
H170.01490.41080.09520.034*
C180.0143 (2)0.40106 (9)0.08242 (17)0.0364 (5)
H180.06290.37890.12380.044*
C190.0804 (2)0.41430 (10)0.15217 (18)0.0406 (6)
H190.04860.40130.24130.049*
C200.1925 (2)0.44636 (10)0.09211 (18)0.0370 (5)
H200.23750.45580.14020.044*
C210.23975 (19)0.46490 (9)0.03804 (16)0.0274 (4)
H210.31770.48620.07940.033*
C220.33415 (15)0.63164 (8)0.83025 (15)0.0187 (3)
C230.35862 (17)0.61505 (9)0.95735 (16)0.0244 (4)
H230.40810.57531.00000.029*
C240.30935 (18)0.65777 (10)1.02106 (18)0.0313 (4)
H240.32380.64771.10810.038*
C250.23927 (18)0.71490 (9)0.95603 (18)0.0309 (4)
H250.20440.74520.99720.037*
C260.22022 (18)0.72774 (9)0.82891 (18)0.0290 (4)
H260.17130.76740.78470.035*
C270.55587 (15)0.67731 (8)0.34887 (15)0.0187 (3)
C280.56084 (16)0.75148 (8)0.36530 (16)0.0224 (4)
H280.53090.77270.42100.027*
C290.60909 (17)0.79383 (9)0.30078 (18)0.0279 (4)
H290.61260.84420.31260.033*
C300.65229 (18)0.76346 (9)0.21905 (18)0.0292 (4)
H300.68370.79300.17330.035*
C310.64973 (18)0.69037 (9)0.20388 (17)0.0289 (4)
H310.68100.66960.14900.035*
C320.60178 (17)0.64693 (8)0.26814 (16)0.0227 (4)
H320.60020.59660.25720.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0294 (8)0.0176 (5)0.0243 (6)0.0001 (5)0.0154 (6)0.0028 (4)
O20.0310 (8)0.0202 (6)0.0250 (6)0.0042 (5)0.0136 (6)0.0002 (5)
N10.0219 (9)0.0185 (7)0.0245 (7)0.0011 (6)0.0103 (7)0.0008 (5)
N20.0242 (9)0.0190 (7)0.0269 (7)0.0005 (6)0.0105 (7)0.0052 (6)
C10.0200 (10)0.0153 (7)0.0154 (7)0.0033 (6)0.0084 (7)0.0035 (6)
C20.0211 (10)0.0136 (7)0.0182 (7)0.0017 (6)0.0109 (7)0.0010 (6)
C30.0228 (10)0.0126 (7)0.0203 (8)0.0007 (6)0.0130 (7)0.0006 (6)
C40.0223 (10)0.0140 (7)0.0239 (8)0.0001 (6)0.0136 (7)0.0006 (6)
C50.0233 (10)0.0159 (7)0.0245 (8)0.0015 (6)0.0133 (8)0.0007 (6)
C60.0206 (10)0.0142 (7)0.0198 (7)0.0042 (6)0.0102 (7)0.0039 (6)
C70.0216 (10)0.0125 (7)0.0218 (8)0.0005 (6)0.0125 (7)0.0015 (6)
C80.0218 (10)0.0150 (7)0.0205 (8)0.0005 (6)0.0126 (7)0.0000 (6)
C90.0215 (10)0.0164 (7)0.0231 (8)0.0004 (6)0.0114 (7)0.0030 (6)
C100.0217 (10)0.0173 (7)0.0212 (8)0.0010 (6)0.0096 (7)0.0025 (6)
C110.0177 (10)0.0141 (7)0.0196 (8)0.0034 (6)0.0083 (7)0.0034 (6)
C120.0290 (11)0.0183 (8)0.0311 (9)0.0010 (7)0.0189 (8)0.0010 (7)
C130.0284 (12)0.0279 (9)0.0449 (11)0.0024 (8)0.0255 (10)0.0047 (8)
C140.0235 (12)0.0241 (9)0.0448 (11)0.0035 (7)0.0167 (9)0.0025 (8)
C150.0268 (12)0.0201 (8)0.0324 (10)0.0024 (7)0.0115 (8)0.0041 (7)
C160.0316 (12)0.0130 (7)0.0191 (8)0.0045 (6)0.0122 (8)0.0008 (6)
C170.0356 (13)0.0203 (8)0.0275 (9)0.0002 (7)0.0127 (9)0.0025 (7)
C180.0452 (15)0.0226 (9)0.0277 (10)0.0036 (8)0.0032 (9)0.0061 (7)
C190.0704 (18)0.0258 (10)0.0180 (9)0.0156 (10)0.0121 (10)0.0015 (7)
C200.0578 (16)0.0339 (10)0.0260 (9)0.0149 (10)0.0246 (10)0.0060 (8)
C210.0369 (13)0.0244 (9)0.0240 (9)0.0076 (8)0.0162 (9)0.0051 (7)
C220.0206 (10)0.0155 (7)0.0224 (8)0.0058 (6)0.0115 (7)0.0071 (6)
C230.0282 (12)0.0238 (8)0.0251 (9)0.0019 (7)0.0152 (8)0.0044 (7)
C240.0352 (13)0.0381 (10)0.0260 (9)0.0031 (8)0.0184 (9)0.0091 (8)
C250.0293 (12)0.0304 (9)0.0374 (10)0.0038 (8)0.0187 (9)0.0169 (8)
C260.0275 (12)0.0219 (8)0.0378 (10)0.0016 (7)0.0144 (9)0.0079 (7)
C270.0174 (10)0.0189 (7)0.0198 (8)0.0005 (6)0.0083 (7)0.0017 (6)
C280.0209 (11)0.0198 (8)0.0248 (9)0.0022 (7)0.0084 (8)0.0008 (6)
C290.0249 (11)0.0150 (8)0.0378 (10)0.0012 (7)0.0081 (9)0.0057 (7)
C300.0258 (12)0.0293 (9)0.0354 (10)0.0011 (7)0.0161 (9)0.0136 (8)
C310.0308 (12)0.0337 (10)0.0288 (9)0.0061 (8)0.0192 (9)0.0060 (8)
C320.0285 (11)0.0178 (8)0.0249 (9)0.0033 (7)0.0146 (8)0.0020 (6)
Geometric parameters (Å, º) top
O1—C11.2123 (18)C15—H150.9500
O2—C61.2148 (19)C16—C171.386 (3)
N1—C111.3387 (19)C16—C211.397 (2)
N1—C151.333 (2)C17—H170.9500
N2—C221.341 (2)C17—C181.387 (2)
N2—C261.334 (2)C18—H180.9500
C1—C21.509 (2)C18—C191.385 (3)
C1—C111.495 (2)C19—H190.9500
C2—H21.0000C19—C201.378 (3)
C2—C31.549 (2)C20—H200.9500
C2—C71.575 (2)C20—C211.384 (3)
C3—H31.0000C21—H210.9500
C3—C41.454 (2)C22—C231.384 (2)
C3—C81.566 (2)C23—H230.9500
C4—C51.195 (2)C23—C241.385 (2)
C5—C161.441 (2)C24—H240.9500
C6—C71.513 (2)C24—C251.370 (3)
C6—C221.498 (2)C25—H250.9500
C7—H71.0000C25—C261.388 (3)
C7—C81.554 (2)C26—H260.9500
C8—H81.0000C27—C281.399 (2)
C8—C91.460 (2)C27—C321.395 (2)
C9—C101.194 (2)C28—H280.9500
C10—C271.439 (2)C28—C291.380 (2)
C11—C121.386 (2)C29—H290.9500
C12—H120.9500C29—C301.381 (3)
C12—C131.382 (2)C30—H300.9500
C13—H130.9500C30—C311.378 (2)
C13—C141.377 (3)C31—H310.9500
C14—H140.9500C31—C321.387 (2)
C14—C151.384 (2)C32—H320.9500
C15—N1—C11116.77 (14)C17—C16—C5121.14 (15)
C26—N2—C22116.48 (15)C17—C16—C21119.21 (16)
O1—C1—C2121.04 (14)C21—C16—C5119.63 (17)
O1—C1—C11120.81 (14)C16—C17—H17119.9
C11—C1—C2118.03 (13)C16—C17—C18120.23 (18)
C1—C2—H2111.2C18—C17—H17119.9
C1—C2—C3117.15 (12)C17—C18—H18119.9
C1—C2—C7116.08 (12)C19—C18—C17120.2 (2)
C3—C2—H2111.2C19—C18—H18119.9
C3—C2—C788.33 (12)C18—C19—H19120.0
C7—C2—H2111.2C20—C19—C18119.94 (17)
C2—C3—H3109.2C20—C19—H19120.0
C2—C3—C889.43 (11)C19—C20—H20119.9
C4—C3—C2117.61 (14)C19—C20—C21120.24 (19)
C4—C3—H3109.2C21—C20—H20119.9
C4—C3—C8120.76 (13)C16—C21—H21119.9
C8—C3—H3109.2C20—C21—C16120.2 (2)
C5—C4—C3177.49 (18)C20—C21—H21119.9
C4—C5—C16179.10 (19)N2—C22—C6116.52 (14)
O2—C6—C7122.18 (14)N2—C22—C23123.73 (14)
O2—C6—C22120.37 (14)C23—C22—C6119.75 (15)
C22—C6—C7117.44 (13)C22—C23—H23120.7
C2—C7—H7112.8C22—C23—C24118.50 (16)
C6—C7—C2114.14 (13)C24—C23—H23120.7
C6—C7—H7112.8C23—C24—H24120.7
C6—C7—C8113.24 (13)C25—C24—C23118.70 (16)
C8—C7—C288.89 (11)C25—C24—H24120.7
C8—C7—H7112.8C24—C25—H25120.6
C3—C8—H8112.1C24—C25—C26118.82 (16)
C7—C8—C388.48 (12)C26—C25—H25120.6
C7—C8—H8112.1N2—C26—C25123.76 (17)
C9—C8—C3117.03 (13)N2—C26—H26118.1
C9—C8—C7113.14 (12)C25—C26—H26118.1
C9—C8—H8112.1C28—C27—C10119.56 (14)
C10—C9—C8175.96 (18)C32—C27—C10121.30 (14)
C9—C10—C27176.81 (17)C32—C27—C28119.14 (15)
N1—C11—C1117.01 (14)C27—C28—H28119.9
N1—C11—C12123.50 (15)C29—C28—C27120.17 (16)
C12—C11—C1119.46 (14)C29—C28—H28119.9
C11—C12—H12120.8C28—C29—H29119.8
C13—C12—C11118.50 (15)C28—C29—C30120.35 (15)
C13—C12—H12120.8C30—C29—H29119.8
C12—C13—H13120.6C29—C30—H30120.0
C14—C13—C12118.78 (16)C31—C30—C29119.96 (16)
C14—C13—H13120.6C31—C30—H30120.0
C13—C14—H14120.7C30—C31—H31119.8
C13—C14—C15118.58 (16)C30—C31—C32120.49 (16)
C15—C14—H14120.7C32—C31—H31119.8
N1—C15—C14123.84 (16)C27—C32—H32120.1
N1—C15—H15118.1C31—C32—C27119.87 (15)
C14—C15—H15118.1C31—C32—H32120.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N11.002.452.835 (3)102
C3—H3···O11.002.492.899 (2)104
C8—H8···O21.002.392.804 (2)104
C25—H25···N1i0.952.603.445 (3)148
C19—H19···N1ii0.952.733.665 (2)167
C20—H20···O1iii0.952.623.263 (2)125
C32—H32···O2iv0.952.553.487 (2)168
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1, z; (iii) x, y, z1; (iv) x+1, y+1, z+1.
(E)-5-(4-Methylphenyl)-1-(pyridin-2-yl)pent-2-en-4-yn-1-one (2) top
Crystal data top
C17H13NODx = 1.270 Mg m3
Mr = 247.28Melting point: 373 K
Monoclinic, P21/cSynchrotron radiation, λ = 0.80248 Å
a = 14.859 (3) ÅCell parameters from 148 reflections
b = 17.747 (4) Åθ = 3.5–25.6°
c = 9.995 (2) ŵ = 0.10 mm1
β = 101.06 (3)°T = 100 K
V = 2586.7 (9) Å3Plate, yellow
Z = 80.02 × 0.02 × 0.01 mm
F(000) = 1040
Data collection top
Mar CCD
diffractometer
4453 reflections with I > 2σ(I)
phi scansRint = 0.077
Absorption correction: multi-scan
(SCALA; Evans, 2006)
θmax = 30.9°, θmin = 3.3°
Tmin = 0.997, Tmax = 0.999h = 1818
23024 measured reflectionsk = 2222
5645 independent reflectionsl = 1212
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.060 w = 1/[σ2(Fo2) + (0.057P)2 + 1.189P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.157(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.23 e Å3
5645 reflectionsΔρmin = 0.21 e Å3
346 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.051 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.08252 (11)0.41331 (9)0.08638 (13)0.0493 (4)
N10.19600 (11)0.39239 (9)0.42804 (15)0.0383 (4)
C10.11482 (13)0.43098 (12)0.20438 (18)0.0379 (4)
C20.12405 (13)0.51037 (11)0.24820 (19)0.0380 (4)
H20.15670.52280.33670.046*
C30.08643 (14)0.56483 (12)0.1634 (2)0.0409 (5)
H30.05260.54930.07730.049*
C40.09180 (14)0.64305 (12)0.1887 (2)0.0420 (5)
C50.09537 (14)0.71075 (12)0.1993 (2)0.0413 (5)
C60.10213 (14)0.79075 (12)0.20949 (19)0.0394 (4)
C70.07036 (14)0.83675 (12)0.0969 (2)0.0418 (5)
H70.04310.81470.01220.050*
C80.07839 (14)0.91450 (12)0.1084 (2)0.0414 (5)
H80.05610.94500.03110.050*
C90.11833 (14)0.94863 (12)0.2305 (2)0.0412 (5)
C100.14997 (15)0.90211 (13)0.3424 (2)0.0467 (5)
H100.17760.92420.42690.056*
C110.14194 (15)0.82508 (13)0.3329 (2)0.0458 (5)
H110.16360.79480.41080.055*
C120.12884 (16)1.03274 (12)0.2434 (2)0.0494 (5)
H12A0.19321.04640.24760.074*
H12B0.10941.04960.32680.074*
H12C0.09081.05710.16430.074*
C130.14687 (13)0.37043 (11)0.30695 (18)0.0353 (4)
C140.12604 (14)0.29623 (12)0.2729 (2)0.0408 (5)
H140.09030.28350.18650.049*
C150.15839 (15)0.24046 (12)0.3676 (2)0.0449 (5)
H150.14450.18890.34790.054*
C160.21129 (15)0.26184 (12)0.4913 (2)0.0431 (5)
H160.23590.22510.55750.052*
C170.22753 (15)0.33754 (12)0.51642 (19)0.0426 (5)
H170.26340.35160.60200.051*
O20.45764 (10)0.31523 (8)0.50791 (12)0.0395 (3)
N20.35093 (11)0.37903 (9)0.18087 (14)0.0342 (4)
C180.42385 (13)0.31321 (11)0.38578 (17)0.0327 (4)
C190.41012 (13)0.24154 (10)0.30956 (17)0.0331 (4)
H190.39960.24140.21280.040*
C200.41275 (13)0.17693 (10)0.37887 (18)0.0342 (4)
H200.42350.18060.47550.041*
C210.40113 (13)0.10337 (10)0.32236 (17)0.0339 (4)
C220.39020 (13)0.03862 (11)0.28721 (17)0.0343 (4)
C230.37756 (13)0.03916 (10)0.25127 (17)0.0328 (4)
C240.41627 (13)0.09465 (10)0.34423 (17)0.0343 (4)
H240.45100.08040.43040.041*
C250.40418 (13)0.17024 (11)0.31134 (18)0.0362 (4)
H250.43130.20730.37510.043*
C260.35279 (13)0.19286 (11)0.18589 (18)0.0354 (4)
C270.31461 (13)0.13723 (11)0.09343 (18)0.0369 (4)
H270.28000.15160.00720.044*
C280.32623 (13)0.06173 (11)0.12495 (17)0.0354 (4)
H280.29930.02480.06070.042*
C290.33893 (15)0.27549 (11)0.1537 (2)0.0435 (5)
H29A0.39250.30390.20020.065*
H29B0.33130.28310.05510.065*
H29C0.28400.29330.18490.065*
C300.39586 (12)0.38512 (10)0.31068 (16)0.0312 (4)
C310.41532 (13)0.45334 (11)0.37716 (18)0.0355 (4)
H310.44500.45470.47020.043*
C320.39093 (14)0.51947 (11)0.30610 (19)0.0386 (4)
H320.40520.56710.34820.046*
C330.34521 (14)0.51431 (11)0.17197 (19)0.0380 (4)
H330.32730.55850.12000.046*
C340.32614 (13)0.44366 (11)0.11495 (18)0.0368 (4)
H340.29350.44090.02350.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0589 (9)0.0542 (9)0.0279 (7)0.0043 (7)0.0087 (6)0.0013 (6)
N10.0397 (9)0.0449 (9)0.0267 (8)0.0005 (7)0.0026 (6)0.0014 (6)
C10.0361 (10)0.0482 (11)0.0266 (9)0.0012 (8)0.0009 (7)0.0001 (7)
C20.0393 (10)0.0440 (11)0.0280 (9)0.0010 (8)0.0005 (7)0.0017 (7)
C30.0403 (11)0.0461 (11)0.0337 (10)0.0007 (9)0.0005 (8)0.0029 (8)
C40.0401 (11)0.0479 (12)0.0352 (10)0.0009 (9)0.0000 (8)0.0059 (8)
C50.0391 (10)0.0472 (12)0.0352 (10)0.0002 (9)0.0012 (8)0.0050 (8)
C60.0374 (10)0.0442 (11)0.0354 (10)0.0003 (8)0.0037 (8)0.0025 (8)
C70.0420 (11)0.0485 (12)0.0317 (9)0.0002 (9)0.0015 (8)0.0006 (8)
C80.0400 (11)0.0465 (11)0.0350 (10)0.0017 (9)0.0010 (8)0.0052 (8)
C90.0354 (10)0.0480 (12)0.0396 (10)0.0015 (9)0.0060 (8)0.0007 (8)
C100.0486 (12)0.0568 (13)0.0318 (10)0.0047 (10)0.0003 (8)0.0014 (9)
C110.0475 (12)0.0549 (13)0.0319 (10)0.0025 (10)0.0007 (8)0.0056 (9)
C120.0462 (12)0.0478 (12)0.0528 (13)0.0038 (10)0.0064 (10)0.0031 (10)
C130.0343 (9)0.0441 (10)0.0260 (9)0.0002 (8)0.0015 (7)0.0005 (7)
C140.0398 (11)0.0451 (11)0.0349 (10)0.0007 (9)0.0005 (8)0.0049 (8)
C150.0483 (12)0.0402 (11)0.0445 (11)0.0016 (9)0.0048 (9)0.0016 (8)
C160.0470 (12)0.0460 (11)0.0352 (10)0.0058 (9)0.0049 (8)0.0051 (8)
C170.0474 (11)0.0478 (11)0.0284 (9)0.0054 (9)0.0029 (8)0.0010 (8)
O20.0535 (8)0.0405 (7)0.0211 (6)0.0012 (6)0.0019 (5)0.0009 (5)
N20.0402 (9)0.0382 (8)0.0221 (7)0.0011 (7)0.0007 (6)0.0018 (6)
C180.0361 (9)0.0384 (10)0.0226 (8)0.0007 (8)0.0028 (7)0.0010 (7)
C190.0392 (10)0.0357 (10)0.0222 (8)0.0007 (8)0.0008 (7)0.0007 (7)
C200.0379 (10)0.0372 (10)0.0253 (8)0.0006 (8)0.0001 (7)0.0003 (7)
C210.0374 (10)0.0366 (10)0.0249 (8)0.0011 (8)0.0013 (7)0.0039 (7)
C220.0354 (9)0.0396 (10)0.0256 (8)0.0016 (8)0.0004 (7)0.0037 (7)
C230.0361 (9)0.0350 (9)0.0260 (8)0.0002 (8)0.0026 (7)0.0001 (7)
C240.0367 (10)0.0383 (10)0.0251 (8)0.0004 (8)0.0009 (7)0.0008 (7)
C250.0392 (10)0.0366 (10)0.0306 (9)0.0029 (8)0.0009 (7)0.0029 (7)
C260.0359 (10)0.0377 (10)0.0322 (9)0.0022 (8)0.0051 (7)0.0033 (7)
C270.0395 (10)0.0432 (11)0.0258 (8)0.0019 (8)0.0011 (7)0.0045 (7)
C280.0391 (10)0.0397 (10)0.0246 (8)0.0006 (8)0.0008 (7)0.0023 (7)
C290.0457 (11)0.0401 (11)0.0435 (11)0.0023 (9)0.0056 (9)0.0064 (8)
C300.0348 (9)0.0359 (10)0.0215 (8)0.0012 (7)0.0018 (7)0.0014 (6)
C310.0407 (10)0.0375 (10)0.0256 (8)0.0021 (8)0.0000 (7)0.0031 (7)
C320.0458 (11)0.0354 (10)0.0327 (9)0.0022 (8)0.0024 (8)0.0047 (7)
C330.0438 (11)0.0376 (10)0.0309 (9)0.0010 (8)0.0031 (8)0.0049 (7)
C340.0436 (11)0.0404 (10)0.0239 (8)0.0029 (8)0.0001 (7)0.0003 (7)
Geometric parameters (Å, º) top
O1—C11.226 (2)O2—C181.228 (2)
N1—C131.346 (2)N2—C301.345 (2)
N1—C171.337 (2)N2—C341.339 (2)
C1—C21.474 (3)C18—C191.476 (2)
C1—C131.498 (3)C18—C301.498 (2)
C2—H20.9500C19—H190.9500
C2—C31.335 (3)C19—C201.336 (3)
C3—H30.9500C20—H200.9500
C3—C41.411 (3)C20—C211.420 (3)
C4—C51.206 (3)C21—C221.203 (3)
C5—C61.426 (3)C22—C231.430 (3)
C6—C71.397 (3)C23—C241.400 (2)
C6—C111.401 (3)C23—C281.402 (2)
C7—H70.9500C24—H240.9500
C7—C81.388 (3)C24—C251.385 (3)
C8—H80.9500C25—H250.9500
C8—C91.390 (3)C25—C261.396 (3)
C9—C101.397 (3)C26—C271.396 (3)
C9—C121.504 (3)C26—C291.507 (3)
C10—H100.9500C27—H270.9500
C10—C111.374 (3)C27—C281.380 (3)
C11—H110.9500C28—H280.9500
C12—H12A0.9800C29—H29A0.9800
C12—H12B0.9800C29—H29B0.9800
C12—H12C0.9800C29—H29C0.9800
C13—C141.380 (3)C30—C311.385 (2)
C14—H140.9500C31—H310.9500
C14—C151.390 (3)C31—C321.384 (3)
C15—H150.9500C32—H320.9500
C15—C161.385 (3)C32—C331.385 (3)
C16—H160.9500C33—H330.9500
C16—C171.379 (3)C33—C341.384 (3)
C17—H170.9500C34—H340.9500
C17—N1—C13116.36 (17)C34—N2—C30116.40 (16)
O1—C1—C2121.82 (18)O2—C18—C19121.85 (16)
O1—C1—C13119.30 (19)O2—C18—C30119.62 (16)
C2—C1—C13118.88 (15)C19—C18—C30118.53 (14)
C1—C2—H2120.0C18—C19—H19120.5
C3—C2—C1119.97 (17)C20—C19—C18118.97 (16)
C3—C2—H2120.0C20—C19—H19120.5
C2—C3—H3116.7C19—C20—H20116.8
C2—C3—C4126.59 (19)C19—C20—C21126.41 (17)
C4—C3—H3116.7C21—C20—H20116.8
C5—C4—C3174.8 (2)C22—C21—C20173.42 (19)
C4—C5—C6178.1 (2)C21—C22—C23177.61 (18)
C7—C6—C5121.09 (18)C24—C23—C22119.68 (16)
C7—C6—C11118.38 (19)C24—C23—C28118.69 (17)
C11—C6—C5120.53 (18)C28—C23—C22121.63 (16)
C6—C7—H7119.9C23—C24—H24119.8
C8—C7—C6120.28 (18)C25—C24—C23120.40 (16)
C8—C7—H7119.9C25—C24—H24119.8
C7—C8—H8119.3C24—C25—H25119.5
C7—C8—C9121.42 (18)C24—C25—C26121.03 (17)
C9—C8—H8119.3C26—C25—H25119.5
C8—C9—C10117.8 (2)C25—C26—C27118.29 (17)
C8—C9—C12121.87 (19)C25—C26—C29120.02 (17)
C10—C9—C12120.29 (19)C27—C26—C29121.68 (17)
C9—C10—H10119.3C26—C27—H27119.4
C11—C10—C9121.41 (19)C28—C27—C26121.22 (17)
C11—C10—H10119.3C28—C27—H27119.4
C6—C11—H11119.7C23—C28—H28119.8
C10—C11—C6120.67 (19)C27—C28—C23120.36 (17)
C10—C11—H11119.7C27—C28—H28119.8
C9—C12—H12A109.5C26—C29—H29A109.5
C9—C12—H12B109.5C26—C29—H29B109.5
C9—C12—H12C109.5C26—C29—H29C109.5
H12A—C12—H12B109.5H29A—C29—H29B109.5
H12A—C12—H12C109.5H29A—C29—H29C109.5
H12B—C12—H12C109.5H29B—C29—H29C109.5
N1—C13—C1117.00 (17)N2—C30—C18116.97 (15)
N1—C13—C14123.73 (18)N2—C30—C31123.55 (16)
C14—C13—C1119.26 (16)C31—C30—C18119.47 (15)
C13—C14—H14120.7C30—C31—H31120.5
C13—C14—C15118.67 (18)C32—C31—C30119.03 (17)
C15—C14—H14120.7C32—C31—H31120.5
C14—C15—H15120.8C31—C32—H32120.9
C16—C15—C14118.4 (2)C31—C32—C33118.19 (17)
C16—C15—H15120.8C33—C32—H32120.9
C15—C16—H16120.7C32—C33—H33120.6
C17—C16—C15118.59 (19)C34—C33—C32118.83 (17)
C17—C16—H16120.7C34—C33—H33120.6
N1—C17—C16124.19 (18)N2—C34—C33123.94 (16)
N1—C17—H17117.9N2—C34—H34118.0
C16—C17—H17117.9C33—C34—H34118.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N10.952.522.832 (3)100
C16—H16···N2i0.952.663.555 (3)158
C20—H20···N2i0.952.713.465 (3)136
C3—H3···O1ii0.952.433.206 (3)139
C19—H19···O2iii0.952.573.379 (2)143
C25—H25···O2iv0.952.653.561 (2)161
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x, y+1/2, z1/2; (iv) x+1, y, z+1.
Selected geometry parameters (Å, °) for 2 and 3 top
Carbon atoms of the pentenynone fragment are numbered from 1 to 5. Φ1 is the dihedral angle between the pyridine ring and the ketone fragment and Φ2 is the dihedral angle between the pyridine and phenyl rings.
Bond23
C1O1.226 (2), 1.228 (2)1.212 (2), 1.215 (2)
C1—CPy1.498 (3)–1.498 (2)1.495 (2), 1.498 (2)
C1—C21.474 (3)–1.477 (3)1.509 (2), 1.513 (2)
C2C31.335 (3), 1.336 (3)
Ccb—Ccb1.549 (2), 1.554 (2)
C3—C41.411 (3), 1.420 (3)1.454 (2), 1.460 (2)
C4C51.206 (3), 1.203 (3)1.195 (2), 1.194 (2)
C5—CPh1.426 (3), 1.430 (3)1.441 (2), 1.439 (2)
Φ111.0 (1), 11.1 (1)14.8 (1), 0.9 (1)
Φ27.4 (1), 5.1 (1)84.8 (1), 47.0 (1)
 

Acknowledgements

This study was supported by the Russian Science Foundation (grant No 17–13-01442). The X-ray diffraction experiments of 2 and 3 were performed using, respectively, the K4.4 `Belok' beamline of the Kurchatov Synchrotron Radiation Source and equipment of the Centre for Mol­ecular Studies of INEOS RAS.

Funding information

Funding for this research was provided by: Russian Science Foundation (grant No. 17-13-01442 to Anna V. Vologzhanina).

References

First citationAlbaladejo, M. J., González-Soria, M. J. & Alonso, F. (2018). Green Chem. 20, 701–712.  Web of Science CSD CrossRef CAS Google Scholar
First citationBattye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrennan, C., Housecroft, C. E., Constable, E. C., Neuburger, M. & Prescimone, A. (2018). CSD Communication (refcode CIBYIY). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc205qfc  Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Suwunwong, T., Boonnak, N. & Fun, H.-K. (2013). Acta Cryst. E69, o1076–o1077.  CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDoyle, R. A. (2011). Marccd software manual. Rayonix LLC, Evanston, USA.  Google Scholar
First citationDudek, M., Clegg, J. K., Glasson, C. R. K., Kelly, N., Gloe, K., Gloe, K., Kelling, A., Buschmann, H., Jolliffe, K. A., Lindoy, L. F. & Meehan, G. V. (2011). Cryst. Growth Des. 11, 1697–1704.  Web of Science CSD CrossRef CAS Google Scholar
First citationEvans, P. (2006). Acta Cryst. D62, 72–82.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFan, C.-B. & Wang, X.-M. (2012). Acta Cryst. E68, o417.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Chantrapromma, S. & Suwunwong, T. (2011b). Acta Cryst. E67, o2789–o2790.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Suwunwong, T. & Chantrapromma, S. (2011a). Acta Cryst. E67, o2406–o2407.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGolovanov, A. A., Latypova, D. R., Bekin, V. V., Pisareva, V. S., Vologzhanina, A. V. & Dokichev, V. A. (2013). Russ. J. Org. Chem. 49, 1264–1269.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHopkin, S. E., Muir, M. & Theocharis, Ch. R. (1991). J. Chem. Soc., Dalton Trans. 2. pp. 1131–1135.  Google Scholar
First citationJasinski, J. P., Butcher, R. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o352–o353.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJayarama, A., Ravindra, H. J., Menezes, A. P., Dharmaprakash, S. M. & Ng, S. W. (2013). J. Mol. Struct. 1051, 285–291.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, S.-L., Tan, A. L., Young, D. J., Jotani, M. M. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 849–853.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, X. (2010). Acta Cryst. E66, o1613.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLin, S., Jia, R., Zhang, X., Wang, Z. & Yuan, Y. (2009). Acta Cryst. E65, o1161.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNagarathinam, M., Peedikakkal, A. M. P. & Vittal, J. J. (2008). Chem. Commun. pp. 5277.  Google Scholar
First citationPrajapati, R., Mishra, L., Grabowski, S. J., Govil, G. & Dubey, S. K. (2008). J. Mol. Struct. 879, 1–6.  Web of Science CSD CrossRef CAS Google Scholar
First citationQian, Z., Li, D., Xie, T., Zhang, X., He, Y., Ai, Y. & Zhang, G. (2017). CrystEngComm, 19, 2283–2287.  Web of Science CSD CrossRef CAS Google Scholar
First citationRout, K. C. & Mondal, B. (2015). Inorg. Chim. Acta, 437, 54–58.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchmidt, G. M. J. (1971). Pure. Apll. Chem. 27, 647–678.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, J., Zhang, Y., Zhang, M., Tian, X., Wang, Y., Li, S., Wang, C., Zhou, H., Yang, J., Tian, Y. & Wu, J. (2016). J. Mater. Chem. C. 4, 3256–3267.  Web of Science CSD CrossRef CAS Google Scholar
First citationVatsadze, S. Z., Manaenkova, M. A., Sviridenkova, N. V., Zyk, N. V., Krut'ko, D. P., Churakov, A. V., Antipin, M. Yu., Howard, J. A. K. & Lang, H. (2006). Russ. Chem. Bull. 55, 1184–1194.  Web of Science CrossRef CAS Google Scholar
First citationVologzhanina, A. V., Golovanov, A. A., Gusev, D. M., Odin, I. S., Apreyan, R. A. & Suponitsky, K. Yu. (2014). Cryst. Growth Des. 14, 4402–4410.  Web of Science CSD CrossRef CAS Google Scholar
First citationVoronova, E. D., Golovanov, A. A., Odin, I. S., Anisimov, M. A., Dorovatovskii, P. V., Zubavichus, Y. V. & Vologzhanina, A. V. (2018). Acta Cryst. C74, 1674–1683.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVoronova, E. D., Golovanov, A. A., Suponitsky, K. Yu., Fedyanin, I. V. & Vologzhanina, A. V. (2016). Cryst. Growth Des. 16, 3859–3868.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, P., Moorefield, G. R. & Newkome, G. R. (2004). Org. Lett. 6, 1197–1200.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds